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Abstract—We present the first experimental results on the 

implementation of a multi-core model checking algorithm for 

the SPIN model checker. These algorithms specifically target 

shared-memory systems, and are initially restricted to dual-

core systems. The extensions we have made require only small 

changes in the SPIN source code, and preserve virtually all 

existing verification modes and optimization techniques 

supported by SPIN, including the verification of  both safety 

and liveness properties and the verification of SPIN models 

with embedded C code fragments. 

Index Terms—logic model checking, distributed algorithms, 

verification, multi-core, shared memory, safety, liveness, linear 

temporal logic. 

I. INTRODUCTION

odel checking can be used to verify the correctness of 

distributed algorithms and asynchronous system 

designs, both for hardware and software. Thanks to a series 

of improvements over the last few decades and significantly 

helped by the steadily increasing power of CPUs, the range 

of problems that can be solved with model checking tools 

continues to expand. Model checkers such as SPIN today 

can analyze models with millions of reachable system states 

in a matter of seconds – which is more than adequate to 

support the verification of abstract design models of 

asynchronous software systems. As a result, logic model 

checking tools have become a standard part of safety critical 

systems development. The SPIN verifier [14] is a public-

domain, open-source software tool, first introduced in 1989, 

and designed for the verification of correctness properties of 

asynchronous software systems. It is currently one of the 

most widely used verification tools in this domain. 

The effectiveness of any verification method, whether it 

is applied manually or with computer support, is ultimately 

limited by problem complexity. Yet, the larger the range of 

problems we can analyze today, the stronger our desire to 

tackle still larger problems tomorrow. Sadly, the effect of 

Moore’s curve [21] to drive a continuing increase in the 
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performance of CPUs appears to be diminishing somewhat 

sooner than anticipated. In mid 2002, for instance, the 

fastest desktop PC ran at a clock-speed of 2.5 GHz. At the 

time of writing, late 2006, the fastest PC available ran at 3.8 

GHz, where a continuation of Moore’s curve would have 

predicted a clock-speed of 6.6 GHz. Chipmakers are 

currently focusing their attention on the further 

development of multi-core CPU systems. Dual-core and 

quad-core CPU systems are already widely available, with 

larger number of processing cores on the horizon. This 

means that to increase the problem solving capabilities of 

logic model checking tools in the foreseeable future we 

must develop strategies that can exploit the capabilities of 

multi-core CPU systems. 

Multi-core systems provide all CPUs with access to fast 

shared memory, making inter-CPU data transfer much more 

efficient than it can be on a cluster-computer (or multi-CPU

systems, as we shall call them here to distinguish them from 

multi-core systems). Given a word size of 64 bits there is no 

real limit to the amount of shared memory that could be 

addressed, making this the ideal context for the use of 

distributed model checking algorithms. The objective is of a 

multi-core extension of logic model checking algorithms is 

then to achieve reductions in the runtime requirements of a 

verification run, not to seek an increase in the amount of 

memory that can be addressed by all CPUs jointly. The 

improvement will be greatest if we can achieve maximal 

independence between the verification work that is done on 

different CPU cores. This means that the load balancing 

method is a critical factor in the design of a new algorithm.  

We will discuss this issue in Section 2. In Section 3 we 

discuss an extension of SPIN’s partial order reduction 

algorithm for multi-core algorithms. Section 4 provides 

metrics on the performance of the method we have 

implemented and presents an analysis of model 

characteristics that can enhance or degrade performance of 

multi-core algorithms. Section 5 reviews earlier work in this 

area and Section 6 concludes the paper. 

II. LOAD BALANCING

A multi-core model checking task can be performed most 

efficiently if work can be distributed approximately evenly 

between the CPU cores. As little communication as possible 

should be required between the CPUs. This ideal is trivially 

realized if we can perform completely independent 

verification runs for distinct properties, e.g., specified as a 
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set of mutually independent LTL formulae. This was the 

method used for achieving even load balancing of hundreds 

of verification runs on a 16-CPU compute cluster in the Bell 

Labs FeaVer system [13]. For the verification of a single 

correctness property, though, this much decoupling is 

difficult to achieve. 

