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Abstract*

Advanced Switching is a new high-speed industrial 
standard serial interconnect. It is defined as a switching 
fabric architecture based on the PCI Express technology. 
The Advanced Switching specification establishes a man-
agement infrastructure which maintains the fabric opera-
tion. The topology discovery process is triggered after 
fabric initialization and every time a topological change 
is detected. The information gathered by this process is 
used to build a set of paths between fabric endpoints. This 
work analyzes the performance of several possible im-
plementations for this management task. 

1. Introduction 

The Advanced Switching (ASI) technology has been 
recently proposed as a standard for future interconnects 
[4, 10]. The ASI specification [1] has been developed by 
the Advanced Switching Interconnect Special Interest 
Group (ASI-SIG). It is a chip-to-chip and backplane in-
terconnect switched fabric architecture. 

In order to support high availability, ASI includes im-
portant features, such as device hot addition and removal, 
redundant pathways, and fabric management failover. In 
particular, the specification provides a fabric management 
mechanism, which basically configures and monitors the 
status of the network. Every time a topological change is 
detected (for example, a failure in a network device), this 
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mechanism must discover the resulting topology. After 
that, a new set of routes must be obtained and distributed 
to the fabric endpoints. All these tasks are performed by 
the fabric manager (FM), a software entity running on one 
or more ASI endpoints. 

The internal behavior of the management mechanism 
is currently an open issue for vendors and researchers. 
The ASI specification only considers a set of configura-
tion data structures into each device, and the management 
packets used to access those structures. 

Obviously, reducing the time required to completely 
assimilate a change will minimize its negative impact on 
application traffic. Some examples of this impact are 
packet losses, network congestion, and increment of la-
tency. Alleviating these effects is the final goal of our 
work. 

In this paper the focus is on the first management task 
after the detection of the change; the discovery process. 
The ASI specification does not detail the way in which 
the FM must obtain the fabric topology. It only states that 
repetitive discovery packets must be sent in order to iden-
tify all active devices in the fabric. In this way, the FM 
builds a graph of the fabric topology and learns the con-
figuration of each node. 

Nevertheless, the ASI-SIG developers have recently 
proposed a serialized discovery algorithm [11]. In this 
work, we propose and comparatively analyze two alterna-
tive parallel implementations for this process. As we will 
see, one of them significantly improves the serialized 
proposal. 

This paper is organized as follows. First, Section 2 
briefly introduces the ASI architecture and the fabric 
management support provided by the specification. Then, 
Section 3 describes the three mentioned implementations 
for the fabric discovery process. After that, Section 4 
presents a detailed performance evaluation of each im-
plementation. Finally, Section 5 gives some conclusions 
and describes our future work. 



2. The Advanced Switching Architecture 

ASI can be seen as the next step in the evolution of the 
traditional PCI bus. In particular, it uses the PCI Express 
[7] physical and link layers, differing at the transaction 
layer. ASI provides enhanced support for features such as 
flexible protocol encapsulation, peer-to-peer transfers, 
multicast transfers, and QoS. 

An ASI network connects multiple endpoints by means 
of a switched serial fabric. Endpoints support up to 4 
ports, and switches support up to 256 ports. The specified 
base link bandwidth is 2.5 Gbps. However, effective 
bandwidth is reduced to 2.0 Gbps by 8b/10b encoding.  

The specification establishes three types of virtual 
channels: unicast bypassable (BVC), unicast ordered 
(OVC), and multicast (MVC). Each BVC implements an 
ordered queue and a bypass queue. Packets marked as 
“bypassable” are delivered to the bypass queue, and can 
be “bypassed” by other packets at the ordered queue. On 
the other hand, OVCs and MVCs only support ordered 
queues. 

A traffic class (TC) mechanism allows to group flows 
of traffic for similar treatment. The traffic class of a 
packet is defined at the source endpoint, and included at 
the packet routing header. When a packet reaches a port, 
this value is used to obtain the corresponding VC, by 
using a set of fixed TC/VC mapping tables. 

