
Dynamic Configuration Steering for a Reconfigurable Superscalar Processor

Nick A. Mould
1
, Brian F. Veale

2
, Monte P. Tull

1
, and John K. Antonio

2

1
University of Oklahoma

School of Electrical and Computer Engineering

Norman, OK 73019-1023 USA

{nick_mould, tull}@ou.edu

2
University of Oklahoma

School of Computer Science

Norman, OK 73019-6151 USA

{veale, antonio}@ou.edu

Abstract

A new dynamic vector approach for the selection and

management of the configuration of a reconfigurable

superscalar processor is proposed. This new method
improves on previous work that used steering vectors to

guide the selection of functional units to be loaded into

the processor. Dependencies among instructions in the
instruction buffer are analyzed to enable a new scoring

method. The dynamic vector technique is shown to reduce

the amount of reconfiguration required while preserving
execution resources. Simulation results reveal that, given

enough configurable space, the configuration of the

processor approaches a stable state.

1. Introduction and Related Work

This paper builds on work presented in [1] where a

configuration management controller for a reconfigurable

superscalar processor is proposed. A main goal of the

extensions proposed and studied in this paper is to

optimize the usage of the reconfigurable resources

available in the processor proposed in [1].

The architecture assumed in this paper is similar to that

presented in [1] and originally proposed in [2]. This

architecture is partially run-time reconfigurable at the

level of reconfigurable functional unit (RFU) “slots”. The

architecture of [1] provides eight RFU “slots” and a

number of fixed functional units (FFUs) that cannot be

reconfigured. As a program is executed, the configuration

manager loads execution units into the RFU slots, as

needed. Each type of execution unit that can be loaded

requires one or more RFU slots. Five types of execution

units are included: (1) integer arithmetic/logic units (Int-

ALUs), (2) integer multiply/divide units (Int-MDUs), (3)

load-store units (LSUs), (4) floating-point arithmetic/logic

units (FP-ALUs), and (5) floating-point multiply/divide

units (FP-MDUs) [1]. Table 1 lists the number of slots

required to support each type of execution unit.

The main contribution of [1] is a configuration

management system that determines when the processor

should be reconfigured, by RFU type and quantity. The

method proposed in [1] uses a “Configuration Selection

Unit” that chooses between one of four possible pre-

defined configurations (referred to as “steering vectors”).

The RFUs defined by the chosen steering vector are

configured into idle RFU slots provided in the processor

[1].

The Configuration Selection Unit determines which

steering vector to use based on a “configuration error

metric” (CEM) that compares the needs of the instructions

in the instruction buffer with that of three pre-defined

steering vectors (shown in Table 1 as Configurations 1 –

3) as well as the current configuration. The steering

vector, or the current configuration, that is closest (i.e.,

that has the smallest CEM value) to the needs of the

instructions in the instruction buffer is chosen and loaded

into available RFU slots. If a configured RFU is currently

busy executing an instruction, it is not reconfigured. Thus,

at any point in time, the current configuration of the RFUs

contains a mixture of the execution unit combinations

specified by the three steering vectors [1].

The number of execution units of each type that are

specified by the steering vectors is provided in Table 1.

Note that in [1], the steering vectors not only specify the

types and quantities of execution units that can be loaded

into the RFU slots, but also specify where they can be

loaded into the RFU slots. Additionally, to prevent

stalling, in the case where a required execution unit is

never loaded, a set of five fixed functional units (FFUs)

consisting of one of each type of execution units is

provided in the architecture of [1].

The CEM calculation of [1] considers all instructions

in the instruction buffer regardless of instruction status

(unassigned and ready for execution, assigned and

executing, waiting on dependencies, or independent).

Thus, priority is not given to those instructions whose

1-4244-0054-6/06/$20.00 ©2006 IEEE

Table 1. Number of each type of functional unit provided in [1] and the number of RFU slots
required for each type, derived from [1].