One method is to define a state space partitioning 

function that is evaluated on-the-fly by each CPU. This 

partitioning function determines for each newly generated 

state which CPU should explore it further. The partitioning 

function should have the property that when a successor 

state s is generated by CPU n, most of the successors of s

will also be explored by CPU n. If the CPUs use a shared 

data structure to store all states, there is no danger that the 

CPUs will start exploring the same parts of the state graph 

redundantly. The price to pay for this sharing of data is the 

enforcement of fine-grained mutual exclusion locks on 

access to the (relevant part) of the state tables (e.g., SPIN’s 

hashtable), to prevent race conditions.

To partition the state graph into disjoint subsets, each of 

which is explored by a different CPU, we can make use of 

the notion of an irreversible transition, which can be defined 

as follows. 

Definition: An irreversible state transition in the 

global state graph is any transition with the property that 

its source state is not reachable from its target state, that 

is: no sequence of transitions leads from the target state 

of an irreversible transition back to its source state. 

Irreversible transitions divide the state graph into disjoint 

sub-graphs. They can trivially be identified statically in a 

SPIN model. Although any irreversible transition will 

divide the set of global system states into disjoint sub-sets, 

these sets are not always of similar size. The identification 

of irreversible transitions therefore is by itself not sufficient 

for defining a load balancing strategy.  In SPIN there is one 

case though where we can identify an irreversible transition 

that divides the states space into two approximately equal 

and disjoint subsets. This is the transition that separates the 

first and the second search in the nested depth-first search 

algorithm [12,14]. Since the nested depth-first search 

enables the verification of liveness, this gives us a simple 

method for a dual-core extension of the model checking 

algorithm for liveness properties. To handoff a state from 

one CPU to another, it is simply copied into a work-queue 

in shared memory.  

A. Liveness

The 1st CPU adds each accepting state, in post-order [7], 

to the work queue of the 2nd CPU. The 2nd CPU retrieves 

state from this queue, and performs the nested part of the 

search to determine for each accepting state if is reachable 

from itself. The 2nd CPU records all new states it generates 

into a separate (non-shared) part of the state space, since 

there can be no overlap between the states generated in the 

1st and the 2nd depth-first search. In this case, therefore, no 

locking is needed on access to the state tables. The basic 

complexity of the search remains unchanged compared to 

the single-core algorithm. Thus, for dual-core systems the 

speedup for the verification of liveness properties can be 

close to twofold (cf. Section 4).  

B. Safety

For the verification of safety properties, we adopt a 

similarly simple load balancing method that extends 

naturally also to multi-core systems with more than two 

cores. States are still transferred from one CPU to another 

via shared work-queues. These queues are always bounded. 

In liveness mode, there can only be state transfers in one 

direction: from the 1st to the 2nd CPU. When the work-queue 

of the 2nd CPU fills up, the 1st CPU will wait for a slot to 

become available. (A timeout allows it to recover from a 

possible crash of the 2nd CPU.) When checking safety 

properties though, state transfers can happen in any 

direction, and waiting on a full queue now runs the risk of 

deadlock. In this case, the sending CPU will always defer 

the handoff when a target queue is full and will explore the 

state locally instead. Note that the objective of load 

balancing is still achieved in this case, since the receiving 

CPU already has its maximal work load. 

The metric for state handoffs for safety properties is 

based on the distance of a state from the root of the state 

space graph. Let d be the depth in the state graph at which a 

state is generated. Each CPU can handoff a newly generated 

successor state to another CPU when d exceeds a preset 

bound L within its local stack. When a state is transferred to 

another CPU, the target CPU will explore that state starting 

with an empty local stack and a search depth d of zero. This 

means that at every d%L steps from the original root of the 

global state graph, a state sequence can be transferred to 

another CPU. For L steps in the search, the CPUs can 

perform independent work (this time recording states in a 

shared state table), which means that we can control the 

degree of independence between CPUs by selecting an 

appropriate value for the handoff threshold L. We will 

report on the performance of this method in Section IV. 