In order to simplify the hardware, ASI states that uni-
cast packets use source routing. Endpoints include path 
information into the packets, by filling up the Turn Pool,
Turn Pointer, and D (direction) fields in the routing 
header (see Figure 1). These fields are used at each inter-
mediate switch to obtain the output port. On the other 
hand, multicast packets require looking up into a specific 
forwarding table.  

ASI defines several mechanisms for congestion man-
agement. First, link layer uses the credit-based flow con-
trol defined by the PCI Express architecture. Additional 
optional congestion mechanisms are status-based flow 
control, minimum bandwidth scheduler, and endpoint 
source injection rate limiting. 

ASI also establishes a mechanism to encapsulate pack-
ets of any upper-layer protocol. In particular, the PI (Pro-
tocol Interface) field in the packet routing header identi-
fies the nature of the encapsulated information. This al-
lows an ASI fabric to concurrently carry an indeterminate 
number of independent data protocols. 

2.1. ASI Fabric Management 

Fabric management [10] is a set of functions, activi-
ties, and tasks that may include any or all of the following 
operations among many others: fabric discovery, path 
determination between endpoints, local and distributed 
connection management, multicast group management, 
bandwidth management, dynamic device addition and 
removal, fabric supervision, and APIs and data-structure 
elements for upper level, operating-system support.  

After the fabric is powered up, a distributed process is 
triggered in order to select primary and secondary fabric 
managers. Only these two endpoints can configure the 
fabric. If the primary FM fails, the secondary one takes 
over. The first task of the FM consists in discovering the 
fabric topology. This information is necessary to obtain a 
set of paths between endpoints. The fabric discovery 
process is also triggered every time that the FM detects 
the occurrence of a topological change in the network.  

To perform its functions, the FM accesses the configu-
ration space in each fabric device (endpoint or switch). It 
is a storage area that contains a set of fields to specify 
device characteristics as well as fields used to control the 
device. This information is presented in the form of struc-
tures called capabilities. Each capability structure defines 
a specific characteristic of the device. In particular, the 
baseline capability includes device control and status 
information. The first six 32-bit blocks in this capability 
contain general information for the device, such as its 
type and serial number, the number of ports supported, 
and the maximum packet size. Next, we can find up to 
256 32-bit blocks that point to the information about each 
particular port in the device. This information includes 
link speed and width, and current port state.  

A “node configuration and control” protocol, PI-4, de-
fines the exchange of information between the FM and 
the devices. The PI-4 read request packets allow the FM 
to obtain information from any capability into a device. A 
PI-4 read completion with data packet is returned by the 
device, containing the requested information (up to eight 
32-bit blocks). The path –in the opposite direction– and 
the traffic class used by the response are the same as the 
ones used by the request. If the read operation was not 
successful, a PI-4 read completion with error packet is 
returned. 

Another management protocol considered in the ASI 
specification is PI-5. It is an event-reporting mechanism 
which may be used to detect topological changes. In par-
ticular, when a fabric device detects a change in the state 
of a local port, it can notify this event to the FM, by 
means of a PI-5 packet. After receiving this packet, the 
FM starts the change assimilation process. 
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Figure 1. ASI packet routing header. 



3. Implementing the Discovery Process 

In this work, we have assumed that the discovery proc-
ess is centralized in the primary FM. In [10], alternative 
organizations are discussed. We also suppose that the FM 
obtains the complete fabric topology, discarding all the 
previously collected information.  

In this section three possible ways to implement the 
discovery process are described. In all the cases, the FM 
begins the process discovering the endpoint which hosts 
it. After that, it uses a sequence of PI-4 read request pack-
ets to determine the nature (switch or endpoint) of each 
discovered device, and to obtain information about the 
activity of each port in those devices. The paths that these 
packets need to reach fabric devices are computed as the 
topology information grows. 

3.1. Serial Discovery 

A simple approach proposed by the ASI-SIG to im-
plement the discovery process consists in performing a 
serialized discovery [11]. In this case, once the algorithm 
starts discovering a device in the fabric, it reads all the 
necessary information from its device configuration 
space, using a sequential and synchronized way, before it 
proceeds to discover additional devices. In other words, in 

this algorithm there is only a request packet in the fabric 
in every moment in time. In this paper, this algorithm will 
be called Serial Packet.