 Int-ALU Int-MDU LSU FP-ALU FP-MDU

of RFU Slots Required 2 2 1 3 3

RFUs – Configuration 1 1 1 4 0 0

RFUs – Configuration 2 0 0 2 1 1

RFUs – Configuration 3 2 2 0 0 0

RFUs – Configuration 0 (Current) 0 - 2 0 - 3 0 - 4 0 - 1 0 - 1

FFUs 1 1 1 1 1

dependencies have been met and have not been

scheduled. This can result in the processor disregarding

instructions that may be on a critical path of flow through

the program, thereby degrading the processor

performance. By contrast, the approach introduced in this

paper proposes a new procedure based on dynamic vector

construction (DVC) that prioritizes instructions such that

satisfaction of their resource requirements is guaranteed,

thereby eliminating the need for fixed units. Also, the

proposed approach considers the effect of dependencies

between instructions to make more effective use of

reconfigurable resources. For example, a dependent chain

of three instructions that all require the same type of RFU

are recognized as needing only one RFU of that type, and

not three. The scoring approach in [1] does not consider

dependencies among instructions and thus would deduce

that three instructions of the same type require three

RFUs, even though the linear structure of the dependency

chain may not admit the assumed parallelism.

The remainder of the paper is organized as follows:

Section 2 introduces formal developments related to

reconfiguration complexity and the steering vector based

approach of [1]; Section 3 proposes and evaluates

extensions to the steering vector approach of [1]; Section

4 reviews previous work related to the new DVC

procedure; Section 5 details the DVC procedure; Section

6 presents an experimental study of the new DVC

procedure.

2. Configuration Space Complexity

For the static steering vector method of [1] it is

important to assure that all possible combinations (or all

desired combinations) of RFUs are achievable through

proper selection of steering vectors. The analysis provided

in this section provides results and conditions related to

the satisfaction of this objective.

For the purposes of our analysis, we assume a finite

reconfigurable space of integer size, and we further

assume that the size of the RFU’s is of integer

measurement and, without loss of generality, that the size

of the smallest RFU is unity. For a given collection of

steering vectors, there exist a finite number of possible

permutations of the RFUs that can ultimately populate the

configurable space. Recall that the approach of [1] yields

a current configuration that is generally a combination of

the steering vector components. This is because a selected

steering vector is generally only partially loaded, i.e., only

those vector elements (RFUs) associated with available

slots are loaded.

Some of the resulting permutations are equivalent in

the sense that they contain the same number of RFUs of

each type. We will refer to each set of equivalent

permutations as a unique combination. The number of

unique combinations can be calculated directly from the

size of the reconfigurable space and the size of each RFU

considered. Let N denote the (integer) size of the

reconfigurable space and let E be an n-tuple vector where

each element e1, e2, e3,…, en designates the integer size of

n possible RFU types. Finally, let the vector

nkkkkK ,...,,, 321 represent the multiplicity of each

RFU type present in a given combination. With these

definitions, the number of unique combinations is equal to

the number of nonnegative integer solutions to Equation

(1), which is expressed in component form in Equation

(2). As stated earlier, we assume a minimal RFU size of

unity, which implies that all combinations are complete in

the sense that “wasted space,” does not exist.

NKE (1)

Nekekekek nn332211 (2)

The number of nonnegative integer solutions to

Equation (2) may be found either iteratively or with the

clever use of a power series representation, as illustrated

by Example 1.

Example 1. Calculation of the number of unique

combinations with E = <1,2,2,3,3> and N = 8.

Recall that k1, k2, k3, k4, and k5 are the multiplicity of

each RFU type in a given combination. Then from

Equation (2):

83322 54321 kkkkk (3)

The number of unique combinations is exactly equal to

the number of nonnegative integer solutions to Equation

(3). Although an iterative method for determining the

solutions is possible, a more convenient way to count the

number of solutions is to use a power series

representation. The identity relation in Equation (4) can

be used to derive Equation (5) [3].

0

2

0

)1(
n

i

i

i xnx If 1x (4)

)4321()1(8

0

422 xxxxi
i

i
(5)

Consider the exponent, 2i, on the left hand side of

Equation (5) to represent the amount of available

reconfigurable space. Further, for the sake of discussion,

assume we wish to fill this space with two different

elements, each of size two, then the coefficient, i+1,

represents the number of unique ways that the space can

be constructed. A power series representation of our

specific example is shown in Equation (6). Si is the

number of ways in which we can fill a space of size i
using one element of size one, two elements of size two,

and two elements of size three. The goal is to find 8S , the

coefficient proceeding x8 on the left hand side of Equation

(7).