 The multi-core extension of SPIN can be achieved with 

minimal intrusion on the existing code by carefully 

selecting the points in the search where state handoffs can 

occur. Fig. 1 illustrates the nested depth-first search 

algorithm that is used in SPIN [14, p.180] and indicates two 

points in the search where a state can be handed off. These 

points are the natural recursion points in the depth-first 

search. By performing the extension in this way, the change 

to the existing system can be limited to a few hundred lines 

of new code. (In Fig. 1, A.s0, A.T, A.F are,

respectively, the initial state, the transition set, and the set 

of acceptance states of the automaton that is obtained by 

combining the model and the property.)  
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The point marked [L] in Fig. 1 corresponds the start of 

the nested part of the search, which is the handoff point for 

the verification of liveness properties. The point marked [S] 

is the handoff point for the verification of safety properties, 

based on the depth metric. The two points interfere only 

minimally with the existing algorithm and preserve all other 

SPIN options. Since we are targeting only dual-core

systems here, the two modes are never mixed. For liveness 

verification only handoff point [L] is used, and for safety 

verification only handoff point [S] is used. 

A few supporting algorithms are used to complete the 

implementation. Peterson’s algorithm for enforcing mutual 

exclusion in a platform independent way [22] was 

considered, but turns out to require CPU-specific 

adaptations to work correctly on modern CPUs.1 The 

simpler solution in this case was to adopt small platform 

specific test-and-set instructions in assembly code instead. 

A distributed termination detection algorithm is also 

needed. The algorithm used for multi-core SPIN is based on 

Dijkstra’s discussion of Safra’s solution [8], which was 

verified with standard SPIN. 

1 The adaptation is needed to defeat out-of-order execution with so-

called memory barrier functions. 

III. PARTIAL ORDER REDUCTION

The standard implementation of SPIN can achieve a 

considerable speedup from the use of a partial order 

reduction method that was introduced in [11] and revised in 

[12]. This algorithm reduces the number of successor states 

that must be generated at each step during the search if it 

can be guaranteed that any deferred transition will 

eventually be explored from a later state. The partial order 

method guarantees that when a transition is deferred for 

later execution its continued executability is unaffected. A 

key provision in the algorithm is the prevention of infinite 

deferral of transitions along cyclic paths in the state graph. 

This cyclic deferral is prevented in the standard SPIN 

algorithm by making sure that none of the successor states 

from a reduced set of transitions can appear on the depth-

first search stack, above the state being explored. If any 

successor state appears on the stack, it can close an infinite 

deferral cycle and lead to an incompleteness of the search 

process. In general, for the verification of liveness

properties, if at least one successor state appears on the 

depth-first search stack no reduction is performed from that 

state [11]. This pre-condition on the application of partial 

order reduction is known as the cycle proviso (or for depth-

first search also: the stack proviso).

Two other versions of the cycle proviso are used in SPIN 

for the verification of safety properties with either a depth-

first or a breadth-first search.2 Clearly, in the case of a 

breadth-first search there is no depth-first stack, and thus an 

alternative method must be adopted to prevent the ignoring 

problem. The variants of the proviso now require that: 

• Depth-first: at least one successor state appears 

outside the stack [10]. 

• Breadth-first: all successor states are previously 

unvisited [3]. 

The condition for breadth-first searches is independent of 

the stack contents, but generally achieves smaller reductions 

of the state space size. (An improvement, described in [3], 

and implemented in SPIN, is to require that at least one 

successor state appears within the breadth-first search 

queue.) In a multi-core search, similarly, the full depth-first 

search stack starting from the original root of the state graph 

is not always available. This means that we must use a 

different method for solving the ignoring problem. To 

achieve this, our implementation forces the exploration of 

all successor states in two extra places in the search (i.e., in 

addition to the case where a successor state is found on the 

local stack of the executing CPU). 