This implementation follows a breadth-first strategy to 
explore fabric devices. Figure 2 shows the flow chart 
describing the algorithm. An active port indicates that 
there is a live device attached to the other end of the port. 
The FM extracts the following device to explore from an 
exploration queue. Once it receives the device general 
information, it checks if the device has already been dis-
covered through a different path. In that case, the FM 
updates its topology database and proceeds to discover the 
next device in the queue. In other case, the FM obtains 
additional attributes for each port and updates its topo-
logical information. The FM inserts a new element in the 
queue for each active port discovered. The discovery 
process concludes when the exploration queue is empty. 

3.2. Improving the Serialized Algorithm 

Our first proposal consists in improving the Serial 
Packet algorithm. In particular, we propose to add an 
internal parallel behavior to the algorithm when it obtains 
additional information about a specific device. Devices 
are discovered serially, but internal ports are checked in 
parallel. In this work, this algorithm will be called Serial 
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Figure 2. Serial discovery algorithm proposed in [11]. 



Device.
The flow chart in Figure 2 is also valid for the Serial 

Device algorithm. The difference is that the information 
about the ports in a device is obtained in a parallel way, 
by sending concurrently all the necessary PI-4 read re-
quest packets.  

3.3. Parallel Discovery 

In a completely parallel solution, multiple devices are 
discovered simultaneously. In our implementation, the 
FM performs the well-known propagation-order explora-
tion algorithm [9] over the fabric. This means that discov-
ery packets (PI-4) spread throughout the fabric in an “un-
controlled” way. The FM sends new PI-4 packets as soon 
as it receives responses to previous requests from devices. 
In this way, the order in which devices are discovered is 
not deterministic. In this paper, this algorithm will be 
called Parallel Device.

Figure 3 shows the behavior of the parallel discovery 
algorithm. In this case, the exploration queue has been 
replaced by a table of pending packets. Every time the 
FM receives a response packet, it updates its topology 
database. When the response packet includes general 
information about a device, the FM must inject new pack-
ets to obtain information about the ports in the discovered 
device. If a new active port has just been discovered, the 
FM sends a request packet, in order to discover the device 
at the other end of the link. The fabric topology has been 

completely discovered when the table of pending packets 
is empty.  

4. Performance Evaluation 

In this section, we present the simulation results that 
allow us to comparatively analyze the discovery alterna-
tives described above. All the results presented in this 
work have been obtained using simulation techniques. 
Before showing and analyzing them, we describe the 
simulation methodology. 

4.1. Simulation Methodology 

Our simulation model [8] has been developed using the 
OPNET Modeler software [6]. The model embodies 

Topology Switches Endpoints Total 

3×3 mesh, 3×3 torus 9 8 17 

4×4 mesh, 4×4 torus 16 12 28 

6×6 mesh, 6×6 torus 36 20 56 

8×8 mesh, 8×8 torus 64 28 92 

9×9 torus 81 32 113 

4-port 2-tree 6 8 14 

4-port 3-tree 20 16 36 

4-port 4-tree 56 32 88 

8-port 2-tree 12 32 44 

Table 1. Topologies evaluated. 
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Figure 3. The proposed parallel discovery algorithm. 



physical and link layers of ASI, allowing the simulation 
of several network designs. It is made up of ASI x1 links, 
16-port multiplexed virtual cut-through switches [3], and 
1-port fabric endpoints. 

Additionally, the model provides the necessary support 
–management entities, device capabilities, and PI-4 and 
PI-5 packets– to develop fabric management mechanisms. 
It also allows accurate measuring of control overhead and 
the time spent by each task in the management process. 

In order to obtain more realistic results, the model con-
siders the time consumed by the FM and the device to 
process each PI-4 packet. In particular, we have measured 
this time by using profiling techniques, assuming a soft-
ware implementation for the management entities, and 
using an Intel Pentium 4 (3.00 GHz) microprocessor.  

