
Using Coroutines for RPC in Sensor Networks

Marcelo Cohen, Thiago Ponte, Silvana Rossetto and Noemi Rodriguez

Departamento de Informatica, PUC-Rio
Rua Marques de Sao Vicente, 225, Gavea, Rio de Janeiro, RJ, 22453-900, Brazil

{mca,tponte,silvana,noemi}@inf.puc-rio.br

Abstract

This paper proposes a concurrency model which inte-
grates the asynchronous and event-driven nature of wireless
sensor networks with higher-level abstractions that provide
a more familiar programming style for the developer. As
a basis for this proposal, we designed and implemented
a cooperative multitasking scheduler, based on coroutines,
for the TinyOS operating system. We then used this sched-
uler to implement RPC-like interfaces that capture differ-
ent communication patterns common in wireless sensor net-
works. This allows the programmer to work, when appro-
priate, with a synchronous style, while maintaining an asyn-
chronous model at the message exchange level.

1 Introduction

Sensor networks are highly unstructured and dynamic
environments, in which there are no well-behaved commu-
nication patterns. Similarly to other embedded systems,
sensors must respond to different stimuli, including phys-
ical events and messages from other devices. As a conse-
quence, computing models for such systems are typically
event-driven and asynchronous [2]. A representative ex-
ample is the TinyOS operating system [12] and its associ-
ated nesC programming language [11], which have become
practically standard tools for developing WSN applications.
The nesC programming language supports the definition of
interfaces that define commands that must be provided by
modules that implement an interface, and events that may
be signaled by such modules.

However, programming distributed event-based systems
is typically a hard programming chore. When an operation
invoked by an event cannot complete immediately, because
it depends on further data that is yet to be signaled, it must

1-4244-0910-1/07/$20.00 c©2007 IEEE.

be split across two or more invocations of event handlers,
forcing the programmer to code “continuations” within his
handlers. Events may come from many sources, both lo-
cal and remote. This means that the program must typi-
cally deal simultaneously with several lines of activity. Be-
sides, to maintain the interactivity, the system must make
sure that no single event handler takes very long to execute.
So, some tasks must be broken into many small pieces, be-
tween which the system saves the needed state information
in global variables and returns to the main loop. This pro-
cess, referred by Adya et al. as stack ripping [1], is one of
the main difficulties for developing applications using the
event-driven programming style [5].

We believe that it is possible to provide higher-level pro-
gramming interfaces in a way that is consistent with an
asynchronous event-based core. Cooperative multitasking
seems to be a promising alternative in this scenario, allow-
ing different activity threads to use their own stacks, while
avoiding the need (and overhead) of dealing with preemp-
tion. Instead of splitting a conceptual activity across dif-
ferent event handlers, the programmer can have a handler
yield control to the main passive loop when an operation
cannot complete immediately. In [17], we described our
first experiments with this model, in which we modified the
TinyOS operating system to have it support coroutines and
introduced a programming pattern for creating synchronous
views of asynchronous interfaces.

We have now reimplemented the support for coopera-
tive multitasking as a separate scheduling module for the
TinyOS operating system. This provides better support for
testing and distributing the coroutine module. In this pa-
per, we present this implementation. We then explore how
we can use our model to provide an RPC abstraction for
inter-node communication. Because the number of partici-
pating devices in a wireless sensor network application can
be large, we believe this is an area where it is specially im-
portant to provide the programmer with an alternative to the
basic event-handler model. We also discuss how, with ap-
propriate communication primitives, we can build RPC-like

abstractions to fit different interaction patterns.
The RPC paradigm was probably the most popular one

for client-server applications running in local-area net-
works. From the beginning, however, critiques to the RPC
paradigm were made [19, 6], mostly discussing the imposi-
tion of a synchronous structure on the client application and
the difficulty of matching RPC with fault tolerance, partly
due to its one-to-one architecture. As the scope of dis-
tributed systems grew, from local-area to geographical net-
works, both of these aspects gained importance. New cri-
tiques to the one-to-one and synchronous RPC model have
also appeared from novel application areas, such as ubiq-
uitous computing [18]. All of these considerations and cri-
tiques led many researchers and developers to believe that
the RPC model should be abandoned. However, the persis-
tence of the model in many areas of distributed program-
ming, even in new areas of applications such as web ser-
vices, testifies its popularity among programmers.

