
Stochastic Approach to Scheduling Multiple Divisible Tasks on a Heterogeneous
Distributed Computing System

Ankur Kamthe1 and Soo-Young Lee2

1University of California, Merced 2Auburn University
Computer Science and Engineering Dept. of Electrical and Computer Engineering

Merced, CA 95344 USA Auburn, AL 36849 USA
akamthe@ucmerced.edu leesooy@eng.auburn.edu

Abstract

Heterogeneity has been considered in scheduling, but
without taking into account the temporal variation of com-
pletion times of the sub-tasks for a divisible, independent
task. In this paper, the problem of scheduling multiple,
divisible independent tasks on a heterogeneous distributed
computing system is addressed. The “stochastic” approach,
which was previously applied to DAG scheduling, is em-
ployed for scheduling a group of multiple divisible as well
as whole independent tasks. It explicitly considers the stan-
dard deviations (temporal heterogeneity) in addition to the
mean execution times in deriving a schedule, in order to
model more closely what would actually happen “on aver-
age” on a temporally heterogeneous system (instead of ap-
proximating the random weights by their means only as in
other approaches). Through an extensive computer simula-
tion, it has been shown that the proposed approach can im-
prove schedules significantly over those by a scheme which
uses the average weights only.

1 Introduction

Divisible tasks are generally divided into smaller load
fractions so that they can be assigned to multiple proces-
sors for faster execution. Various scheduling algorithms
exist for directed acyclic task graphs (DAGs) where there
are precedence relationships among tasks, and independent
tasks where there are no precedence relationships among
tasks. Generally, scheduling schemes adopt some kinds of
heuristics for mapping the tasks onto processors to optimize
(reduce) the overall parallel execution time. In these heuris-
tics, the computation and communication times are consid-
ered to be deterministic, i.e., do not vary with time.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

These days, resources in a distributed computing system
such as a cluster and a computational grid are shared by
multiple users. Therefore, the computing power available
for a task may vary with time, i.e., temporal heterogeneity
[1]. Also, resources may not be all identical or a different
resource may exhibit a different behavior of availability, i.e.,
spatial heterogeneity. In addition, an application itself may
be inherently random, e.g., simulated annealing, genetic al-
gorithm, etc. Hence, the computation and communication
times are no longer deterministic on such a heterogeneous
distributed computing system even when all processors in
the system are identical.

For tackling the problem posed by heterogeneity in task
scheduling, many approaches have been proposed by a
number of researchers. In DAG scheduling, spatial het-
erogeneity has been considered in scheduling [2][3][4]. In
[5], task computation time is treated as a random variable
and is statistically estimated from past observations. In [6],
the standard deviations of computation and communication
times were used to model the behavior of sub-tasks in a
DAG instead of using means only as in other approaches. It
was shown that a significant improvement can be achieved
by considering the standard deviation when heterogeneity is
present.

In [7], the concepts of “machine heterogeneity” and
“task heterogeneity” are employed in an effort to simulate
different heterogeneous computing environments in evalu-
ating the behavior of the task mapping heuristics. How-
ever, the (temporal) heterogeneity is not taken into account
in the machine and task heterogeneity. In [8], a stochas-
tic approach was taken to scheduling a set of independent
tasks using a Genetic Algorithm wherein computation times
are not deterministic. In [9], Schopf et al focused on load-
balancing a divisible task wherein the amount of data as-
signed to a processor for processing depends on the mean
and standard deviation of execution time. But, this strategy

does not account for the need for scheduling multiple divisi-
ble (and indivisible) tasks concurrently, wherein these tasks
are reordered for execution such that the total makespan
is minimized. In [10], an optimal steady-state scheduling
strategy was proposed for a suite of identical, independent
problems where each problem consists of a set of tasks.
It attempted to exploit the mixed data and task parallelism
on heterogeneous clusters and grids. In [11], a method for
scheduling independent tasks consisting of nonlinear DAGs
was proposed. However, heterogeneity was not considered.
In [12], the problem of allocating and scheduling a col-
lection of independent, equal-sized tasks on heterogeneous
computing platforms was addressed, taking memory con-
straints into account. In [13], the problem of scheduling
multiple divisible load applications on a grid platform was
addressed. They did not explicitly consider the heterogene-
ity in completion times of the tasks executed on a cluster
when scheduling successive tasks.

As discussed above, the existing scheduling schemes are
mainly targeted towards DAGs or independent tasks but not
a hybrid mix of divisible and indivisible tasks. In this paper,
an effective scheme for scheduling a group of multiple di-
visible as well as whole independent tasks is proposed based
on the stochastic approach previously designed for DAG
scheduling [6]. It explicitly considers the standard devia-
tions (temporal heterogeneity) in addition to the means of
execution times in deriving a schedule. By utilizing the sec-
ond order moments of weights also, the heuristics employed
in the new approach attempt to “follow” more closely “on
average” what would actually happen on a temporally het-
erogeneous system. Through an extensive computer simu-
lation, it has been shown that the proposed approach can im-
prove schedules significantly over those by a scheme which
uses the average weights only.

The rest of this paper is organized as follows. In Section
2, the terms and notations used in the paper are introduced.
In Section 3, the scheduling heuristics used in the paper are
reviewed. In Section 4, the divisible load scheduling model
is described. In Section 5, the new approach to schedul-
ing groups of divisible tasks is described. In Section 6, the
description of simulation procedure and performance mea-
sures is provided. In Section 7, the simulation results are
discussed in detail, followed by the summary in Section 8.

2 Terms and Notations

• Pj : processor j.

• ni: task i.