We have checked that the packet processing time at the 
FM is slightly smaller for the Parallel Device discovery 

implementation (see Figure 4). The reason is that the 
implementation of the serial algorithms is more complex 
–they have to handle an exploration queue. The Serial 
Device algorithm is also faster than the Serial Packet one. 
The reason is that the former has to maintain less tempo-
rary information than the latter.  

Additionally, the packet processing time at the fabric 
devices is low, and it does not depend on the discovery 
algorithm applied or the network size. The reason is that 
this processing always consists in returning a response 
packet including the requested information.  

We have evaluated several regular topologies, includ-
ing 2-D meshes and tori, and fixed-arity fat-trees built by 
using the methodology proposed in [5]. In meshes and 
tori, each external switch has an endpoint attached. Table 
1 includes the complete list, and Figure 5 shows one of 
them. 
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to obtain the fabric topology. 
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The results presented here have been obtained without 
considering application traffic into the network. We have 
checked that this traffic scarcely influences the discovery 
time. The reason is that, in ASI, the management and 
notification packets have the highest priority when they 
are transmitted through the fabric. 

Each simulation begins with a transient period in 
which fabric devices are activated and the FM gathers the 
initial topology. After that, we have programmed the 
occurrence of a topological change, consisting in the 
addition or removal of a randomly chosen fabric switch.  
We have chosen a subset of possible causes for change, 
without lack of generality. For the detection of changes, 
we have implemented the event-reporting mechanism (PI-
5) proposed in the ASI specification. This experiment has 
been repeated several times for each topology. 

4.2. Simulation Results 

Figure 6a shows the discovery time for each simulation 
run. Horizontal axis represents the number of active and 
reachable devices in the fabric after the topological 

change. Results show that the discovery time is always 
smaller for the Parallel Device algorithm. Note that this 
improvement is scalable. The Serial Device algorithm is 
also a bit better than the Serial Packet one. Another im-
portant observation is that this behavior does not depend 
on the type of topology. Figure 6b shows the same results 
using average values for each topology in Table 1.

In order to analyze these results, Figure 7a details the 
time in which each discovery packet is processed at the 
FM, for the 3×3 mesh topology in Table 1, and assuming 
that all fabric devices are active.  

First, we can observe that the slope of the Serial 
Packet series is constant. The reason is that this algorithm 
always has a serialized behavior. That means that the FM 
is idle while it is waiting for a packet response. On the 
other hand, the slope in the Serial Device series varies 
depending on the operation being performed by the FM. 
When it is obtaining general information about a new 
device, the algorithm has a serialized behavior. However, 
when the FM is obtaining information about the device 
ports, the serial process has a parallel behavior. That 
means that there is always a new packet pending to be 
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processed when the FM finishes processing the current 
one. The time to transmit a request packet, to process it at 
the destination device, and to transmit the corresponding 
response to the FM is overlapped with the processing of a 
previous packet. Finally, the slope in the Parallel Device
series is again constant, because this algorithm has a 
completely parallel behavior.  

Figure 7b represents the serial and parallel ideal behav-
iors graphically. In the figure, TFM and TDevice refer to the 
time to process a packet in the FM and a fabric device, 
respectively, and TProp refers to the time to transmit a 
request/response packet trough the fabric. 

4.3. Modifying the Performance of the Manage-

ment Entities 

Next, we analyze the effect of varying the perform-
ance of the management entities on the time required by 
the discovery algorithms. To do that, we have conducted 
new simulations by using a factor to increase or decrease 
the performance of the FM and the fabric devices. A fac-
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tor=1, Device factor=0.2; (c) FM factor=4, 
Device factor=0.2. 
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tor of one represents the performance of an Intel Pentium 
IV (3.00 GHz) microprocessor. Previous results have 
been obtained by using this value. A processing factor of 
two indicates that packet processing is two times faster. 

Figure 8a shows the discovery time obtained as a 
function of the FM processing factor applied, for the 8×8 
mesh topology in Table 1, and assuming that all fabric 
devices are active. Results for different topologies are 
similar. We can observe that as the processing factor 
grows up, the discovery time decreases, and the difference 
between the serial and parallel implementations increases. 
Moreover, the difference between the Serial Packet and 
Serial Device algorithms slightly decreases. 

