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Abstract

Parallel processing using multiple processors is a

well-established technique to accelerate many different

classes of applications. However, as the density of chips

increases, another technique to accelerate these

applications is the use of application specific hardware

processing blocks in parallel within a chip. SuperCISC

hardware blocks utilize this method to accelerate

scientific, signal, and image processing applications. By

applying pipelining methodologies to SuperCISC

functions, the effective amount of parallelism already

present can be further increased. Automated register

placement within a combinational data flow graph (DFG)

is governed by the desired maximum operating frequency

provided as a parameter to the tool flow, as well as the

results of static timing analysis of the circuit. Results

presented include the design tradeoffs between increased

performance, area, and energy. Additionally, benefits of

pipelining compared to hardware replication as a means

of achieving further parallelism is studied.

1. Introduction

Pipelining is a common technique used in modern

processors to increase performance by overlapping
multiple instructions in different phases of execution in an

assembly line fashion. While pipelining does not improve

the latency of a single instruction, the effects of parallel

execution can boost the overall throughput of the

processor, while also allowing a higher maximum clock

frequency. The effects of pipelining can be seen best

when new inputs can be provided at every clock cycle,

and all the stages of the pipeline are doing useful work.

1-4244-0910-1/07/$20.00 ©2007 IEEE

Another increasingly popular way of achieving greater

speedup is to move performance intensive software code

blocks into hardware functions, which can execute many

instructions in parallel. These super-complex instruction

set computing (SuperCISC) hardware kernels can be

tightly coupled with a standard reduced instruction set

computing (RISC) processor to form a heterogeneous

processor architecture. This heterogeneous architecture,

due to its SuperCISC hardware, is capable of massive
amounts of instruction level parallelism (ILP) not

achievable in similar homogeneous processor

architectures.

The goal of the SuperCISC method is to generate

highly parallel hardware functions with extremely low

latency of execution. These hardware functions are

entirely combinational. Control flow dependencies that

typically denote cycle boundaries have been converted

into data flow dependencies through a technique called

hardware predication. The resulting hardware functions

tradeoff circuit area for performance and reduced energy.

SuperCISC hardware typically dedicates new
computational elements for items that can proceed in

parallel. For example, a loop may be unrolled and

independent loop iterations may occur entirely in parallel.

We call this technique loop iteration replication.

In this paper, we examine the introduction of

pipelining as a form of parallelism in the application and

compare pipelining to unrolling and replication.

Pipelining allows both resources to be reused, saving area,

while allowing these resources to execute concurrently.

By combining the width parallelism of the SuperCISC

method with the depth parallelism of pipelining the
datapath, we can see marked improvements in throughput

while still retaining a relative low latency.

The rest of this paper is organized as follows: Section

2 explains the process for generating the SuperCISC

hardware from C code, and how these hardware functions

extract parallelism. Section 3 shows how the



combinational hardware functions can be pipelined

automatically using static timing analysis. Section 4

describes the design tradeoffs that arise from pipelining,

such as increases in latency, throughput, chip area, and

energy consumption. Section 5 provides comparisons

between pipelining and function replication as two ways
of increasing throughput. The design tradeoffs of each

method are compared in terms of area and energy.

Section 6 provides conclusions and discusses future work

related to the project.

2. SuperCISC Hardware Functions

A general trend observed in application profiling is

that 10% of the code is responsible for 90% of the total

execution time [1]. In many scientific, multimedia and

signal processing applications, the execution time is

dominated by loops within computationally intense

functions. Profilers can be used to identify the

computational kernels in the software code. These

kernels are ideal targets for hardware acceleration. Many

algorithms have been moved from software to hardware

manually, but automated techniques of doing so are still

not always successful. By using an automated C to
VHDL tool flow based in the SUIF compiler system, the

identified sections of code are converted into a control

and data flow graph (CDFG) intermediate representation.

The CDFG is subjected to multiple passes of processing

in order to generate more efficient SuperCISC hardware.

One example of such a pass made on the CDFG is bit-

width analysis, which is used generate more area efficient

hardware by minimizing bus widths used by functional

units.

In [2], a heterogeneous architecture is introduced

which consists of a RISC very long instruction word

(VLIW) processor with application specific
combinational SuperCISC hardware functions, shown in

Figure 1. The SuperCISC functions do not contain any

storage elements, but are tightly coupled with the VLIW

processor through the use of a shared register file. The

four-wide VLIW is capable of supporting four

instructions executing in parallel. However, due to a lack

of instruction level parallelism extracted from software by

the compiler, typically seen ILP rarely reaches two [3].