• tij : computation time of ni, which has the mean mij

and standard deviation σij on Pj .

• tcij : completion time of ni, which has the mean mcij

and standard deviation σcij on Pj .

• Schedule length, TSL: the make-span of a schedule, or
the parallel execution time predicted by a scheduling
algorithm.

• Average parallel execution time, tp: the actual aver-
age time required to execute a group of tasks accord-
ing to a schedule. Parallel execution time, Tp, which is
a random variable has the mean, tp, and the standard
deviation, σTp

.

• E[]: the expectation operator used to compute the
mean of a random variable.

3 Scheduling Heuristics

Two existing heuristics developed for scheduling inde-
pendent tasks, i.e., Max-Min and Min-Min, which are used
to demonstrate the benefits of the proposed approach, are
reviewed below. They have time complexities of O(V 2P),
where P is the number of processors and V is the number
of tasks to schedule. These simple heuristics were chosen
as the main goal of this study was to demonstrate that sig-
nificant improvements in tp could be achieved only by im-
proving estimation of time variables (such as earliest start
time, completion time) while scheduling tasks. The pro-
posed idea would also apply to any other scheduling algo-
rithm utilizing time variables in computing the makespan.

Min-Min Algorithm

1. A task list is generated that includes all unmapped
tasks.

2. Find the completion time (CT) of each unmapped task
on each machine (ignoring other unmapped tasks).

3. Find the machine that gives minimum CT for each
task.

4. Among all the task/machine pairs found in 3, find the
pair that gives the minimum CT.

5. Remove the above task from the task list and map it to
the chosen machine.

6. Update the available time of the machine on which the
task is mapped.

7. Repeat steps 2-6 until all the tasks have been mapped.

n0

n0

n1

n0

n0

n1

P0

P2

P1

P0

P2

P1

n1

n0

n0

n1

n0

n0

P0

P2

P1

P0

P2

P1

Static Schedule

Actual Execution for Static Schedule (From Simulation)

Stochastic Schedule

Actual Execution for Stochastic Schedule (From Simulation)

TSL = 10 TSL = 11.2

tp = 12.98 tp = 11.2

Indicates the variation in task execution time. Indicates the completion time for each task.

Indicates the overall completion time from the schedule/simulation.

Figure 1. Comparison of schedule and average parallel execution time from the static and stochastic
schedules.

Table 1. The mean and standard deviations of task execution times used for the comparison in Figure
1. Task n0 is divided into two sub-tasks, and m and σ given in the table are for each of the sub-task.

Task mci0, σci0 mci1, σci1 mci2, σci2

n0 (10, 3) (10, 1) (10, 1)
n1 (10, 2) (10, 4) (10, 4)

Max-Min Algorithm

The Max-min algorithm is the same as the Min-min al-
gorithm except that in Step 4 “find the pair that gives the
minimum CT” is replaced by “find the pair that gives the
maximum CT.”

4 Divisible Task Scheduling

One essential step in both Max-Min and Min-Min
schemes is to compute the CT of each task. When a group
of independent tasks is executed on a temporally (and spa-
tially) heterogeneous distributed computing system, the CT
of each task may vary with time in general. That is, CT of
ni can be considered to be a random variable (tcij). Hence,
there is an uncertainty in the CT of the task due to the het-
erogeneity in resources. Consider the following cases:

• Case 1: When an independent task requiring multiple
processors is executed on a temporally heterogeneous

but spatially homogeneous system, tcij would change
with respect to time in a random manner.

• Case 2: When an independent task requiring multi-
ple processors is executed on a spatially heterogeneous
but temporally homogeneous system, the processor-
dependent CT of a task can be modeled by the random
variables tcij .

• Case 3: When an independent task requiring multiple
processors is executed on a temporally and spatially
heterogeneous system, the random variables tcij re-
flects both temporal and spatial variation of CT of ni.

In reality, heterogeneity is comprised of a combination
of temporal and spatial heterogeneity, and can be character-
ized as one of Cases 1-3 mentioned above or a mix of these
three cases where task heterogeneity is combined with spa-
tial or temporal heterogeneity. In the remainder of this pa-
per, the first case is assumed for the convenience of discus-
sion though all three cases can be handled by the stochastic
model. In our model for divisible task scheduling, the ran-

dom variable tcij is replaced by a pair of its first two mo-
ments, i.e., the mean mcij and standard deviation σcij . Sim-
ilarly, the random variable tcik is replaced by its mean mcik

and standard deviation σcik. In order to justify the proposed
approach, consider the following examples. It is assumed
that when a divisible task is partitioned into p sub-tasks, it
can be scheduled only if at least p processors become avail-
able.

Case A: Difference in computing completion time for
a divisible task.
Suppose two independent tasks are to be scheduled, one of
the tasks (n0) is divisible and requires two processors for
execution (refer to Table 1 for task execution times and Fig-
ure 1). In the static case (refer to Figure 1), the CT is com-
puted to be tcij = mcij for all tasks (hence, n0 has the same
CT (= 10) on all processors). Therefore, n0 is scheduled on
P0 and P1, and n1 is scheduled on P2, leading to sched-
ule length TSL = 10. Execution of this schedule leads to
tp = 12.98. In the stochastic case, the CT of n0 is com-
puted as E[max(tc0j , tc0k)] and hence is different for each
pair of Pj and Pk (j �= k) (least CT (= 10.9) if sched-
uled on P1 and P2). CT of n1 (tc1j) remains the same for
all j. Therefore, n0 is scheduled on P1 and P2, and n1

is scheduled on P0. The schedule length is computed as
E[max(tc10, tc01, tc02)] in the stochastic case. This leads to
TSL = 11.2. Execution of this schedule leads to tp = 11.2,
which is the same as TSL predicted before.