In the context of sensor networks, an RPC-like program-
ming model can be particularly useful to support cluster-
based architectures [23]. Clusters are designed as a set
of spatially-adjacent sensor nodes deployed around a tar-
get phenomena to sense, process and communicate data of
interest. One node is elected as the cluster head, which is re-
sponsible for the control and coordination of sensor nodes
within the cluster and for the interaction with other clus-
ter heads and with the base station. Clustering techniques
help the nodes minimize energy dissipation by reducing the
overall message exchange in the network. We believe that
RPC abstractions can be specially useful to simplify one-
to-many and many-to-one interactions among cluster heads
and nodes within clusters.

This paper is organized as follows. In Section 2 we
present a brief introduction to wireless sensor networks and
to the TinyOS operating system. In Section 3 we describe
how we implemented support for coroutines in TinyOS.
Next, in Section 4, we discuss the implementation of re-
mote procedure calls using coroutines. Section 5 contains
some discussion and related work, and, to conclude, Sec-
tion 6 presents some final remarks.

2 Wireless sensor networks

The use of wireless sensor networks has been growing,
and they have become an important basis in a number of
distinct applications, such as monitoring ecological or se-
curity conditions. A sensor network may consist of poten-
tially thousands of tiny, low-power nodes, each of which ex-
ecutes concurrent, reactive programs that must operate with
severe memory and power constraints. Information must
be simultaneously captured from sensors, manipulated, and
streamed onto a network. Moreover, nodes must deal with
events that require real-time responses. An example of such

an event is message arrival. Typically, communication is
radio-based and the radio is an asynchronous input/output
device that contains no buffer, so each packet must be ser-
viced by the node as soon as it becomes available. Systems
for sensor networks thus present some special requirements.
First, software solutions must make efficient use of proces-
sor and memory while enabling low power consumption.
Second, it is necessary to maintain a number of concurrent
flows and juggle numerous outstanding events.

TinyOS [12] is the current state of the art in operating
systems for sensor network research. In the next section we
describe some important design aspects of TinyOS.

2.1 The TinyOS design

The design of TinyOS is based on three programming
constructs: commands, events, and tasks. Both commands
and events are intended to perform small amounts of work.
Commands are used to request services. Typically, a com-
mand handler deposits request parameters and conditionally
posts a task for later execution. Events are signaled to indi-
cate service completion or hardware events. An event han-
dler can deposit information in the component’s environ-
ment, post tasks, signal higher-level events or invoke com-
mands.

Tasks allow for postponing processing. They are atomic
with respect to each other and run to completion, but can
be preempted by interrupts (hardware events). Tasks al-
low concurrency within each component since they exe-
cute asynchronously with respect to events. To ensure low
task execution latency, individual tasks are expected to be
short, i.e, lengthy operations should be spread across multi-
ple tasks.

There are two different programming constructors in
TinyOS: modules, that are used to provide code; and con-
figurations, that are used to wire components together. The
behavior of a TinyOS component is specified in terms of
interfaces that can be provided or used by the component.
Interfaces specify a multi-function interaction channel be-
tween two components, the provider and the user. The in-
terface provider must implement a set of named functions
called commands, and the interface user must implement
the set of named functions, called events, that can be sig-
naled upon completion of the commands it uses. A C-like
language called nesC [11] was specially designed to provide
the event-driven concurrency model used by TinyOS.

3 A coroutine-based concurrency model

Although the TinyOS programming model is well suited
to the constraints of sensor networks, it is not always easy to
use. Its multitasking engine maintains a two-level schedul-
ing structure that forces the program into the structure of

2

a finite state machine, which, when many states and events
are involved, can be difficult to understand and maintain. To
develop even a simple sensing application in nesC, the pro-
grammer must typically partition basic requests into two-
phase operations. To share data between these operations,
he must resort to global variables. He cannot follow the
classical programming discipline of maintaining data per-
taining only to a certain activity in local variables.

In Figure 1 we illustrate these difficulties with a sim-
ple request-sense-forward application: basically, whenever
a request sensing message is received, the node reads and
forwards its sensor value. In our example, we use standard
nesC interfaces to receive a sensing request (Receive), col-
lect a sensor value (AcquireData) and forward the col-
lected data (Send). When the Receive.receive event is
signaled (on message arrival), a sensor reading is started by
calling the AcquireData.getData command. When the
AcquireData.dataReady event is signaled, a message is
constructed with the collected data and forwarded using the
Send.send command.