In [4] and [5], the power and performance effects of

moving software kernels into SuperCISC hardware

functions were studied. Because hardware executes more
quickly than software, the overall time required to do the

same amount of processing is reduced. This increase in

throughput also contributes to a reduction in the amount

of energy consumed. By pipelining these hardware

functions, additional levels of throughput can be achieved

while reducing switching energy. In some of the

benchmarks observed, the reduction in switching energy

was significant enough to reduce the overall energy

consumption of the circuit.

Figure 1. SuperCISC concept with a VLIW

processor core and hardware functions

surrounding.

2.1 Related Work

Several projects such as PipeRench [6] and HASTE [7]
have investigated the mapping of execution kernels into

coarse-grained reconfigurable fabrics utilizing arithmetic

and logic units (ALUs). The RaPid project [8] presents

another coarse-grain, pipelined, configurable architecture.

The SuperCISC approach, in contrast, by generating

completely application specific hardware, attempts to

minimize the amount of area and energy used while

sacrificing reconfigurability. The custom hardware lends

itself towards a flexible, datapath driven pipelining

algorithm. The SuperCISC method also suffers less cycle

time waste than coarse-grain fabrics because the pipeline

is tailored specifically to the datapath.
Other projects have studied ways to reduce power in

high-performance systems without sacrificing speed. In

[9] and [10] power and performance tradeoffs are

explored using methods such as dual speed pipelines. By

using high-speed and low-speed pipelines in conjunction,

performance is increased, while area is sacrificed. In

contrast, SuperCISC functions use hardware predication

to achieve high-performance by expanding the kernel in a

single very large dataflow graph. This graph is then

rebuilt with pipelining to retain as much latency reduction

as possible while simultaneously expanding the
parallelism.

A common problem in the domain of hardware-

software codesign is partitioning, or determining which

parts of the application will be implemented in hardware



and which parts will be implemented in software. The

tool flow used in this paper relies on profiling to

determine the execution kernels which will be

implemented in hardware. Behavioral synthesis

techniques can then be used to generate hardware

descriptions from high-level languages such as C [11].
High-level synthesis is an increasingly popular technique

in hardware design. Mentor Graphics’ Catapult C product

creates synthesizable hardware descriptions directly from

a C/C++ front end [12]. The PACT project from

Northwestern University creates power and performance

optimized hardware descriptions from C programs [13].

The SPARK project from UC Irvine also converts C code

to hardware, while attempting to achieve greater

performance by extracting parallelism [14].

In contrast, SuperCISC generates entirely

combinational Super Data Flow Graphs (SDFGs) through

the use of hardware predication. The remainder of this
section will describe the behavioral synthesis techniques

applied in our system to the kernels of C code.

2.2 SuperCISC Hardware and Parallelism

Once profiling has identified the execution kernels of

an application, the corresponding sections of code can be

marked for conversion to hardware. An example of such

a code block is shown in Figure 2. A small example is
used here instead of a more complex benchmark to ease

the readability of the resulting SDFG diagrams in this

paper. The tool is able to map arithmetic operations into a

DFG representation. Control statements such as if-then-

else structures are mapped into multiplexers in hardware.

In hardware, both the if and the else branches of a control

statement are executed simultaneously. The select signal

of the multiplexer is driven by the result of the if

statement’s condition. This removes all control

dependencies and replaces them with data dependencies.

This conversion process is the core of hardware
predication. Intermediate storage values that do not live

beyond the end of the hardware function are also

eliminated. Figure 3 illustrates the resulting SDFG for the

simple example from Figure 2. The SDFG does not

include the C variables i, m, n, and z as they are only live

during the course of the hardware function. The two
multiplexers in the graph correspond directly to the two if

statements in the code segment.

The amount of parallelism that can be achieved by a

hardware function is highly dependent on the nature of

the application. In [3], a detailed explanation of the

increased parallelism is explored. This subject will be

revisited here. Some applications have a control flow

based kernel. The ADPCM Encoder and Decoder are

examples of control intensive kernels. Other applications

have kernels consisting of a large percentage of arithmetic

nodes with little to no control flow. The MPEG and

JPEG benchmarks all lack any control flow. While

control intensive hardware functions achieve increased

levels of parallelism relative to software, arithmetic

hardware functions benefit the most. The maximum

increase in effective parallelism achievable by a control

structure is equal to the number of nodes in the larger
branch. Although all of the branches will be executed in

parallel, only one branch will provide meaningful results,

while the others will be discarded. The increase in

effective parallelism achieved by strictly arithmetic based

kernels is always equal to the total number of nodes.