0

3

0

3

0

2

0

2

00

5

5

4

4

3

3

2

2

1

1

k

k

k

k

k

k

k

k

k

k

i

i

i

xx

xxxxS

 (6)

Use of Equation (4) reduces Equation (6) into a

compact form given by Equation (7), where a=k1,

b=k2+k3, and c=k4+k5:

0

3

0

2

00

)1(

)1(

c

c

b

b

a

a

i

i

i

xc

xbxxS

(7)

Because there are many ways to obtain an exponent of

eight using the exponents on the right hand side of

Equation (7), we must iterate through them to determine

the coefficients whose sum is 8S .

For 2c , an exponent of size six is produced:

6

0

2

0

3)1(xxbx
b

b

a

a
 (8)

To obtain an exponent of size eight, we can either set

b=1 and a=0, or b=0 and a=2. The results, respectively:
8620 6)3)(2)((xxxx (9)

8602 3)3)()((xxxx (10)

Now, with c=1, an exponent of size three is produced:

)2()1(3

0

2

0

xxbx

b

b

a

a (11)

To obtain an exponent of size eight, we can either set

b=2 and a=1, or b=1 and a=3, or b=0 and a=5. The results

again, respectively:
834 6)2)(3)((xxxx (12)

8323 4)2)(2)((xxxx (13)

8305 2)2)()((xxxx (14)

With c = 0 an exponent of size eight now becomes a

full iteration through the variable b. The values are shown

here along with the obtained coefficients from the right

hand side of Equation (7).

)()1(0

0

2

0

xxbx
b

b

a

a
(15)

For b = 4, a = 0:
8080 5))(5)((xxxx (16)

For b = 3, a = 2:
8062 4))(4)((xxxx (17)

For b = 2, a = 4:
8044 3))(3)((xxxx (18)

For b = 1, a = 6:
8026 2))(2)((xxxx (19)

For b = 0, a = 8:
8008))()((xxxx (20)

8S is the sum of all the coefficients obtained in the

construction of exponents of size eight on the right hand

side of Equation (7) as shown in Equations (9, 10, 12-14,

and 16-20).

3612345246368S

In this specific example configuration space, thirty-six

possible unique execution unit combinations are possible.

If steering vectors are selected properly, then thirty-six

unique configurations would be possible during run-time.

In order to develop a set of steering vectors that can

reach all of the unique combinations of the RFU types,

first observe that within the entire set of unique

combinations there exists a subset of combinations in

which only one type of RFU appears in each. The size of

this subset is equal to the number of RFU types. This set

of vectors forms a basis for reaching every unique

combination. Other valid basis sets can be derived from

this subset by interchanging RFUs among the steering

vectors, provided that the slots inhabited by a given RFU

type remain disjoint from slots inhabited by other RFU’s

of the same type.

3. Steering Vector Score Analysis

The steering vector score as proposed in [1] can be

improved by (1) simply scoring only those instructions

that are ready for assignment. However, this may result in

an overreaction to the instructions’ actual needs causing

the machine to thrash about in a constant state of

reconfiguration. There are other scoring methods possible,

such as: (2) scoring only instructions that are unassigned,

(3) scoring only instructions that are ready (dependencies

met), and (4) scoring only instructions that are dependent.

To study the steering vector scoring alternatives, the

Susan benchmark from the Automotive and Industrial

Control category of the MiBench set of embedded

benchmarks was chosen. The Susan benchmark is an

application that is used to detect corners and edges in

images [4]. The benchmark is traced on a PowerPC based

machine and the resulting trace is simulated using a

software-based simulator of the scoring technique. This

simulator determines when the RFUs of the processor

should be reconfigured and when to issue instructions to

the FFUs and RFUs. Various statistics are gathered by the

simulator such as the total estimated clock cycles to

complete the benchmark and the average usage of the

FFUs and RFUs.