Case B: Difference in computing completion time for
a divisible task scheduled after independent tasks.
Suppose that four independent tasks are to be scheduled,
where one of the tasks (n3) is divisible and requires two
processors for execution (refer to Table 2 for task execution
times and Figure 2). In the static case, tasks n0, n1 and
n2 are scheduled on P0, P1 and P2, respectively. n3

which is a divisible task is scheduled on P0 and P1 (for
the static case, CT for a divisible task is the same for
all processor pairs (= 25)). This leads to TSL = 25.
During execution of this schedule, the start of n3 is
delayed due to the heterogeneity in execution times of
n0 and n1. This leads to tp = 31.05. In the stochastic
case, just as in the static case, tasks n0, n1 and n2 are
scheduled on P0, P1 and P2 respectively. The CT of n3 is
computed as E[max(tc00, tc11)] + E[max(t30, t31)]
(or E[max(tc11, tc22)] + E[max(t31, t32)] or
E[max(tc00, tc22)] + E[max(t30, t32)]). It is least
(≈ 28) when n3 is scheduled on P1 and P2. Thus, the
stochastic case considers the heterogeneity in the start
time for a divisible task and uses it while computing the
CT for that task. This leads to TSL = 28.1 (computed as
E[max(tc00, tc31, tc32)]). Execution of this schedule leads
to tp = 28.1, which is the same as TSL predicted before.

Parallel execution time of a group of independent tasks
is defined to be the total time required to execute all the

tasks. Since the parallel execution time (Tp) is random, one
may adopt the average parallel execution time tp = E[Tp] to
quantify the quality of a schedule. As mentioned in Section
1, this measure is useful especially when a task needs to be
repeatedly executed.

5 Stochastic Approach to Divisible Task
Scheduling

In this section, a new approach to scheduling divis-
ible tasks is described. Its implementations for Min-
Min and Max-Min are referred to as stochastic Min-Min
and stochastic Max-Min, respectively. It is assumed that
{mij , σij} is known at the time of scheduling, i.e., static
scheduling.

5.1 Completion Time for a divisible inde-
pendent task

In the stochastic Min-Min (or Max-Min), the average
CT (just CT hereafter) of each node is used in comput-
ing the priority of the node for scheduling. One of the
differences between the stochastic and static versions of
Min-Min and Max-Min is how the CT of a divisible in-
dependent task is computed when it is executed concur-
rently on multiple processors. Referring to Figure 1, the
CT of n0 is E[max(tc01, tc02)]. When mc01 � mc02

(or mc01 � mc02), then E[max(tc01, tc02)] ≈ mc01 (or
E[max(tc01, tc02)] ≈ mc02). However, when mc01 is com-
parable to mc02 (this is mostly the case due to load bal-
ancing), and σc01 or σc02 �= 0, E[max(tc01, tc02)] is sub-
stantially greater than max(mc01, mc02). In general, the
CT for a divisible task i requiring p processors for exe-
cution can be expressed as E[max(tci1, ..., tcip)]. Refer-
ring to Figure 2, the CT of n3 is E[max(tc11, tc22)] +
E[max(t31, t32)]. However, when mc11 is comparable to
mc22, m31 is comparable to m32 and σc11, σc22, σ31 or
σ32 �= 0, E[max(tc11, tc22)] + E[max(t31, t32)] is sub-
stantially greater than max(tc11, tc22) + max(t31, t32).

These cases are referred to as competing situations, i.e.,
multiple tasks compete to determine the completion time of
n0 (or n3). The competing situation implies that the divisi-
ble portions of n0 (or n3) are scheduled on multiple differ-
ent processors. Note that a node may not be scheduled on
the processors involved in executing the divisible portions
of a task, until after all of the sub-tasks of a divisible task
complete execution or until the independent tasks executing
on processors, where the divisible task would be scheduled,
have completed execution.

n0

n1

n2

n0

n1

n2

P0

P2

P1

P0

P2

P1

n1

n2

n0

n1

n2

P0

P2

P1

P0

P2

P1

Static Schedule

Actual Execution for Static Schedule (From Simulation)

Stochastic Schedule

Actual Execution for Stochastic Schedule (From Simulation)

TSL = 25
TSL = 28.1

tp = 31.05 tp = 28.1

Indicates variation in task execution time. Indicates task completion time.

Indicates overall completion time from the schedule/simulation.

18.24

16.38

15

15

1528.24

n3

n3

n3

n3

n3

n3

n3

n3

16.38

26.38

Indicates delay in start time of a divisible task.

15

n0

26.38

Figure 2. Comparison of schedule and average parallel execution time from the static and stochastic
schedules.

Table 2. The mean and standard deviations of task execution times used for the comparison in Figure
2. Task n3 is divided into two sub-tasks, and m and σ given in the table are for each of the sub-tasks.

Task mci0, σci0 mci1, σci1 mci2, σci2

n0 (15, 7) (15, 4) (15, 6)
n1 (15, 4) (15, 3) (15, 4)
n2 (15, 3) (15, 2) (15, 1)
n3 (10, 3) (10, 1) (10, 3)

5.2 Derivation of CT

Calculation of the CT of a divisible task ni requires eval-
uation of E[max{Si}] where Si is the set of random vari-
ables which determine the CT of the task. For example, in
Figure 1, S0 = {tc01, tc02} for n0 if it is scheduled on P1

and P2 (tcij indicates the time for each divisible portion of
ni executed on Pj). One may derive an analytic formula
of E[max{Si}] so that it can be used during scheduling.
However, it is not possible to derive the closed-form an-
alytic formula of E[max{Si}] for any distribution of each
random variable in Si. In such a case, one may approximate
E[max{Si}] in terms of the mean and standard deviation of
each random variable in Si. In this study, the closed-form
analytic formulas of E[max{Si}] have been derived for the
uniform distribution of each random variable in Si.