• The first additional expansion is made for so-called 

“border states,” that is states whose successors fall 

below the handoff depth of the current CPU, and 

therefore might have appeared on the search stack. 

2 No efficient algorithm is known for the verification of liveness 

properties with a breadth-first search algorithm [13], so that combination is 

currently not supported. 

Stack D = {}
Statespace V = {} 
State seed = nil 
Boolean toggle = false 

Start()
{
 Add_Statespace(V, A.s0, false) 
 Push_Stack(D, A.s0, false) 
 Search() 
}

Search()
{
 (s, toggle) = Top_Stack(D) 
 for each (s,l,s') in A.T 
 { if (toggle == true 
    && (s' == seed || On_Stack(D,s',false))) 
  { PrintStack(D)  # accept cycle found 
   PopStack(D) 
   return   # end nested search 
  } 

  if In_Statespace(V, s', toggle) == false 
  { Add_Statespace(V, s', toggle) 
   Push_Stack(D, s', toggle) 
[S]   Search()  # dfs recursion 
 } } 

 if s in A.F && !toggle  # in post order 
 { seed = s   # accept state  
  Push_Stack(D, s, true) 
[L]  Search()   # start nested search 
  Pop_Stack(D) 
  seed = nil 
 } 

 Pop_Stack(D) 
}

Fig. 1 – Handoff points for the dual-core nested depth first search 

algorithm. 
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The most conservative approach is to treat them as 

if they had appeared on the stack. 

• The second case is for successor states that are 

previously visited by another CPU. In a single-

core execution these states may have appeared on 

the search stack, but this is no longer verifiable by 

the executing CPU since it has no access to the full 

search stack anymore. Again, the most 

conservative approach is to treat these states as if 

they appeared on the stack. 

The second case above can be optimized further by 

restricting it to cases where the previously visited state was 

generated by a CPU with a higher process number (pid) 

than the executing CPU, to ensure that the full expansion 

only occurs in one CPU, and not in both, as was also noted 

in [4]. 

Proof Sketch for the correctness of the partial order 

reduction: For the states generated by the CPU with the 

lowest pid, the correctness of the proviso follows from 

the proof for the standard depth-first search [10, 3], given 

that handoff states are treated as stack states, as well as 

the states generated by all other CPUs. All states are 

‘fully explored,’ which means that no action enabled at 

any state can be deferred indefinitely. For the CPU with 

the next higher pid number we can rely on this fact, 

whenever it reaches a state generated by the first CPU. 

The proof generalizes in a straightforward way to any 

number of CPUs. Each CPU can trust that the successors 

of all states generated by CPUs with lower pid, are 

always fully explored.

Because of the full expansion of all border states, this 

version of the reduction method will work poorly for short 

handoff depths. As the data presented in the next section 

confirms though, for a handoff depth of 10 steps or more, 

this effect largely disappears. 

IV. MEASUREMENTS

A. Basic Performance 

Table 1 shows a comparison of the runtime requirements 

of exhaustive verification runs with the dual-core extension 

of SPIN, for four different verification models taken from 

the SPIN distribution: a sliding window protocol for a 

window size of 5 messages, the leader election algorithm 

for a ring network of 7 processes, the dining philosophers 

problem with 9 nodes, and Peterson’s generalized mutual 

exclusion algorithm for 4 concurrent processes. In all these 

measurements, the verification was performed for safety 

properties only without use of partial order reduction, to 

ensure that both the dual-core and single-core verification 

runs explore precisely the same number of reachable states. 

The runtime reductions, compared with the single core runs, 

vary from a near optimal ratio of 51% for the leader election 

example, to a less impressive ratio of just under 71% for 

Peterson’s algorithm. We will study the reason for the 

smaller improvement for some models in Section IV.B. 