Additionally, RFUs required in the first level of the

directed acyclic graph (DAG) may also be required for

levels further into the DAG; however, the score in [1]

assumes the resource requirement should be the sum of all

the resources needed by each level in the DAG. This is

inaccurate since the resource needs are actually the

maximum number of resources required by each level and

type, calculated as the maximum of each resource type

required by each level. An example of this calculation is

shown in Figure 1.

The simulation results shown in Table 2 suggest that

the fixed RFU’s perform the bulk of the processing. It is

also apparent that the configurable space is sparsely used,

and therefore unable to impact the total execution time in

any discernable manner with regard to the specific scoring

method being employed.

Table 2 also suggests that some RFUs are configured

but never used. To overcome the deficiencies of these

scoring methods, a new dynamic vector construction

(DVC) procedure is developed in Section 5 that performs

resource allocation according to a DAG level analysis.

4. Related Work in Dynamic Vector

Construction

The new DVC procedure presented in Section 5

provides an improved scoring method using a level

analysis of the DAG, the results of which are used by a

dynamic vector update (DVU) procedure that configures a

resource vector. The DVC method concerns the mapping

of a sub-DAG contained within an instruction buffer onto

a set of dynamically changing resources. In the past, a

number of solutions have been proposed for the mapping

of a DAG onto a set of fixed resources, where the

resources have traditionally been a static set of

heterogeneous processors [5-8].

Table 2. Simulation results with steering vectors and FFUs, varying score method, varying
instruction buffer size, a reconfiguration time of eight clock cycles, and a reconfiguration space of
eight RFU Slots.

4 63335875 1.002042 0.283295

8 50585521 1.405507 0.207679

12 45410010 1.603518 0.204732

16 45911824 1.619694 0.18068

4 63483253 1.105618 0.177432

8 50349612 1.416548 0.198542

12 45860338 1.613274 0.178723

16 45964526 1.608275 0.188117

4 63191348 1.19228 0.100043

8 50423021 1.506096 0.109673

12 45860883 1.689452 0.091539

16 46277048 1.650722 0.115905

4 63868305 0.983803 0.288484

8 50379426 1.29472 0.320752

12 45847016 1.66918 0.109271

16 46802729 1.620023 0.12835

Dependent Instructions

Only

Instructions Ready for

Execution

Unassigned Instructions

Assigned and Unassigned

Instructions

Score
AVG Reconfigurable Unit

Usage per Cycle

AVG Fixed Unit Usage

per Cycle

Total Clock

Cycles

Instruction Buffer

Size

Figure 1. Reconfigurable functional unit
need calculation comparison.

Previously, DAG mapping is cast as a two part

problem where the solution, usually either a priority based

list [5] or a dynamically calculated heuristic [5, 6],

encompasses both the mapping and the scheduling of

instructions from the DAG onto a set of static resources

[5-7]. For the case of static resources, mapping and

scheduling are dependent and cannot be broken down into

independent sub-problems [5]. However, when a set of

instructions are to be scheduled and mapped onto a set of

dynamically changing resources, as is the problem of

concern in this paper, scheduling and mapping solutions

can be considered independent.

The work in [5] claims that mapping and scheduling

are dependent since all instructions in a specific DAG

level are forced to depend on all instructions in the

previous DAG level. The advantage of using dynamically

reconfigurable resources is that resource need of an

instruction is a function of its position in the DAG. A

level analysis procedure can be used to create a near

optimal resource map that can be dynamically updated to

correspond to the changing needs of incoming

instructions. This resource map creation allows the DVC

procedure to support instruction level parallelism (ILP) as

well as resource allocation for the critical path.

The work in [6] focuses on best matching of

instructions to resources with the use of a generalized

dynamic level (GDL) calculation; however, GDL does not

prioritize based on dependencies and therefore no priority

is given to ILP opportunities.

In [7], ILP is exploited using either counting or bit

vector algorithms that dynamically analyze the

instructions in the DAG and place ready instructions into

a processing queue. Since reconfiguration is not

considered, there is no attempt to analyze the DAG by

level and detect future ILP.