MPEG, the largest of the benchmarks, does not contain

any control flow. The effective parallelism achieved by

MPEG is 866.

Figure 2. C language software code for kernel

portion of a simple example.

3. Automating Pipelining

In order to introduce registers into a combinational

datapath, it is necessary to add a clock signal. The clock

signal frequency was a user-defined input to the tool. The

clock period will dictate how much combinational logic

delay can be placed between any two pipeline registers.

In order to know at compile time how much

combinational logic will fit into a single pipeline stage, it

is necessary to obtain worst-case delay characteristics for

each type of functional unit present in the SDFG. With
this knowledge, the tool can perform static timing analysis

to determine the delay between any two nodes in the

graph. For any path through the graph, the worst-case

combinational delay is given by �di, where d is the delay

associated with a given node, and i spans over each of the

nodes in the path. The path with the largest �di value is

the critical path and determines the performance

limitations of a combinational hardware function. By

1 // Begin Hardware Function

2 z = x + y;

3 m = y << 3;

4 n = m – y;

5

6 if ( n < 0 )

7 n = 0;

8

9 if ( q == 3 )

10 i = z + 5;

11 else

12 i = z – 2;

13

14 j = n * i;

15 // End Hardware Function



applying knowledge of how synthesis tools implement

and combine certain constructs within a design, it is

possible to achieve slightly more accurate static timing

results. For example, a shifter with a constant shift

amount input can be synthesized as wires and constants,

while a shifter with a variable shift amount cannot.
Because of this, a constant shift takes less time to execute

in hardware. Table 1 shows the critical path lengths and

corresponding maximum frequencies found by

performing static timing analysis on the benchmark

hardware functions.

Table 1. Critical path length and corresponding

maximum frequency of combinational

benchmark kernels.

Once static timing is complete, the process of

partitioning the SDFG into multiple pipeline stages

begins. The algorithm attempts to place nodes into

partitions in an as-soon-as-possible fashion. Each

functional unit, having some amount of delay associated

with it, will consume a certain portion of the available

clock cycle time. The pipelining algorithm attempts to fit
as many nodes as possible into as few partitions as

possible without violating timing restrictions. In order to

take full advantage of a pipelined function, it is desirable

to be capable of processing new inputs on each clock

cycle. For this reason, another constraint on pipelining is

that a node cannot be partitioned until all of its parents

have been partitioned first to prevent a possible data

dependency violation. It is possible for a child node to be

placed in the same partition as all, some, or none of its

parents.

Partitioning begins by placing all inputs and constant
values into the first partition. Each remaining node, n,

that has not been partitioned is inspected. Each parent

node of n that has not been partitioned will be visited and

partitioned. Once all of the parent nodes have been

partitioned, n is partitioned. A node will be placed into

one of two possible partitions. The first possible partition

is that of its parent node with the highest partition

number. The first partition created has the lowest partition

number, while the last partition created for the circuit has

the highest partition number. If the node will not fit into

its parent’s partition due to timing constraints, then the

node will be placed in the next partition in the pipeline. In

cases where parent nodes reside in different partitions, it

is necessary to align the inputs using dummy registers,

whose only purpose is to delay data arrival by a clock

cycle.
Figure 4 shows the pipelined equivalent of the SDFG

in Figure 3. The combinational example SDFG has been

divided into two pipeline stages. A clock input signal and

an optional output register has also been included. All of

the inputs and constant values have been added to the first

partition. In this simple example, all of the remaining

combinational logic is able to be placed into the first

partition with the exception of the multiplier, which has a

relatively high delay. The number of pipeline stages for

each benchmark is shown in Table 2.
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Figure 3. SDFG representation of the simple

example.

The clock period of the pipeline can be selected

arbitrarily, with the minimum possible period achievable

governed by the node(s) in the graph associated with the

Benchmark
Critical Path

Length
Frequency

ADPCM Dec 6.80 ns 147.06 MHz

ADPCM Enc 10.00 ns 100 MHz

IDCT Col 16.60 ns 60.24 MHz
IDCT Row 15.40 ns 64.94 MHz

JPEG 25.95 ns 38.54 MHz

Laplace 7.85 ns 127.39 MHz

MPEG 39.60 ns 25.25 MHz

Synth Filter 15.99 ns 62.54 MHz

Sobel 10.4 ns 96.15 MHz



largest delay. Register setup and hold times, as well as

routing delays must also be taken into consideration in

order to ensure that the requested clock period can be met.