5.3 Complexity

The complexity of the stochastic Max-Min is the same
as that of the static Max-Min, which is O(V 2P). How-
ever, the step of deriving the CT of each node requires more
computation in the stochastic Min-Min and Max-Min which
use the formulas mentioned in Section 5.2, compared to the
static Min-Min and Max-Min. In Figure 3, the average com-
putation time required for deriving a schedule is compared,
as a function of the number of processors, among the dif-
ferent scheduling schemes. It is seen that the stochastic ap-
proaches at times took approximately two times longer than
the static approaches. However, it is still less than 3 seconds
in all the cases considered. Also, note that the scheduling
overhead is incurred just once.

Table 3. Comparison of schedule length (TSL) and tp and improvements in tp by the stochastic Max-
Min over the static Max-Min when the competing situation is significant in the presence of temporal
heterogeneity in task execution times.

number number of Static Max-Min Stochastic Max-Min
of tasks processors TSL tp σTp ∆ δ TSL tp σTp ∆ δ η �count

100 2 686.4 758.3 21.7 71.9 10.0 738.4 721.6 25.1 16.8 2.3 4.8 20
3 455.8 525.7 20.6 69.9 14.2 518.7 515.6 19.3 3.1 0.6 1.9 160
4 343.1 397.8 17.1 54.7 14.8 390 378.5 14.9 11.5 3.0 4.9 62
5 276.9 326.1 15 49.2 16.3 307.9 309.9 12.7 2 0.6 5 100
6 227.5 271.7 12.1 44.2 17.7 259.7 260.5 11.4 0.8 0.3 4.1 113
7 193.3 234.8 9.7 41.5 19.4 222.8 230.1 10.6 7.3 3.2 2 185
8 169.5 207.1 8.6 37.6 20.0 195 199.7 9.1 4.7 2.4 3.6 139

200 2 1281.8 1437.3 32.5 155.5 11.4 1357.4 1373.9 32.2 16.5 1.2 4.4 10
3 855.4 979.5 24.1 124.1 13.5 985.3 975.8 24.5 9.5 1.0 0.4 231
4 641.8 750.5 20.2 108.7 15.6 721.5 707.1 20.2 14.4 2.0 5.8 22
5 514 611.1 18.3 97.1 17.3 592 588.5 17.7 3.5 0.6 3.7 75
6 427.8 509.2 14.4 81.4 17.4 489.8 490.9 15.5 1.1 0.2 3.6 77
7 367.3 438 13.5 70.7 17.6 414.5 425.1 13.5 10.6 2.5 3 132
8 321.4 387.5 12.2 66.1 18.6 370.2 374.9 12.1 4.7 1.3 3.2 110

500 2 3316.9 3653.1 52.8 336.2 9.6 3479.6 3457.8 51.6 21.8 0.6 5.3 0
3 2216.3 2490.6 37.2 274.3 11.7 2450 2429.9 41.6 20.1 0.8 2.4 50
4 1654.8 1886.6 30.4 231.8 13.1 1794.9 1773.1 33.3 21.8 1.2 6 0
5 1320.7 1537.4 28.7 216.7 15.2 1508.7 1492.3 30 16.4 1.1 2.9 73
6 1099.2 1278.7 24.3 179.5 15.1 1233.6 1205.5 25.2 28.1 2.3 5.7 6
7 940.8 1100.6 21.1 159.8 15.7 1088.4 1081.8 24.4 6.6 0.6 1.7 141
8 826.4 973.7 19 147.3 16.4 948.1 927.4 21.1 20.7 2.2 4.8 25

Table 4. Comparison of schedule length (TSL) and tp and improvements in tp by the stochastic Min-
Min over the static Min-Min when the competing situation is significant in the presence of temporal
heterogeneity in task execution times.

number number of Static Min-Min Stochastic Min-Min
of tasks processors TSL tp σTp ∆ δ TSL tp σTp ∆ δ η �count

100 2 1339 1526.6 29.5 187.6 13.1 1552.1 1514.7 28.9 37.4 2.4 0.8 87
3 1281 1474 29.1 193 14.0 1419.9 1433.9 23.2 14 1.0 2.7 39
4 676.8 791.1 18 114.3 15.6 746.8 767.3 13.8 20.5 2.7 3 61
5 648 774.2 18.3 126.2 17.7 705.1 725.7 12.7 20.6 2.9 6.3 6
6 454.3 534.9 13.8 80.6 16.3 542.4 522.5 10.6 19.9 3.7 2.3 105
7 434.8 529.6 13.7 94.8 19.7 480 493.5 10.1 13.5 2.8 6.8 7
8 345 412 10.6 67 17.7 406 396.2 8.4 9.8 2.4 3.8 53