In this simple example, the main application task (re-
ceiving a request, taking the sensor value and forwarding it)
must be partitioned into three distinct pieces of code and
implemented as a state machine. This is because opera-
tions used to acquire sensor values and to forward messages
across the network cannot complete immediately, i.e., they
are typical split-phase operations with a command to re-
quest the operation and an event to signal operation comple-
tion. Besides, since a new request can be received before the
last one was completely handled, we (the programmer) need
to coordinate the state transitions of the application. In this
example, if a new sensing data message was constructed be-
fore the last Send.send command was completed, it could
erroneously overwrite the data to be sent. So, we define a
global variable named g locked that is used to ensure cor-
rect execution of the application.

Our goal is to provide a more intuitive programming ab-
straction to the developer. A classical and more convenient
way to receive a request, get data readings and forward them
would be to implement a single language procedure with a
loop to receive a new request, to get the sensor value and to
send the collected data, like this:

void BasicApp() {
while(TRUE) {

// wait a new request
receiveRequest(message_t* msg,...);
// read the sensor data
err = getData(&data);
// send data
if (!err) sendData(data,...);

}
}

In other words, we would like to encapsulate the two phases
of a typical request/answer in a single request, enabling the
programmer to structure his application as sequential code,
instead of as a state machine.

module BasicAppC {...}
implementation {

message_t g_packet;
bool g_locked = FALSE;
... // initialization code

event message_t Receive.receive(message_t* msg,..)
{

call AcquireData.getData();
return msg;

}

event void AcquireData.dataReady(uint16_t data)
{

if (g_locked) return;
else {

Msg* rsm;
rsm = (Msg*) call

Packet.getPayload(&g_packet,..);
rsm->data = data;
if (call Send.send(&g_packet,...))==SUCCESS)

g_locked = TRUE;
}

}

event void Send.sendDone(message_t* bufPtr,...)
{

if (&g_packet == bufPtr)
g_locked = FALSE;

}
}

Figure 1. A simple TinyOS application.

The most popular way of providing local variables for
different threads of activity is to use multithreading, which
is exactly what TinyOS avoids with its event-based struc-
ture. Multithreading is typically preemptive, meaning that
control switches can occur at any moment, imposing an
overhead and introducing arbitrary race conditions. Corou-
tines, on the other hand, introduce multitasking in a coop-
erative fashion: each coroutine has its own execution stack,
as a thread does, but control is transferred only through the
use of explicit control transfer primitives. The switch be-
tween any two threads of execution is explicit in the pro-
gram. This means that the point where possible interleaves
may occur, with associated accesses to global memory, are
clearly marked in the program, avoiding several of the prob-
lems related to race conditions. Besides, the overhead asso-
ciated to a context switch will be incurred only when ex-
plicitly requested by the program: this is specially relevant
in the constrained context of sensor networks.

Coroutines also fit in particularly well with our desire
to maintain the original event-based programming model
available to the programmer alongside the new synchronous
view. In the original TinyOS model, a new event is handled
only when the previous handler has completed execution.
Using coroutines, a new event will be handled when either
the previous handler has completed execution, as before, or
has yielded control, if it was running as a coroutine and has
explicitly requested a blocking operation.

3

3.1 Coroutine implementation for TinyOS

In our previous work [17], we extended TinyOS 1.x task
scheduler to include: a coroutine construct implementation,
a coroutine queue (with pre-allocated space) and a coroutine
scheduler to resume coroutines that are ready. In this work,
we explore features offered by TinyOS 2.x — particularly
the design of the task scheduler as a component — in order
to provide coroutine facilities for nesC applications without
the need to change the operating system core.