It should be noted that while the results of static timing

are technology dependent, the algorithm is not. Similarly,

the results of pipelining are dependent on the results of
static timing as well as the requested clock period. The

pipelining algorithm itself is also technology independent.
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Figure 4. Two-stage pipelined SDFG

representation of the simple example.

4. Design Tradeoffs

In this section, we examine the impact of SuperCISC

synthesis and pipelining on the parallelism, performance,

area, and energy required for the implementation. The

results presented here were obtained by applying a

pipelining frequency of 200 MHz. The target technology

is the 0.16 µm OKI cell-based ASIC technology.

Synopsys Design Compiler and PrimePower were used to

generate synthesis and power estimations.

Table 2. Number of pipeline stages for hardware

functions pipelined at 200 MHz.

Part of the speedup achieved by SuperCISC functions

comes from cycle compression [3]. Cycle compression is

the execution of a sequence of arithmetic operations in a

fraction of the time that it would take to execute the same

operations in software. This is possible because the

operations in the software implementation suffer from

cycle fragmentation. In a processor, the clock cycle

length must be long enough to accommodate the delay

associated with the critical path. However, simple
operation such as logical OR takes only a fraction of the

entire cycle time to execute. The remainder of the cycle

time is lost to fragmentation. Due to the strictly

combinational nature of the SuperCISC hardware, cycle

fragmentation is almost completely eliminated. The only

remaining fragmentation comes in the final cycle of

latency, between the time when the hardware function has

completed and the time of the next clock edge. The result

is a hardware function that, on average, executes at over

10x the speed of software alone.

SuperCISC hardware functions suffer from two major

drawbacks. First, they incur a latency of several processor
clock cycles due to their relatively long critical path

lengths. In addition, these functions cannot begin

processing a new set of input stimuli until the current set

has finished and the result stored. This limitation impedes

the throughput metric of the hardware kernels.

Pipelining cannot provide a solution to the latency

problem associated with the SuperCISC functions. In

fact, pipelining can cause an increase in the cycle count

due to the reintroduction of cycle fragmentation. The

amount of cycle fragmentation introduced through

pipelining is dependent on the requested pipeline
frequency and the delays associated with the varying

types of functional units being pipelined. Figure 5 shows

the effects of cycle fragmentation on both the

Benchmark Pipeline Stages

ADPCM Dec 2

ADPCM Enc 3

IDCT Col 6
IDCT Row 5

JPEG 9

Laplace 2

MPEG 12

Synth Filter 4

Sobel 3



combinational and pipelined versions of the ADPCM

Decoder benchmark. As the frequency increases,

additional cycles of latency are incurred. Between 150

and 200 MHz, the frequency increases, while the cycle

latency remains unchanged, resulting in the drop in

execution time seen in the graph. The effects of higher
frequencies cause the pipelined implementation to

become fragmented more quickly. The rise in

fragmentation causes additional cycles of latency to

become necessary, which increases the overall execution

time. Figure 6 illustrates the effects of pipelining on the

cycle count latency of the benchmark applications. The

cycle count, as opposed to the absolute delay, is used to

more accurately describe latency because a function’s

results will only become useful to synchronous hardware

on the first clock edge following execution completion.

Combinational vs. Pipelined

Effects of Cycle Fragmentation on Latency

of ADPCM Decoder
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Figure 5. Cycle fragmentation losses incurred in

combinational and pipelined versions of ADPCM

Decoder at varying frequencies.

While pipelining may degrade the latency of

SuperCISC hardware, it can be used to improve the

throughput. Combinational implementations of hardware

functions can process only a single set of inputs at any

given time. This constraint results in a hardware function

with a throughput of one result for every number of

processor latency cycles associated with the function. By

splitting the datapath of a function into two halves with

pipeline registers, each half can process different sets of
inputs in parallel, with the two results separated by a

single cycle. If new input data can be provided to the

function every cycle, then the throughput of this

implementation is one result per processor cycle.

Pipelining introduces additional registers into a design.

The pipeline registers utilize additional on-chip area. A

small optimization that can save on both area and energy

is the exclusion of any registers storing constant values.