1) Liveness Verification 

 The performance of liveness verification gives similar 

results. For example, for the verification of the LTL 

property that eventually one node will be elected as the 

leader of the ring (in LTL: <>[]p), again for 7 nodes in the 

ring, we measured a runtime of 69.765 seconds for the 

standard single-core run, and 38.53 seconds for a dual-core 

run, giving a reduction to 55% of the runtime requirements. 

2) Influence of Compiler Optimization 

Another interesting data point is obtained if we compare 

the performance of optimized verification runs with un-

optimized runs. Table 2 shows the results, in this case for 

the sliding window protocol example with a window size of 

Table 1 -- Performance improvement for verification of safety properties 

(all runs exhaustive, generating the same number of states, without partial order reduction). 

Runtime for Verification of 
Safety Properties 

Single-core
(seconds)

Dual-core
(seconds)

Ratio
Dual/Singl

e
(%) 

Sliding window protocol (W=5) 39.73 23.17 58.3 

Leader election protocol (N=7) 172.85 88.19 51.0 

Dining Philosophers (N=9) 26.22 18.26 69.6 

Peterson’s Algorithm (N=4) 65.47 46.42 70.9 

Table 2 – Comparison of optimized and un-optimized performance. 

Runtime for Verification of 

Safety Properties 

Single-core

(seconds)

Dual-core

(seconds)

Ratio 

Dual/Single 

(%)

Standard compilation 39.73 23.17 58.3 

Optimized compilation (-O2) 23.18 15.14 65.3 
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5 messages. For the un-optimized runs, the reduction in 

runtime achieved is 58%, but for the optimized run it is only 

65%. Clearly, the overhead of inter-CPU state transfers 

becomes more noticeable for optimized code than it is for 

un-optimized code. The state handoff code itself consists of 

a simple memcpy call, which is hard to optimize further. 

Code optimization reduces time spent on independent 

computations. We will study this effect in more detail in 

Section 4.2. As an aside, it is also noteworthy to observe 

that merely enabling compiler optimization at level –O2

suffices to achieve performance similar to an un-optimized 

dual-core verification run. 

3) Influence of Handoff Depth 

We measured the influence of handoff depth on the 

performance of dual-core verification. A representative 

result is shown in Fig. 2, in this case for a verification of 

safety properties for the leader election protocol with 4 

nodes. The maximum depth of the search tree is 2.7 million 

steps. The state graph is acyclic, since all executions 

necessarily terminate with the election of a leader of the 

ring. The statevector is 48 bytes in this case, which is 

relatively small for a verification model. 

Fig. 2 shows a characteristic “bath-tub” curve for the 

performance of the dual-core runs, with a conveniently long 

flat bottom where any handoff depth selected in this interval 

will give comparable performance. The left-hand sides of 

the curves, corresponding to the smaller handoff depth 

values, show relatively poor performance, since the load 

balance ratios are small for these values. In these 

measurements partial order reduction was disabled, to 

ensure that the single and dual core verification runs always 

explore the same numbers of states. 

The right-hand sides of the curves also reveal growing 

performance degradation. This time the degradation is 

caused by approximating the maximum search depth of the 

state space itself – hence handoffs near and beyond this 

limit will not be able to achieve adequate load balancing 

anymore. If too few states are transferred from one CPU to 

the other, the first CPU will end up doing most of the work 

and the performance degrades to that of a single-core run, 

or worse (e.g., due to the overhead of the dual-core 

infrastructure needed). 

4) Influence of Partial Order Reduction 

In most cases, the use of partial order reduction preserves 

the benefits of dual-core verification, as expected. We show 

in Fig. 3 what seems at first to be a strongly anomalous 

result. In this case, for the verification of Peterson’s mutual 

exclusion algorithm, there is not only no benefit from dual-

core verification, the performance can actually degrade, 

despite perfect load balancing, especially for short handoff 

intervals. We can hypothesize that this is caused by the 

change that the partial order reduction makes in the state 

graph structure, reducing the average number of successor 

nodes of a state. This effect is not visible in most 

applications, but clearly important. We therefore investigate 

this phenomenon more fully in the next section. 