A coroutine is represented by a code address and has its
own stack. As discussed in [8], there are different syntac-
tic and semantic ways to support coroutines. Symmetric
coroutine facilities provide a single control-transfer primi-
tive (such as Modula-2’s transfer operation [22]), that al-
lows coroutines to explicitly pass control between them-
selves. Asymmetric coroutine mechanisms provide two
control-transfer operations: one for invoking a coroutine
and one for suspending it. Suspending a coroutine implic-
itly returns control to its invoker. If the coroutine ends its
execution normally, control is also returned to the invok-
ing coroutine. We have adopted asymmetrical coroutines,
allowing arbitrary functions independently written to be in-
voked as coroutines. The interface we designed for the pro-
vision of asymmetric coroutines is called CoRoutine and
defines four commands:

• void postCoRoutine(procedure t proc):
schedules a procedure to be executed as a coroutine;

• uint8 t getId(): returns the current coroutine;

• void suspend(): transfers control execution back to
the main coroutine;

• void restore(uint8 t coro id): informs the
scheduler that the given coroutine is ready to be re-
sumed.

Coroutine construct The next step was to implement
these commands. We designed a component called
CoRoutineC which implements the CoRoutine interface
and an internal set of operations needed to support a corou-
tine construct. These operations involve: allocating mem-
ory for a coroutine stack, associating a function to a corou-
tine, transferring control to a coroutine, and yielding control
from a coroutine.

One simple way to implement coroutines is by using the
setjmp and longjmp functions [10]. The setjmp func-
tion saves the current execution context (including the stack
pointer) into a pre-defined data structure to be passed later
as argument to the longjmp function. The longjmp func-
tion, in its turn, resumes the execution context previously
saved by setjmp.

Our implementation uses setjmp/longjmp functions
and is based on the PCL (Portable Coroutine Library) li-
brary designed by Libenzi [14]. We implemented corou-
tine operations for the ATmega128L [4] microcontroller
which is adopted in sensor platforms such as Mica2, Mi-
caZ and Mica2Dot [7]. The ATmega128L microcontroller
has 128KB for program memory and 4KB for data mem-
ory. Coroutines stacks are allocated on the heap with default
size of 256 bytes. At compile-time, it is possible to know
the number of coroutines defined by the application, so we
allocate the exact number of coroutine stacks required by
each application.

Coroutine scheduler In TinyOS 2.x, the task scheduler
is a component, so we can replace the standard TinyOS
scheduler by simply changing the default scheduler compo-
nent. The standard TinyOS scheduler is described by a con-
figuration component called TinySchedulerC. To replace
this scheduler, one must define a new TinySchedulerC

configuration component in the application directory. All
scheduler implementations must provide both a parameter-
ized TaskBasic interface and a Scheduler interface. The
former supports nesC post statement (to schedule a task)
and task declarations (to declare a task) and enables TinyOS
core systems to operate properly; the latter is used to initial-
ize and run tasks. As long as these interfaces are provided,
the TinyOS core code can run, unchanged, with new sched-
uler implementations.

In the new configuration, we provide in addition to
TaskBasic and Scheduler interfaces, the CoRoutineSched
interface in order to support coroutine facilities. The
CoRoutineSched interface is similar to the TaskBasic in-
terface. It includes an event (runCoRoutine) that is sig-
naled by the scheduler and allows transferring control to a
coroutine; and a command (postCoRoutine) that is called
when a component wants to schedule a coroutine. The
main component in our TinySchedulerC configuration is
called SchedulerCoroP. It is a module that implements
CoRoutineSched, Scheduler and TaskBasic interfaces. The
McuSleep interface is used for microcontroller power man-
agement and is not relevant for this work. With this sched-
uler implementation, the CoRoutine interface becomes
available to applications.

3.2 Evaluation

In order to evaluate the overhead added by corou-
tines, we simulated the behavior of a simple TinyOS
sensing application in which a node takes a sensor read-
ing by using the AcquireData interface (a command is
called to get a new sensor value and an event is sig-
naled when the value is available). In our simple ap-
plication, each time the Timer.fired event is signaled,

4

the AcquireData.getData command is called and then,
when the AcquireData.dataReady() event is signaled,
the operation is finished.

We have implemented two versions of this application:
the first one using original TinyOS interfaces and the second
one including coroutines. By using coroutines we can en-
capsulate both the invocation of AcquireData.getData
and the handling of its result into a unique procedure, elim-
inating the split-phase behavior.

We used the ATmega128L Emulator provided by
ATEMU [15]. First, we simulated the original version
(without coroutines and our new scheduler). After that,
we simulated the new version of the application, which ex-
plores coroutines. We then compared the number of clock
cycles needed to take a new sensor reading after the last
reading is completed.