5. DVC Procedure

This section proposes a new technique for the

determination of resources required to support

instructions that are in the instruction buffer. This

technique analyzes the sub-DAG of the program being

executed that consists of the instructions present in the

instruction buffer. Section 5.1 discusses how each level of

this sub-DAG is analyzed to identify the resources

necessary to exploit the inherent ILP of each level.

Section 5.2 presents the dynamic vector update procedure

that uses the results of this analysis to prioritize RFUs, by

level, in order to determine which RFUs should be loaded

into or removed from the current configuration.

5.1. Level Analysis Procedure

The dependencies between instructions in the

instruction buffer can be represented by the dependency

matrix D. Note that D is of square dimension and is of

size n×n, where n is equal to the number of instructions.

Any element of D, dij, having a logic value of one

indicates that instruction i is dependent upon the

completion of instruction j; otherwise, dij has a logic value

of zero. A procedure is presented that transforms the

instruction dependency matrix D into a level readiness

matrix T, where any element, tij, having a logic value of

one indicates that instruction j is a member of level i.
For convenience in transforming matrix D into matrix

T, an intermediate matrix M is used, where each element

in M, mij, having a logic value of one indicates that

instruction j is a member of level less than or equal to i.

Observing that any instructions that depend solely on

those that are members of level zero must be members of

level one. Additionally, all instructions in level one must

be dependent upon at least one instruction that is a

member of level zero. Thus, it is apparent that if the

projection of row i of D onto row j of M is equal to row i

of D, instruction i must depend on a level less than or

Level 3

Level 0

7

65

43

210

A C B

C

C

A

A

B

Level 1

Level 2

RFU Need by Level:

 A B C

Level 0 1 1 1

Level 1 1 0 1

Level 2 0 1 1

Level 3 1 0 0

Calculated DAG Need:

 A B C

Without Level Analysis 3 2 3

With Level Analysis 1 1 1

equal to j. Following this logic, matrix M is created, as

specified in Equation (20).

niifddm

iifd

m

kjkjki

n

k

ki

n

k

ji

0)(

0

,,,1

1

0

,

1

0

, (20)

Note that M defined by Equation (20) is complete. The

final step in the transformation from D T is shown in

Equation (21). This equation applies an XOR operation

across the columns of M to separate the rows of M.

0

0

,1,

,

, niifmm

iifm
t

jiji

ji

ji (21)

The intermediate matrix, M, is not necessary for

implementation, and T can be computed directly from D

using a combinational circuit.

5.2. Dynamic Vector Update Procedure

Given the results obtained through level analysis of the

DAG and information on the specific resource

requirements of any given instruction, the exact resources

necessary for exploiting all of the ILP for any given sub-

DAG can be determined. A priority-based scheduling

solution exists provided that the allocated resource space

is at least as large as the largest RFU. We assume that

RFU slots can be reconfigured as necessary if contiguous

available space exists that is greater than or equal to the

size of the RFU being configured. The goals of the

dynamic vector update (DVU) procedure are to (1) avoid

loading unnecessary resources, (2) avoid discarding

valuable resources, and (3) guarantee efficient execution

of instructions along the critical path when possible.

Let R be a k element vector where each element is of

size n2log , and each element, rj, represents the number

of resources of type j necessary for satisfying instructions

at the level currently being analyzed. Using R, the DVU

procedure is shown in Figure 2.

Note that only unassigned instructions are considered

to have RFU needs, and the DVU procedure only

analyzes unassigned instructions.

To avoid loading of unnecessary resources,

examination of resource needs by level guarantees that the

possibility of reusing resources between levels is

completely exploited. For example, if level zero requires

two type A resources, and level three requires one type A

resource, and no other levels require any type A

resources, then the actual need for all levels is two type A

resources. In contrast to the steering vector approach that

would assume that three type A resources are necessary,

Initialize Configured Resources Priority to level n

Loop over levels 1,0 ni

R = Count of resources types required by level i

While the resource configuration space contains

resources required by R

Set resource priority to level i

Decrement requirement in R because the resource
already exists

Loop over R 1,0 kj

If R(j) > 0

Load Resource Type (i, j)

End Loop
End Loop

Load Resource Type

Loop over resource configuration space

If Contiguous space exists

If unused space exists
Load Type j at current location

Else if space is unused and designated for level

greater than or equal to i

Load Type j at current location

Else Fail
End loop

End Load Resource Type

Figure 2. Dynamic vector update procedure.

the level dependency analysis procedure makes efficient

use of resources, as this analysis can detect that multiple

levels can utilize the same resources over time.