200 2 2615 3006.2 40.2 391.2 13.9 3062.4 2995.6 41.1 66.8 2.2 0.4 59
3 2503.6 2892.2 41.2 388.6 14.4 2875.9 2841.5 34.5 34.4 1.2 1.8 50
4 1310.8 1518.6 24.1 207.8 14.7 1484.5 1476.9 20.3 7.6 0.5 2.7 30
5 1257 1497.5 25.3 240.5 17.5 1388.4 1401 15.6 12.6 0.9 6.4 0
6 878.9 1026 18.6 147.1 15.4 1020.4 995.9 12.7 24.5 2.4 2.9 44
7 842.6 1026 18.3 183.4 19.6 929.4 945.4 10.9 16 1.7 7.9 0
8 662.3 789.2 17.4 126.9 17.5 773.9 753 9.1 20.9 2.7 4.6 11

500 2 6380.8 7286.4 68 905.6 13.3 7315.6 7270.5 67.5 45.1 0.6 0.2 44
3 6050.9 6949.4 61.6 898.5 13.8 6829.6 6887.4 52.5 57.8 0.8 0.9 86
4 3197.1 3720.2 40.2 523.1 15.1 3515.8 3592 30.1 76.2 2.1 3.4 2
5 3031.9 3599.6 36.7 567.7 17.1 3479.2 3419.6 24.1 59.6 1.7 5 0
6 2136.2 2496.4 30.8 360.2 15.6 2364.5 2397 19.8 32.5 1.4 4 1
7 2015 2441.9 26.4 426.9 19.2 2211.5 2264.9 16.8 53.4 2.4 7.2 0
8 1605.6 1892 22.8 286.4 16.4 1850.5 1805.4 13.9 45.1 2.5 4.6 0

Table 5. Comparison of schedule length (TSL) and tp and improvements in tp by the stochastic Min-
Min over the static Min-Min when the competing situation is significant in presence of temporal and
spatial heterogeneity in task execution times.

number number of Static Min-Min Stochastic Min-Min
of tasks processors TSL tp σTp ∆ δ TSL tp σTp ∆ δ η �count

40 2 703.9 778.1 21 74.1 10.0 795.5 778.1 21 17.4 2.2 0 500
3 649.4 754.2 23.1 104.8 14.9 768.2 745.5 18 22.7 3.0 1.2 110
4 353 400.7 12.8 47.7 12.7 403.1 394.3 11 8.9 2.2 1.6 19
5 333.9 389.4 12.7 55.4 15.3 368.2 380.2 10.1 11.9 3.2 2.4 165
6 232 273.3 9.5 41.4 16.4 290.6 273.1 8.5 17.5 6.2 0.1 124
7 228.8 269.7 9.9 40.9 16.4 252.9 261 8.9 8.1 3.2 3.2 42
8 184.3 217.8 9.9 33.6 16.7 216.8 204.5 5.5 12.3 5.8 6.1 85

200 2 2900.5 3221.5 44.3 320.9 10.5 3239.5 3210 42.1 29.5 0.9 0.4 141
3 2587.5 3022.7 43.8 435.2 15.5 2925 3018.4 35.8 93.3 3.1 0.1 213
4 1431.1 1628.8 28.1 197.8 12.9 1648.7 1604.3 21.2 44.4 2.7 1.5 99
5 1280.3 1544.1 25.7 263.8 18.7 1540.5 1505.2 19.6 35.3 2.3 2.5 43
6 942.3 1104.5 20.4 162.2 15.8 1054 1068.5 15.5 14.5 1.4 3.3 36
7 856.4 1052.3 20.3 195.9 20.5 979.5 1012.3 13.2 32.9 3.3 3.8 20
8 704.5 845.7 16.9 141.3 18.2 820.6 804.4 12.2 16.2 2.0 4.9 9

500 2 7496 8344 67.4 848 10.7 8396.3 8338 67.7 58.3 0.7 0.1 186
3 6759.2 7860.5 64 1101.3 15.1 7854.7 7885.7 54.1 31 0.4 -0.3 334
4 3657.4 4179.7 43.4 522.3 13.3 4007.7 4083.5 31.9 75.8 1.9 2.3 12
5 3353.1 3987.5 40.5 634.4 17.3 3823.8 3896.6 26.3 72.8 1.9 2.3 10
6 2416.1 2811.7 32.4 395.6 15.1 2831.1 2716.2 20.7 114.9 4.1 3.4 1
7 2233.6 2689.9 28.9 456.3 18.5 2528 2586.6 18 58.5 2.3 3.8 0
8 1798.2 2125 24.7 326.8 16.7 2053.9 2043.2 16.7 10.8 0.5 3.9 2

Table 6. Comparison of schedule length (TSL) and tp and improvements in tp by the stochastic Max-
Min over the static Max-Min when the competing situation is significant in presence of temporal and
spatial heterogeneity in task execution times.

number number of Static Max-Min Stochastic Max-Min
of tasks processors TSL tp σTp ∆ δ TSL tp σTp ∆ δ η �count

40 2 413.5 464.6 21.4 51.1 11.6 460.3 453 21.8 7.3 1.6 2.5 168
3 282.9 328.2 15.5 45.3 14.8 323 329.6 15.4 6.7 2.1 -0.4 439
4 207.5 243.8 11.7 36.3 16.1 237.4 238.6 10.5 1.2 0.5 2.1 196
5 166.4 201.5 9.8 35.1 19.1 196.8 194.9 10.2 1.9 1.0 3.2 320
6 135.5 167 8.8 31.5 20.8 163.6 161.1 9.3 2.5 1.5 3.5 214
7 120 147.1 8.4 27.1 20.3 145.2 142.3 7.2 2.9 2.0 3.3 233
8 102.3 128.5 7.6 26.2 22.7 120.8 127.5 7.2 6.7 5.4 0.8 264