The number of clock cycles used with the original
TinyOS scheduler was 104,213, and with our new sched-
uler 122,982. The overhead added by using coroutines for
taking a sensor reading was thus about 18.01%. Although
not despicable, we believe this is a reasonable price to pay
for the possibility of simplifying the task of the program-
mer. Furthermore, these are the results we obtained with
our initial implementation, which we believe we can still
improve.

4 RPC in sensors networks

Vinoski [20] argues that the complexity added with asyn-
chronous interactions is a consequence of mixing the com-
munication style at message exchange level with the com-
munication semantics at the application level. Program-
ming abstractions must hide low-level issues such as net-
work and message exchange details behind a more familiar
programming idiom. For the application developer, when it
is necessary to obtain certain information before taking the
next step in the process execution, the synchronous view is
fundamental. Lea et al. [13] emphasize that all computer
systems are essentially asynchronous and that the notion of
synchronous operation is merely a convenient programming
style which must be built over an asynchronous communi-
cation basis.

Remote Procedure Calls (RPC) have been popular in dis-
tributed setting since the eighties. The idea of extending
the main programming abstraction we use in sequential pro-
grams to distributed settings seems to appeal to many pro-
grammers. However, as the focus of distributed program-
ming shifted from local area networks to wide-area, many
critiques have been placed against RPC, often related to the
blocking nature of the original model and to its one-to-one
nature. We believe it is possible to explore the advantages
of programming with RPC in a way that is compatible with
the requirements of asynchronous and many-to-many ap-

plications. Messages can be exchanged asynchronously at a
basic level, but the programmer can see communication as a
remote procedure call if it suits him. At the same time, it is
important to provide the programmer with all the different
programming styles that he may need: so remote procedure
calls must not be the only alternative for communication.

We explored the coroutine facilities supported by our
new TinyOS scheduler and CoRoutine interface to design
and implement a synchronous view of basic Send/Receive
primitives (interfaces) provided by TinyOS. This view can
be freely combined with the original TinyOS model of com-
mands and events and can be used to simplify program-
ming. In the next sections we describe how we built this
synchronous view and how it can be used in a RPC pro-
gramming style for sensor networks applications.

4.1 Synchronous view of Send/Receive

TinyOS provides distinct interfaces to abstract the un-
derlying communications services and a number of compo-
nents that provide (implement) these interfaces. The Send

interface provides the basic address-free message sending
interface designed for broadcasting. AMSend is similar to
Send, but takes a destination AM address in its send com-
mand. These interfaces provide a command for sending a
message and an event to indicate whether a message was
sent successfully or not. The Receive interface provides
the basic message reception interface through an event for
receiving messages.

To build a synchronous view of basic Send/Receive in-
terfaces offered by TinyOS, we first designed synchronous
interfaces named AMSendS and ReceiveS. The main dif-
ference between AMSend and AMSendS interfaces is the ab-
sence of the sendDone event in the latter. The idea is
that the send command should return only after comple-
tion (this is the synchronous view of the command). How-
ever, instead of maintaining the entire application blocked
waiting for message to be sent, we implement this com-
mand in a coroutine, so it is suspended and resumed ap-
propriately and the system remains asynchronous. A sim-
ilar idea is explored for receiving. Instead of defining the
receive operation as an event, we define it as a command
in ReceiveS interface. In this case, the current context (or
coroutine) is suspended until a new message is received.
By using the new interface, the programmer can call the
ReceiveS.receive command at the point in the program
where a message is expected.

Implementing synchronous view of Send/Receive inter-
faces We implemented two components to provide inter-
faces AMSendS and ReceiveS. These components use op-
erations provided by the CoRoutine interface to suspend
and restore the current context of execution.

5

implementation {
uint8_t g_coro_id; // coroutine identification
error_t g_err; // error control
command error_t AMSendS.send

(am_addr_t addr,
message_t* msg, uint8_t len) {

g_err = call AMSend.send (addr, msg, len);
if (g_err != SUCCESS)

return g_err;
g_coro_id = call CoRoutine.getId();
call CoRoutine.suspend();
return g_err;

}

event void AMSend.sendDone
(message_t* msg, error_t error) {

g_err = error;
call CoRoutine.restore(g_coro_id);

}
}

Figure 2. AMSendS implementation.