As we can notice in Figure 8b, increasing the device 
processing speed only improves the serial discovery algo-
rithms. The Parallel Device algorithm is not affected by 
the time consumed by the devices, because this process is 
overlapped with the processing of packets at the FM. 
Only when devices are too slow (factors < 1/3) the dis-
covery time is affected. 

According to these results, we have repeated the initial 
comparative study. Figure 9a shows the same results than 
Figure 6a, but adapting the scale in the vertical axis. On 
the other hand, in Figure 9b and Figure 9c we have fixed 
the device processing factor to 0.2. The difference be-
tween both plots is that Figure 9c shows the results using 
a FM processing factor equal to 4. 

We can conclude that for faster FM and slower fabric 
devices, the difference between the Parallel Device dis-
covery algorithm and the serial ones increases, independ-
ently of the fabric size. 

5. Conclusions and Future Work 

In this paper, several mechanisms to discover the to-
pology of an Advanced Switching fabric are compared. 
Two of them have a serial behavior, discovering only one 
device at a time. The other one propagates the exploration 
through several paths in parallel. We have seen that the 
Parallel Device algorithm obtains the initially expected 
improvement compared with the serial ones. Additionally, 
differences between both implementations are more no-
ticeable as the performance of the fabric manager in-
creases and fabric devices are slower.  

As future work, we plan to explore other approaches to 
perform the fabric discovery. One of them is to distribute 
the entire process through several collaborative fabric 
managers, in order to increase parallelization. A decen-
tralized mode is more complex to design, because of the 
fact that several managers –in different locations and 
manipulating different data structures– must be coordi-
nated. 

Another possibility is to explore only the portion of the 
network affected by the change, instead of the entire fab-

ric. However, as we have checked in previous works [2], 
the implementation of a discovery technique which reuses 
previous information is relatively complex. 

We also plan to propose and analyze particular imple-
mentations for the rest of management tasks involved in 
the process of assimilating topological changes. In par-
ticular, we are interested in tackling the problem of dy-
namically distributing new paths to fabric endpoints after 
the occurrence of a change. 

References 

 [1] Advanced Switching Interconnect Special Interest Group, 
Advanced Switching Core Architecture Specification (Re-
vision 1.0), http://www.asi-sig.org, December 2003. 

[2] A. Bermúdez, R. Casado, F. J. Quiles, T. M. Pinkston, and 
J. Duato, On the InfiniBand Subnet Discovery Process, In 
Proc. IEEE International Conference on Cluster Comput-
ing, Hong Kong (ROC), December 2003. 

[3] J. Duato, S. Yalamanchili, and L. Ni, Interconnection 
Networks: An Engineering Approach, Morgan Kaufmann 
Publishers, 2003. 

[4] D. Mayhew and V. Krishnan, PCI Express and Advanced 
Switching: evolutionary path to building next generation 
interconnects, In Proc. 11th Symposium on High Perform-
ance Interconnects (HOTI’03), 2003. 

[5] X. Lin, Y. Chung, and T. Huang, A multiple LID routing 
scheme for fat-tree-based InfiniBand networks, In Proc. In-
ternational Parallel and Distributed Processing Sympo-
sium, April 2004. 

[6] OPNET Technologies, Inc., http://www.opnet.com/. 
[7] PCI-SIG, PCI Express Base Specification (Revision 1.0.a), 

http://www.pci-sig.org, April 2003. 
[8] A. Robles-Gómez, E. M. García, A. Bermúdez, R. Casado, 

and F. J. Quiles, A Model for the Development of ASI Fab-
ric Management Protocols, In Proc. Euro-Par 2006 Con-

ference, September 2006. 
[9] T. L. Rodeheffer and M. D. Schroeder, Automatic recon-

figuration in Autonet, In Proc. 13th ACM Symposium on 
Operating Systems Principles, October 1991. 

[10] M. Rooholamini, Advanced Switching: a new take on PCI 
Express, http://www.asi-sig.org/press/Articles/, October 
2004. 

[11] M. Rooholamini and R. Kaapor, Fabric discovery in ASI, 
http://www.asi-sig.org/press/Articles/, October 2005. 