200 2 1441.1 1562.2 38.6 121.1 8.1 1539.1 1509.1 38.8 29.9 2.0 3.4 38
3 951.9 1077.2 30.5 125.2 12.3 1050.8 1064.5 30.7 13.7 1.3 1.2 184
4 711.6 809.1 20.8 97.5 12.8 787.6 800.6 24.8 12.9 1.6 1 186
5 573 673.4 22.4 100.4 16.1 639.7 643.4 19.4 3.7 0.6 4.5 80
6 477.6 563.7 16.9 86.1 16.5 548 540.2 19.2 7.9 1.5 4.2 81
7 404.5 476.7 15.9 72.2 16.4 452.4 466.3 16 13.9 3.0 2.2 143
8 352.7 418.8 14.2 66.1 17.1 387.9 409.5 14.9 21.6 5.4 2.2 153

500 2 6377.1 7063.4 88.5 686.3 10.2 6895.9 6845 88.1 50.9 0.7 3.1 0
3 4306 4952.3 68.1 646.3 14.0 4919.7 4902.9 64.1 16.8 0.3 1 118
4 3240.5 3782.8 54.9 542.2 15.4 3660.4 3676.7 51.9 16.3 0.4 2.8 22
5 2585.8 3072.3 47.2 486.4 17.2 3019.2 3011.6 43.1 7.6 0.3 2 65
6 2141.6 2551.1 41.7 409.5 17.5 2474.7 2493.9 39.7 19.2 0.8 2.2 74
7 1823.5 2214.2 39.3 390.8 19.4 2140.8 2155.5 36.9 14.7 0.7 2.7 62
8 1583.8 1933.7 33.5 349.9 19.9 1860.9 1885.6 32.6 24.7 1.3 2.5 57

2 3 4 5 6 7 8
50

100

150

200

250

300

350

400

450

500

Number of processors

T
im

e
(in

 m
ill

is
ec

on
d)

Static max−min (or min−min)
Stochastic max−min (or min−min)

2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

Number of processors

T
im

e
(in

 m
ill

is
ec

on
d)

Static max−min (or min−min)
Stochastic max−min (or min−min)

(a) (b)

Figure 3. Average time (in milliseconds) required to derive the schedule on Sun Enterprise 420R
server (4 450-MHz UltraSPARC[tm]-II modules with 4GB memory) for (a) 100 nodes and (b) 500 nodes.

6 Simulation

The simulation results are divided into two sets. In the
first set (refer to Tables 3 and 4), task execution times ex-
hibit varying temporal heterogeneity, i.e., they have the
same mean but different standard deviations for different
processors. In the second set (refer to Tables 5 and 6), task
execution times exhibit varying spatial and temporal hetero-
geneity, i.e., they have different means and standard devia-
tions for different processors (means of execution times for
a task vary up to a maximum of 10% for different proces-
sors). The ranges of the means and standard deviations of
execution times are given below.

• For tasks exhibiting temporal heterogeneity:

– Divisible tasks: mij = [20, 40] and σij = [0, 15]

– Non-divisible tasks: mij = [0, 20] and σij =
[0, 10]

• For tasks exhibiting temporal and spatial heterogene-
ity:

– Divisible tasks: mij = [25, 45] and σij = [0, 15]

– Non-divisible tasks: mij = [0, 20] and σij =
[0, 10]

• For Max-Min scheme, 15% of the tasks and for Min-
Min scheme, 80% of the tasks are divisible whereas
the rest are non-divisible.

6.1 Simulation Procedure

In order to analyze effectiveness of the new scheduling
schemes (stochastic Min-Min and Max-Min), an extensive

simulation has been carried out where they are compared
with the static Min-Min and Max-Min in terms of the aver-
age parallel execution time tp. The simulation procedures
are described below.

1. Designate the number of tasks to be scheduled in the
simulation.

2. Assign each task with a positive mean and standard
deviation of execution time, which define a uniformly-
distributed random variable.

3. Find a schedule using each of the static Min-Min,
stochastic Min-Min, static Max-Min and stochastic Max-
Min.

4. Generate random weights for all tasks according to
their means and standard deviations.

5. Compute parallel execution time (Tp) for each of the
schedules obtained in Step 3 using the static Min-Min,
stochastic Min-Min, static Max-Min and stochastic Max-
Min algorithms.

6. Repeat Steps 4 and 5 multiple times to obtain the aver-
age parallel execution time (tp).

Step 6 is repeated 500 times in order to obtain simulation
results (tp).

6.2 Performance Measures

In addition to tp, the following measures are used:

• ∆: the difference between the schedule length, TSL,
and the average parallel execution time, tp, which
quantifies the accuracy of a scheduling scheme, i.e.,

∆ = |TSL − tp|.

• δ: the percent difference between TSL and tp, normal-
ized by the average of TSL and tp, i.e.,

δ =
∆

TSL+tp

2

× 100 =
|TSL − tp|

TSL+tp

2

× 100

• η: the percent improvement in tp by the stochastic al-
gorithms (Min-Min and Max-Min) over their respec-
tive static versions, i.e.,

η =
tstatic
p − tstochastic

p

tstatic
p

× 100

where tstatic
p and tstochastic

p are the average parallel
execution times achieved by the static and stochastic
Min-Min (or Max-Min), respectively.

• �count: the number of times (runs) during each simu-
lation (500 runs) that Tp for the stochastic algorithms
(Min-Min and Max-Min) is greater than the corre-
sponding Tp from their respective static versions,i.e.,
a lower �count is an indication that the stochastic al-
gorithm outperformed its static counterpart more con-
sistently.