To avoid discarding valuable resources, if there are

unused RFU slots, the dynamic loading strategy will use

those slots. Over time it becomes necessary to discard

unused resources and load others. For example, if level

one requires RFU type B and the RFU is not currently

loaded into any slot, the procedure would allow a resource

of type B to be loaded in any space that will not be used

for levels zero or one. To guarantee that valuable

resources are not discarded, any level being analyzed for

resource loading can only discard resources that are not

designated for use by a previous level, including the

current level. This policy also has the effect of making the

process of resource discarding priority-based.

The exploitation of ILP at level zero is limited by the

size of the configuration space and the ability to locate

contiguous available space for loading the required RFUs.

Therefore, the instruction buffer and the configuration

space should be carefully designed to ensure that the

DVU procedure is able to utilize ILP. Example 2 shows

the DVC level analysis procedure for the DAG given in

Figure 1.

Example 2. Calculating Matrix T from Matrix D

begins with a complete dependency matrix D,

obtained, in this example, by analyzing Figure 1.

00100000

00010000

00011000

00000110

00000011

00000000

00000000

00000000

D

The first row of matrix M is calculated using Equation

(20), where i=0. Elements m0,0 and m0,5 are shown in

Equations (22 and 23), respectively. Equation (24) shows

row zero of M.

1,0

7

0
0,0 k

k
dm (22)

0,5

7

0
5,0 k

k
dm (23)

00000111)0(rowM (24)

The result obtained in Equation (22) shows that

instruction zero is a member of level zero. Equation (23)

shows that instruction number 5 is not a member of level

zero. All other rows of M are calculated using the second

part of Equation (20). Equation (25 - 27) show the

calculation of m1,4.

)(,4,4,0

7

0
4,1 kkk

k
ddmm (25)

00000110

}00000110

]00000111{[4,1m

 (26)

14,1m (27)

Calculating each element, shown in Equations (25-27)

results in M, shown in Equation (28):

11111111

11111111

11111111

11111111

11111111

01111111

00011111

00000111

M (28)

Matrix T is determined using Equation (21).

Calculation of t1,3 and t1,6 are shown in Equations (29) and

(30), respectively.

13,03,13,1 mmt (29)

 06,06,16,1 mmt (30)

The result shown in Equation (29) indicates that

instruction number 3 is a member of level one. The result

shown in Equation (30) indicates that instruction number

6 is not a member of level one.

Examination of Figure 1 confirms the results obtained

in Equations (29) an (30), as well as the final matrix T

shown below in Equation (31).

00000000

00000000

00000000

00000000

10000000

01100000

00011000

00000111

T (31)

6. Experimental Results

This section presents an experimental study of the

DVC procedure proposed in Section 5. This study

evaluates the procedure on the basis of execution time and

RFU slot usage using a software simulator that simulates

the Configuration Manager of [1] modified to use the

DVC procedure instead of a steering vector based

approach. This simulator permits the size of the

configuration space, the time required to reconfigure an

RFU slot, and the instruction buffer size to be specified

by the user.

The study presented in this section examines the

performance of the DVC procedure on the same Susan

benchmark [4], which was used in the evaluation of the

steering vector scoring technique in Section 3. The

simulator reads the Susan benchmark trace, reconfigures

the processor and assigns instructions according to the

DVC procedure. As a final output, for a given buffer size,

the simulator identifies the optimal number of execution

units by type and quantity.

Figure 3 shows that as the configuration space size is

increased, the reconfiguration time becomes less of a

factor in the overall performance of the machine. When

given enough configuration space, the DVC procedure

converges to a near-optimal configuration and remains

stable, thereby eliminating the need for further

reconfiguration and reducing the time penalty incurred

due to reconfiguration.