Figure 2 presents the implementation of the AMSendS

interface. When the AMSendS.send command is called,
the standard AMSend interface is used by calling the
AMSend.send command. Current coroutine identification
is stored and the context of execution is suspended. When
the AMSend.sendDone event is signaled, the coroutine that
was previously suspended can be restored.

The implementation of the ReceiveS interface follows
similar ideas and uses the standard Receive interface.
When the ReceiveS.receive command is called, current
coroutine identification is stored and the context of execu-
tion is suspended. When the Receive.receive event is
signaled, the coroutine that was previously suspended can
be restored. In order to deal with the possibility of failures,
we have introduced a timer that defines an upper bound for
the time a coroutine remains suspended waiting for a mes-
sage. If this upper bound is reached before a message ar-
rives, ReceiveS.receive will return a TIMEOUT code.

4.2 Synchronous RPC in sensor networks

By using the synchronous view of send/receive inter-
faces, we can easily design stubs and proxies that support
synchronous remote calls. We discuss this possibility by
means of a simple example. We design an interface, named
RemoteData, with a command to get sensing values from
neighboring nodes. This command has four parameters: the
destination address (one can use AM BROADCAST ADDRESS

for broadcasting, or a specific address for a particular node),
a reference value that will receive the remote value, a time
limit to wait for a reply and the sensor type (e.g., TEMP,
LIGHT, etc.). Figure 3 shows the component that imple-
ments the RemoteData interface. It constructs a message
with the appropriate request and uses the AMSendS.send

command to send this message. After message sending

implementation {
command error_t RemoteData.get

(am_addr_t addr, uint16_t* value,
uint8_t timer, uint8_t type) {

message_t packet;
void payload;
request_t req_msg;
result_t res_msg;
// compose a packet with the request ...
// send the request
if (call AMSendS.send

(addr, &packet,...) == SUCCESS) {
// wait for result
error_t err = call ReceiveS.receive

(..., &payload, timer);
if (err == SUCCESS) {

result_t *res_msg = (result_t*) payload;
*value = res_msg->data;

}
return err;

}
return FAIL;

}
}

Figure 3. Proxy to take remote sensing.

void BaseStation() {
uint16_t g_value;
task ProcessTemp() {

// do something
if (g_data > NORMAL_TEMP) ...

}
event void Timer.fired() {

uint16_t value;
error_t err = call RemoteData.get

(AM_BROADCAST_ADDRESS, &value, TIMER, TEMP);
if (err != TIMEOUT)

if (post ProcessTemp()) g_value = value;
}

}

Figure 4. Example using remote invocation.

is successfully completed, the ReceiveS.receive com-
mand is called to wait for the request result. When this
command is completed, the received value is extracted from
the message and returned as a parameter of reference.

The command RemoteData.get can be periodically
called by the application in a base station (or in a cluster
leader) to get a sensor reading from any neighboring node.
The code in Figure 4 shows an example.

The RemoteData interface explores features of wireless
communication, such as message broadcast. Since the num-
ber of neighbors of a node is normally dynamic (nodes can
move, turn themselves off to save power, or become un-
reachable for reasons like message collisions), broadcasting
messages is a good alternative to reach neighbors without
the cost of maintaining network infrastructure. In the ex-
ample shown in Figure 4, only one reply is sufficient for
each remote request, so the first received message is used.
It is also possible to direct the request to a specific node by
means of the addr parameter.

6

implementation {
command uint8_t RemoteBroadData.get

(uint16_t *values,
uint8_t timer, uint8_t type) {

message_t packet;
uint8_t count=0;
void payload;
request_t req_msg;
result_t res_msg;
// compose a packet with the request...
// send the request
if (call AMSendS.send

(AM_BROADCAST_ADDR,
&packet,...) == SUCCESS) {

// wait for results
while(TRUE) {

error_t err = call ReceiveS.receive
(..., &payload, timer);

if (err == TIMEOUT) break;
result_t *res_msg = (result_t*) payload;

*(values+count) = res_msg->data;
count++;

}
}

}
return count;

}
}

Figure 5. Proxy for multiple remote readings.