B. Reference Model 

To verify how dual-core verification depends on various 

structural model characteristics, we construct a reference 

model that allows us to vary specific structural parameters 

over a range of values. This reference model is shown in 

Fig. 4. The model has three parameters: the number of 

successor states per reachable system state (the out-degree 

or branch factor of each state in the state graph), the size of 

a state, and the time it takes to generate a state, which is 

Peterson's Algorithm N=4

MaxDepth SearchTree 2,770,018
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Fig. 2 – Measurement of the influence of the handoff depth chosen in dual core runs for safety properties. The two leftmost 

points indicate the performance of optimized (red, bottom) and unoptimized (blue, top) single core verification runs. The state 

vector (SV) size is 48 bytes for this model. The bottom ratio curve shows a load balance ratio close to one. 
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captured as the time to execute a state transition. We use 

embedded C code to control this parameter by the number 

of times the code executes a dummy computation. 

The model always generates 500,000 reachable system 

states, independent of the parameters settings – to allow us 

to compare the relative runtimes across runs. The generated 

state space graph is a tree whose nodes have a predefined 

number of successors. 

We first measure how the performance of dual-core 

verification depends on transition delay. Fig. 5 shows, in the 

top left graph, the ratio of dual-core runtime versus single-

core run time, for transition delays that range from 21 to 218

time units. Three curves are plotted, the top curve (blue) is 

for a branch factor of one (every state reached always has a 

single successor), the middle curve (green) corresponds to a 

branch factor of two, and the bottom curve (black) 

corresponds to a branch factor of eight. 

For models with small transition delays and/or small 

branch factors, a dual-core run can take up to 2½ times as 

long as a single-core run. For models with an average out-

degree of eight though, the dual-core runs are never slower 

than single-core runs. The same effect is observed for larger 

transition delays and branch factors above one. Since partial 

order reduction reduces the branch factor, the slowdown of 

dual-core verification runs when partial order reduction is 

used is now explained. 

The graph on the upper right in Fig. 5 repeats the 

measurements for a larger state size. We see the same 

Peterson's Algorithm (N=4)
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Fig. 3 – Anomalous performance of dual-core runs for Peterson’s algorithm, when partial order reduction is enabled.  

#define BranchSize      8  /* nr of successors per state */ 
#define StateSize     500  /* nr of bytes in statevector */ 
#define TransTime       9  /* time to perform transition */ 
#define NStates    500000  /* nr of reachable states     */ 

int count; 
byte filler[StateSize]; 

active [BranchSize] proctype test() 
{
end: do 
     :: d_step {  /* define one single transition step */ 
         count < NStates -> 
         c_code { 
            int xi; 
          for (xi = 0; xi < (1<<TransTime); xi++) 
          { now.filler[xi%StateSize] += xi%256; 

                     /* make sure filler is not eliminated */ 
          } 
          /* make sure no extra states are created */ 
          memset(now.filler, 0, StateSize*sizeof(char)); 

                 }; 
        count++ 
        } 
     od 
}

Fig. 4—Reference model for measuring the influence of structural model parameters on the performance of multi-core model 

checking algorithms.
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effect, but for branch-factors above one (which correspond 

to deterministic models) the performance degradation 

disappears and optimal performance can be realized. The 

graph on the lower left side in Fig. 5 shows how 

performance varies with state size for a fixed transition 

delay of 23 time units, and the graph on the lower right 

repeats this experiment for a larger transition delay of 213

time units. Note that in the latter case performance becomes 

independent of state size, because it is now dominated by 

transition delay.

A few observations can be made about these results. 

First, the performance of dual-core algorithms should be 

expected to be smaller when partial order reduction is used 

then when it is not used, although the effect can be 

mitigated by a number of other factors. In cases where 

partial order reduction is not an option, for instance in the 

verification on non-stutter-invariant liveness properties, 

multi-core algorithms can prove especially valuable. Note 

that for deterministic models, no multi-core state 

partitioning method is likely to be effective. In these cases 

one processor will inevitably always be waiting for other 

processors to complete its work, as shown in Fig. 5.