Figure 4 shows that as the DVC converges to the

optimal configuration, units (RFU slots) are no longer

configured and not used, i.e., wasted. Note that units are

wasted when there is not enough configurable space to

load units in advance. This is due to the fact that if there is

Reconfiguration Time

0

50

100

150

200

250

300

0 4 8 12 16 20 24 28 32 36

Number of Reconfigurable Slots

C
lo

c
k

 C
y

c
le

s
 (

M
il

li
o

n
s

)

0

4

8

16

32

0 - Optimal Fixed Units

Figure 3. Total execution time in clock
cycles versus configuration space size
measured in slots, with an instruction buffer
of size of eight.

Reconfiguration Time

0

500

1000

1500

2000

2500

3000

0 4 8 12 16 20 24 28 32 36
Number of Reconfigurable Slots

N
u

m
b

e
r

o
f

U
n

it
s

 W
a
s

te
d

(T
h

o
u

s
a
n

d
s
)

0

4

8

16

32

Figure 4. Number of units wasted versus
configuration space size, measured in slots,
with an instruction buffer of size of eight.

not enough space, then some unit must be preempted

when another unit of higher priority is chosen to be

loaded.

The results obtained through simulation suggest that

when given enough configuration space, the DVC

procedure causes the combination of RFU’s in the

configuration space to converge to a stable and near-

optimal configuration. When the configurable space is in

an optimal configuration, the number of units wasted

approaches zero. Also, if the DVC procedure converges

quickly, then the overall reconfiguration time is

minimized.

7. Conclusions

A new approach for the selection and management of

the configurable space of a reconfigurable superscalar

processor is proposed. This approach is based on a sub-

DAG level analysis of the instructions in the instruction

buffer of the processor. This analysis determines the

priority of functional units to be loaded into the

configurable space according to their dependency level in

the sub-DAG. The method is shown to provide efficient

utilization of configurable resources resulting in a

minimal amount of reconfiguration.

8. References

[1] Veale, B.F., Antonio, J.K., and Tull, M.P., “Configuration

Steering for a Reconfigurable Superscalar Processor,” 12th

Reconfigurable Architectures Workshop (RAW 2005),

Proceedings of the 19th International Parallel and Distributed

Processing Symposium (IPDPS 2005), Apr. 2005.

[2] Niyonkuru, A. and Zeidler, H.C., “Designing a Runtime

Reconfigurable Processor for General Purpose Applications,”

Reconfigurable Architectures Workshop (RAW 2004),

Proceedings of the 18th International Parallel and Distributed

Processing Symposium (IPDPS 2004), pp. 143–149, Apr. 2004.

[3] Stewart, J., Calculus, 5th Edition, Thomson Brooks-Cole,

Pacific Grove, CA, 2003.

[4] Guthaus, M.R., Ringenberg, D.E., Austin, T.M., et al,

“MiBench: A Free, Commercially Representative Embedded

Benchmark Suite,” Proceedings of the 4th Annual IEEE

Workshop on Workload Characterization, pp. 3-14, Dec. 2001.

[5] Ahmad, I., Dhodhi, M.K., and Ul-Mustafa, R., “DPS:

Dynamic Priority Scheduling Heuristic for Heterogeneous

Computing Systems,” IEE Proceedings of Computers and

Digital Techniques, Vol. 145, Iss. 6, pp. 411–418, Nov. 1998.

[6] Sih, G.C. and Lee, E.A., “A compile-time scheduling

heuristic for interconnection-constrained heterogeneous

processor architectures,” IEEE Transactions on Parallel and

Distributed Systems, Vol. 4, Iss. 2, pp. 175–187, Feb. 1993.

[7] Beckmann, C.J., and Polychronopoulos, C.D.,

“Microarchitecture Support For Dynamic Scheduling Of Acyclic

Task Graphs,” Proceedings of the 25th Annual International

Symposium on Microarchitecture, pp. 140–148, Dec. 1992.

[8] Kwok, Y.-K., and Ahmad, I., “Benchmarking the task graph

scheduling algorithms,” Proceedings of the First Merged

International Parallel Processing Symposium and Symposium

on Parallel and Distributed Processing (IPPS/SPDP 1998), pp.

531–537, Apr. 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