Constant values will never change, making storage

redundant. The additional hardware also consumes
energy. Additionally, the introduction of a clock signal

increases the dynamic power of a circuit. Figure 7

displays the performance, area, and energy tradeoffs

observed in the pipelined hardware functions versus their

combinational equivalents. The performance, on average,

increased by 3.3x while the area only increased by 1.4x.

Power is defined as the amount of energy transferred

per time unit. Because pipelining allows multiple sets of

data to be processed simultaneously, the amount of time

needed for the combinational implementation to complete

the same amount of work can be significantly longer

depending on the length of the critical path. For this
reason, power consumption cannot be used to achieve a

fair comparison. The amount of energy used is the

product of power and time, so it is used to provide a better

comparison.

Essentially, the pipelined circuits were high-power,

low-energy, while the combinational circuits were low-

power, high-energy. The performance gains were also

greater than the increase in energy for each case with the

exception of the ADPCM Decoder, the smallest

benchmark. While the performance and area always

increased in the pipelined implementations, the energy did
not. This is due to a drop in extraneous combinational

switching in the pipelined functions. Figure 8 illustrates

the general trend of increased switching energy in

combinational hardware functions. Although the overall

energy consumption typically went up an average of 1.26x

due to the introduction of a clock and registers, the

combinational switching energy generally decreased from

57.9% of the overall energy consumption to 35.7%.

5. Kernel Replication vs. Pipelining

Most modern soft core processors have the ability to

extend their instruction set with custom instructions

utilized in working with co-processors. SuperCISC

hardware functions, when implemented as custom

instructions, can be tightly coupled with RISC soft core

processors to provide a massively parallel processing

solution. Many SuperCISC functions can be combined on
a single chip to exploit an even higher degree of

parallelism. Due to the iterative nature of most vector-

based signal processing applications, the utilization of co-

processors has been investigated extensively [15].

Replication of hardware functions can be used to unroll

time consuming loops and observe greater amounts of

speedup. By implementing two instances of the same

hardware function, the amount of parallelism is doubled.



Unfortunately, the amount of on-chip area and power

consumed is also doubled by replicating the kernel. As

the size and complexity of the hardware functions

increase, overcoming the area and power usage becomes a

more daunting task.
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Figure 6. Clock cycle latency comparison of

pipelined and combinational versions of

SuperCISC functions.
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Figure 7. Performance, area, and energy

increase for a pipelined hardware function

versus its combinational equivalent.

Pipelining provides an efficient, scalable solution to

the problems facing replication. As hardware functions

are replicated, the area and power increase is linear in the

number of replicated instances. By pipelining a single

instance of a hardware function, the only area and energy

increases are seen from the inclusion of the pipeline

registers and clock signal used to drive them. The

benefits to this approach can be most easily seen in larger

hardware functions. Larger hardware functions typically

result in longer pipelines than those of smaller functions.
Pipelined functions with n pipeline stages approach the

performance of functions with a replication factor of n. In

larger applications, the number of instances needed to

achieve this level of full replication places heavy demands

on area and energy utilization. Figure 9 shows the

increases in area and energy usage with full replication

compared to an equivalent pipelined implementation.
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Figure 8. Increase of switching energy in

combinational hardware functions versus

pipelined equivalents.

6. Conclusions

Levels of instruction level parallelism realized in

today’s software applications are disappointingly low.

Hardware, on the other hand, lends itself towards

exploiting parallelism. C to VHDL tool chain

technologies are maturing, making hardware design in

high-level programming languages increasingly popular.

By executing massively parallel hardware functions as

custom instructions coupled with standard processors,

speedups of over 10x are possible. By pipelining these
hardware functions, an average additional performance

gain of 3.3x was seen, yielding an increase of 33x over a

software only approach. Increasing parallelism even more

is possible by replicating hardware functions, while

consuming more area and power. Pipelining can be used

to achieve the same gains in parallelism and performance

while area and energy savings increase with the size of the



replicated function. The largest observed hardware

functions saved over 6x the area and over 10x the energy

by pipelining instead of replicating.
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Figure 9. Area and energy increase for a fully

replicated hardware function versus its pipelined

equivalent.

Future directions of this work seek to automate and

optimize the performance, area, and energy tradeoffs

associated with electronic design. This is achievable by

mixing pipelining and replication techniques based on

characteristics specific to an application. Additional work

will investigate the presentation of optimization

opportunities to the compiler. Possible compiler

optimizations exposed include software pipelining and
loop unrolling, with and without the presence of loop

dependencies.
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