However, there are other situations in which a number
of replies for a broadcasted message are desired and must
be handled. This approach can be used, for example, to
aggregate values from distinct sensor nodes in a cluster-
based architecture. In Figure 5, we show a distinct imple-
mentation for a remote sensing request, which we called
RemoteBroadData.get. In this case, a node (for exam-
ple, a cluster head) broadcasts a request and waits for a
number of replies. The command will return the number of
received values and a vector with these values, so the appli-
cation can define how to process the collected values. In our
example, the timer parameter is kept the same whenever the
ReceiveS.receive command is called. This is reason-
able considering that a cluster head normally defines some
kind of TDMA protocol to allocate time slots for each node
to send messages to it (in order to avoid message collisions).
Thus, the timer parameter can be defined by considering the
length of time slots. Another approach could be to decrease
the timer value at each received message.

5 Discussion and related work

The work presented in [9] on Protothreads also pro-
poses a programming abstraction which intends to reduce
the complexity of high-level programs in event-triggered
sensor nodes systems. Unlike coroutines, protothreads im-
plement a type of continuation (called local continuation)
that does not require its own stack: all protothreads run
on the same stack and context switching is done by stack
rewinding. The main limitation of protothreads is that vari-

ables with function-local scope are not automatically saved
across blocking operations because the stack is rewound at
every blocking statement. In our system, each coroutine has
its own stack, and thus maintains its local variables across
control transfers.

Welsh and Mainland [21] propose abstract regions to ab-
stract interaction details between nodes in a sensor network.
To simplify the programming task using abstract regions,
the authors implemented a synchronous programming in-
terface for TinyOS based on “lightweight threads”. The
system maintains two execution flows: a main flow, which
is event-driven and cannot block; and an application flow,
which can invoke blocked operations. The same stack is
shared by these two flows of execution. Using this structure,
the application can block while the system remains event-
driven. In our proposal, the main flow is event-driven and
the application can be divided into more than one control
flow, each one with its own stack of execution.

May et al. [3] describe the design and implementation
of an RPC mechanism for wireless sensor networks. Their
proposal includes extensions to the nesC programming lan-
guage that allow the programmer to specify, in a configura-
tion, that an interface is to be bound to a remote provider.
This allows the configuration to document remote interac-
tions, but on the other hand makes the implementation de-
pendent on compiler extensions. Syntactic extensions are
also present in interface descriptions, to establish that a
command may be invoked remotely. The remote calls them-
selves are always asynchronous in the sense of the one-way
CORBA operations. The rationale behind this is to avoid
busy waiting and to maintain the original split-phase model
of TinyOS.

One point of consensus that seems to be emerging from
the diverse needs of current applications is that there is no
single set of programming abstractions that will be adequate
for all applications. The same seems to be true even inside
a single application. In the setting of wireless sensor net-
works, it may be the case that a remote procedure call is
the most appropriate way of requesting a given value from
a neighbouring node, while the direct use of events may
be more appropriate to transmit “out-of-band” data such as
alarms. When we insert the cooperative multitasking mod-
ule in the TinyOS system, the original programming model
remains available. The programmer can choose whether to
use a synchronous or asynchronous view in each local or
remote interaction.

6 Final remarks

Software architectures for networked sensors are typi-
cally concurrent and event driven. However, event-triggered
programming models are not natural for programmers: ap-
plications have to be written as explicit state machines,

7

which are hard to understand and maintain. In this work, we
proposed a coroutine-based concurrency model for sensor
networks and showed how it can be used to couple higher-
level programming abstractions with the basic event-driven
I/O model. Coroutines are a lightweight construct and seem
to match well the constraints of sensor networks. The Re-
mote Procedure Call abstraction is a familiar concept which
allows the programmer to capture many common interac-
tion patterns.

The design of the RPC system we describe also illus-
trates advantages of the support for modularity offered by
the TinyOS operating system. The possibility of redefin-
ing the scheduler as a component allows us to redefine sys-
tem behavior without tampering with its internals, allow-
ing system and scheduler versions to be independently up-
dated. The design of a low-level interface which offers syn-
chronous send and receive operations also seems adequate,
for it allows different communication patterns, such as one-
to-one and one-to-many, to be programmed as new compo-
nents or in the final application.