Another observation is that the multi-core algorithms can 

be expected to perform especially well for models with 

large state sizes and/or large transition delays. This nicely 

fits an important application domain of verification models 

with embedded software and model-driven verification 

techniques where the model checker must control and track 

potentially large amounts of implementation level code. 

The importance of this type of extension should therefore 

be expected to increase over time as we start tackling larger 

problem sizes. Alas, it also means that multi-core systems 

cannot really show their full potential on small class-room 

size examples, so some tutorial value of this important new 

class of algorithms is lost. 

V. EARLIER WORK

Most work in distributed model checking to date has 

been focused on algorithms for the verification of safety

properties on physically distributed computers. An early 

objective was also to increase the amount of memory that 

could be dedicated to verification. As noted, many of these 

early assumptions are no longer valid with the switch to 

multi-core systems with a 64-bit address space. 

The Stern-Dill algorithm [23] uses a hash function to 

assign states to nodes in a compute cluster. With a good 

hash-function, this method should achieve near-optimal 

load balancing, but it suffers from the overhead of frequent 

state transfers. A different cluster algorithm for SPIN

appears in [20], but also restricted to safety properties. This 

algorithm performed load balancing with a partitioning 

method that is based on the structure of a SPIN model. The 

issue of load balancing was also addressed in [2] and [18]. 

An algorithm for distributed model checking of liveness 
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Fig. 5 – Measurements on the reference model, to study the effect of structural model properties on the performance of multi-core

algorithms. Varied are the out-degree of states (the branch factor), the state size, and the transition delay. 
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properties is given in [1]. The algorithm maintains a global 

structure on one CPU to ensure that accepting states are 

expanded in the correct order. The memory requirements 

for this structure can be prohibitive though. Another 

algorithm [19] was designed to partition the state space in 

such a way that accepting cycles always appear within the 

same CPU. Load balancing is difficult to generalize with 

this method. In [5] and [6] algorithms are described that 

require multiple passes over the state space, increasing the 

computational complexity of the search process, and 

potentially defeating the benefit of a parallelized 

verification process. 

An algorithm for safety properties is given in [17], and 

for liveness properties in [9], both using disk memory. The 

liveness algorithm stores a copy of an accepting state inside 

the state vector and stops with a counter-example if that 

copy can be matched. The seed state of the nested search 

then is duplicated into every new state encountered during 

the second search, which can significantly increase the 

memory requirements for that part of the search. 

A model checking algorithm for CTL*, using shared 

memory is given in [16]. To achieve load balancing, idle 

CPUs can “steal” states from the work-queues of other 

CPUs. Performance results are given, but only for runs that 

stop at the generation of a first counter-example, which 

makes it difficult to compare results between single- and 

multi-core runs, or for different versions of the algorithms. 

VI. CONCLUSION

This paper describes how the SPIN model checker can be 

extended for multi-core systems with shared memory. The 

extension supports the verification of both safety and 

liveness properties, with a relatively small change. We have 

shown that the effect of compiler optimization and search 

optimization techniques, such as partial order reduction, 

diminish the benefit of multi-core processing. For applica-

tions of interest though, applications with embedded code 

[13,15], the benefits can be significant. 

Our extension preserves most of the existing verification 

modes of SPIN, including the capability to verify liveness 

properties, the use of search optimization techniques such as 

partial order reduction, and also bitstate storage [14]. The 

capability to generate counter-examples with the multi-core 

version of the model checking algorithm is also preserved 

through the use of backward pointers in the state graph. 

The method we have described for the verification of 

safety properties scales without change to the use of larger 

numbers of CPU cores. The extension for liveness for more 

than two CPUs remains an open research problem and is 

expected to be non-trivial.  
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