7 Results and Discussion

7.1 Effects of Temporal Heterogeneity

In Tables 3, 4, 5 and 6, the schedule length (make-span),
TSL, and the average parallel execution time, tp, achieved
by the schedule are compared. It can be seen that TSL and
tp for the stochastic Min-Min and Max-Min match very
closely, i.e., small δ. This small difference (δ) is due to
the accurate estimation of CT in a temporally heteroge-
neous environment by considering the standard deviation
(σi) in addition to the mean (mi) of computation time for
each task (ni) (divisible and otherwise). However, there
is a significant difference between TSL and tp in the static
Min-Min and Max-Min which use only mi ignoring σi,
i.e., temporal heterogeneity. This is because effect of tem-
poral heterogeneity on the CT of a task in the competing
situation (due to presence of divisible tasks) becomes sig-
nificant, but the static Min-Min and Max-Min ignore it.
They tend to “under-estimate” the CT of tasks (nk) involved
in the competing situation since E[max((tcij), (tcik))] >

max((mcij), (mcik)). Therefore, it often ends up with a
premature scheduling of further tasks on processors which
may be executing separate portions of a divisible task, lead-
ing to a worse schedule resulting in a longer tp. Also, the
under-estimation is a source for the large discrepancy be-
tween TSL and tp.

7.2 Improvements by Stochastic Min-Min
and Max-Min

In Tables 3, 4, 5 and 6, the stochastic Max-Min and Min-
Min are compared to the static Max-Min and Min-Min also
in terms of percent improvement, η.

When the competing situation is present, a large im-
provement has been achieved by the stochastic Max-Min
and Min-Min (refer to Tables 3, 4, 5 and 6). This significant
improvement is due to the accurately estimated CT for di-
visible, independent tasks and its proper use in scheduling.
Also, it can be observed that there is only a very small dif-
ference in variation of Tp between the static Max-Min (or
Min-Min) and stochastic Max-Min (or Min-Min). It is no-
ticed that in each of the simulations the improvement varies
significantly with the number of processors used. The “de-
gree” of competition in a competing situation depends not
only on the number of divisible tasks and execution times
but also on the number of processors. Suppose that a task
is divided into two sub-tasks where their average computa-
tion times are the same or similar and at least one of them
shows significant temporal heterogeneity. When these sub-
tasks are scheduled concurrently, it will lead to a compet-
ing situation and any further tasks will be executed only
after execution of the current divisible task is completed.
A different number of processors implies a different “de-
gree” of the competing situation. Hence, the improvement
depends on the number of processors employed in schedul-
ing. The higher the number of sub-tasks for a divisible task,
the greater the “degree” of competing situation is.

One observation is that the stochastic Max-Min tends to
achieve larger improvements than the stochastic Min-Min.
The Min-Min schedules small tasks first and therefore most
tasks (which are small) are not divided in the early stage
of scheduling. That is, the competing situation in the early
stage of schedule has only a small effect on tp. The ef-
fect of a non-optimal schedule in the early stage may grow
with execution of tasks and become larger in the later stage.
As scheduling progresses, more tasks are partitioned. How-
ever, the Min-Min tends to end up with an unbalanced work-
load distribution among processors in general, hiding the
competing situation in the later stage. Consequently, there
is a relatively smaller improvement by the stochastic Min-
Min over the static Min-Min. On the other hand, the Max-
Min schedules larger tasks first and usually finds a sched-
ule where the workload distribution among processors is
well-balanced. Hence, the improvement by the stochastic
Max-Min over the static Min-Min is larger than that by the
stochastic Min-Min over the static Min-Min.

It is also observed in the tables that η is larger for the
cases with temporal heterogeneity only than for those with
both temporal and spatial heterogeneity. When different
processors have different effective speeds (availability), it

Table 7. Variation in η with number of tasks.
Scheduling number η

Scheme of tasks Average Maximum Minimum p-value
Max-Min 40 1.99 6.12 -3.13 < 0.001

100 2.71 5.95 -1.52 < 0.001
200 3.21 7.48 -1.56 < 0.001
500 3.56 6.71 -0.26 < 0.001

Min-Min 40 2.45 7.5 -4.05 < 0.001
100 2.86 8.51 -2.23 < 0.001
200 2.91 8.15 -1.18 < 0.001
500 3.21 8.39 -0.14 < 0.001

is less likely to get a significant level of competing situa-
tion and, therefore, a smaller improvement by the stochastic
schemes is achieved. Also, it is partially due to the way a
divisible task is partitioned in the simulation, i.e., uniform
partitioning.

7.3 Dependency on number of tasks

In Table 7, dependency of η on the number of tasks is an-
alyzed (the number of processors ranges from 2-8). Here, it
is seen that as the number of tasks involved in the simula-
tion increases, η increases for both Max-Min and Min-Min
scheduling schemes. A greater number of tasks makes ef-
fects of the competing situation more pronounced leading
to a larger η achieved by considering the effects in schedul-
ing. The last column in the table indicates the one-sided p-
value from the Wilcoxon Signed Rank test (95% confidence
level). For all cases, the p-value is < 0.001 indicating that
the results are statistically significant, i.e., a reduction in
tp is achieved by using the stochastic scheduling approach
over the static approach.