This work is part of a project in which we study applica-
tions of cooperative multitasking. In a previous paper [16],
we discussed how coroutines can be used to couple the ad-
vantages of asynchronous communication with the use of
the well-known remote procedure call abstraction in geo-
graphically distributed systems. In the sensor network do-
main, we are particularly interested in exploring cooperative
multitasking to simplify the programming task.

Acknowledgments This work was partly supported by
CNPq, the Brazilian Research Council, grants number
152101/2005-5 and 305320/2004-1.

References

[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R.
Douceur. Cooperative task management without manual
stack management. In Proceedings of the General Track
USENIX Annual Technical Conference, pages 289–302,
Berkeley, CA, USA, 2002. USENIX Association.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. Wireless sensor networks: a survey. Computer
Networks, 38(4):393–422, 2002.

[3] T. D. M. andS. H. Dunning and J. O. Hallstrom. An RPC
design for wireless sensor networks. In Proceedings of the
2nd IEEE International Conference on Mobile Ad-hoc and
Sensor Systems, Washington DC, USA, Nov 2005.

[4] ATmega128(L) summary. http://www.atmel.com/.
[5] R. Behren, J. Condit, and E. Brewer. Why events are a bad

idea (for high-concurrency servers). In Proceedings of the
9th Workshop on Hot Topics in Operating Systems, Hawaii,
USA, May 2003.

[6] K. Birman and R. van Renessee, editors. Reliable Dis-
tributed Computing with the Isis Toolkit, chapter RPC con-

sidered inadequate, pages 68–78. IEEE Computer Society
Press, 1994.

[7] Crossbow Technology, Inc. http://www.xbow.com/.
[8] A. L. de Moura, N. Rodriguez, and R. Ierusalimschy. Corou-

tines in Lua. Journal of Universal Computer Science,
10(7):910–925, jul 2004.

[9] A. Dunkels, O. Schmidt, and T. Voigt. Using protothreads
for sensor node programming. In Proceedings of the Work-
shop on Real-World Wireless Sensor Networks, Stockholm,
Sweden, June 2005.

[10] R. Engelschall. Portable multithreading: The signal stack
trick for user-space thread creation. In Usenix Annual Tech-
nical Conference, pages 239–250, San Diego, CA, USA,
2000.

[11] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The NesC language: a holistic approach to
networked embedded systems. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion, pages 1–11, New York, NY, USA, 2003. ACM Press.

[12] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked sen-
sors. In 9th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 93–104, New York, NY, USA, 2000. ACM Press.

[13] D. Lea, S. Vinoski, and W. Vogels. Asynchronous middle-
ware and services. IEEE Internet Computing, 10(1):14–17,
2006.

[14] D. Libenzi. Portable coroutine library (PCL), 2005.
http://xmailserver.org/libpcl.html.

[15] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. Baras.
ATEMU: a fine-grained sensor network simulator. In Sen-
sor and Ad Hoc Communications and Networks, pages 145–
152, 2004.

[16] N. Rodriguez and S. Rossetto. Integrating remote invoca-
tions with asynchronism and cooperative multitasking. In
Third International Workshop on High-level Parallel Pro-
gramming and Applications, Warwick, Inglaterra, 2005.

[17] S. Rossetto and N. Rodriguez. A cooperative multitasking
model for networked sensors. In 26th IEEE International
Conference on Distributed Computing Systems Workshops
(ICDCSW’06), Lisboa, Portugal, 2006.

[18] U. Saif and D. Greaves. Communication primitives for ubiq-
uitous systems or RPC considered harmful. In Workshop on
Smart Appliances and Wearable Computing (in conj. with
ICDCS’01), Mesa, AZ, 2001.

[19] A. Tanenbaum and R. van Renesse. A critique of the remote
procedure call paradigm. In EUTECO’88 Conf., pages 775–
783, Vienna, 1988. Participants Edition.

[20] S. Vinoski. RPC under fire. IEEE Internet Computing,
9(5):93–95, 2005.

[21] M. Welsh and G. Mainland. Programming sensor networks
with abstract regions. In USENIX/ACM Symposium on Net-
work Systems Design and Implementation, 2004.

[22] N. Wirth. Programming in Modula-2. Springer-Verlag, third
edition, 1985.

[23] Y. Yu, B. Krishnamachari, and V. K. Prasanna. Issues in
designing middleware for wireless sensor networks. IEEE
Network, 18:15–21, 2004.

8