8 Summary

A conventional scheduling scheme which considers only
the means of task execution times is not able to find the
best possible schedule in a heterogeneous environment. In
this paper, a new approach to scheduling a group of inde-
pendent divisible and non-divisible tasks is proposed and
its performance has been analyzed through simulation. The
first implementations of the approach based on the Max-
Min and Min-Min algorithms, called the stochastic Max-
Min and Min-Min, have well demonstrated that the sched-
ules derived by the proposed approach are significantly bet-
ter in terms of the average parallel execution time than those
by the static Max-Min and Min-Min which consider only
the average execution times of tasks. Also, the stochas-
tic Max-Min and Min-Min are able to accurately predict
the actual performance one can expect on a temporally het-
erogeneous distributed computing system, i.e., the schedule
length obtained by the stochastic Max-Min and Min-Min
is very close to the average parallel execution time. While
the Max-Min and Min-Min were considered in this study, it

should be clear that the proposed approach is applicable to
any other scheduling schemes which use time parameters in
computing the priority levels of tasks.

References

[1] S.-Y. Lee and J. Huang, “A Theoretical Approach to
Load Balancing of a Target Task in a Temporally and
Spatially Heterogeneous Grid Computing Environ-
ment,” GRID 2002, pp. 70-81.

[2] Z. Liu, B. Fang, Y. Zhang and J. Tang, “Scheduling
algorithms for a fork DAG in a NOWs,” the Fourth
International Conference/Exhibition on High Perfor-
mance Computing in the Asia-Pacific Region, Vol. 2 ,
pp. 959-960, May 2000.

[3] H. Topcuoglu, S. Hariri, and M. Wu, “ Performance-
effective and low-complexity task scheduling for het-
erogeneous computing,” IEEE Transactions on Par-
allel and Distributed Systems, March 2002.

[4] R. Bajaj and D. P. Agarwal, “Improving Schedul-
ing of Tasks in a Heterogeneous Environment,” IEEE
Transactions on Parallel and Distributed Systems,
Vol. 15 No. 2,pp. 107-118 February 2004.

[5] M. A. Iverson, F. Ozguner and Lee C. Potter, “Sta-
tistical Prediction of Task Execution Times Through
Analytic Benchmarking for Scheduling in a Hetero-
geneous Environment,” the 8th Heterogeneous Com-
puting Workshop (HCW ’99), p. 99, April 1999.

[6] A. Kamthe and S.-Y. Lee, “A Stochastic Approach
to Estimating Earliest Start Times of Nodes for
Scheduling DAGs on Heterogeneous Distributed
Computing Systems,” 13th Heterogeneous Comput-
ing Workshop, April 2005.

[7] S. Ali, H. Siegel, M. Maheswaran, D. Hensgen and
S. Ali, “Task Execution Time Modeling for Hetero-
geneous Computing Systems,” IEEE 9th Heteroge-
neous Computing Workshop, pp185-199, May 2000.

[8] A. Dogan and F. Ozguner, “Stochastic scheduling
of a meta-task in heterogeneous distributed comput-
ing,” International Conference on Parallel Process-
ing Workshops,pp. 369-374, 2001.

[9] J.M. Schopf and F. Berman, “Stochastic scheduling,”
Proceedings of the 1999 ACM/IEEE Conference on
Supercomputing, November 1999.

[10] O. Beaumont, A. Legrand and Y. Robert, “Schedul-
ing strategies for mixed data and task parallelism

on heterogeneous clusters and Grids,” Eleventh Eu-
romicro Conference on Parallel, Distributed and
Network-Based Processing, Feb. 2003.

[11] Q. Hug, Z.-G. Chen and F.C.M. Lau, “A new
method for independent task scheduling in nonlin-
early DAG clustering,” Proceedings of the 7th Inter-
national Symposium on Parallel Architectures, Algo-
rithms and Networks, 2004.

[12] O. Beaumont, A. Legrand, L. Marchal and Y. Robert,
“Independent and divisible tasks scheduling on het-
erogeneous star-shaped platforms with limited mem-
ory,” 13th Euromicro Conference on Parallel, Dis-
tributed and Network-Based Processing, Feb. 2005.

[13] L. Marchal, Y. Yang, H. Casanova, and Y. Robert,
“Steady State Scheduling of Multiple Divisible Load
Applications on Wide-Area Distributed Computing
Platform,” to appear in the International Journal of
High Performance Computing Applications.

Biographies

Ankur Kamthe received his Bachelors degree in Electron-
ics from Mumbai University, India in 2002. He received
his Master of Science degree in Electrical and Computer
Engineering at Auburn University, Alabama in August
2005 and a Masters degree in Probability and Statistics
from Auburn in August 2006. He is currently pursuing his
Ph.D. degree in Computer Science and Engineering at the
University of California, Merced. His research interests are
heterogeneous computer networks, parallel and distributed
systems programming, systems research in wireless sensor
networks and statistical properties of radio links.

Soo-Young Lee received his B.S. degree in Electron-
ics Engineering from Seoul National University, Korea,
his M.S. degree in Electrical and Electronic Engineering
from Korea Advanced Institute of Science, and his Ph.D.
degree in Electrical and Computer Engineering from the
University of Texas at Austin. He was an instructor in
Department of Electronics Engineering at Kyung-Pook
National University, Korea, an assistant professor in
School of Electrical Engineering, Cornell University,
and is currently a professor in Department of Electrical
and Computer Engineering, Auburn University, Auburn,
Alabama. He has extensive research experience in the
areas of parallel and distributed computing (parallelization
of large-scale applications, load balancing and schedul-
ing, heterogeneous computing, optimization of high
performance communication, parallel image processing),
medical image reconstruction (computerized tomography),
proximity effect correction in electron-beam lithography,

nanofabrication, etc. Recent research activities include
cluster computing for large-scale applications, exploitation
of heterogeneity in distributed computing and communi-
cation systems, sensor networks and their applications,
and fabrication of 3-D nanostructures using electron beam
lithography.

