
Selection of Instruction Set Extensions for an FPGA Embedded Processor Core

Brian F. Veale
1
, John K. Antonio

1
, Monte P. Tull

2
, and Sean A. Jones

1

1
University of Oklahoma

School of Computer Science

Norman, OK 73019-6151 USA

{veale, antonio, sean.jones}@ou.edu

2
 University of Oklahoma

School of Electrical and Computer Engineering

Norman, OK 73019-1023 USA

tull@ou.edu

Abstract

A design process is presented for the selection of a set

of instruction set extensions for the PowerPC 405

processor that is embedded into the Xilinx Virtex Family

of FPGAs. The instruction set of the PowerPC 405 is

extended by selecting additional instructions from the full

32-bit PowerPC instruction set architecture (ISA), of

which the PowerPC 405 ISA is a subset. The selected

instructions are supported in hardware using the

reconfigurable resources of the FPGA. The proposed

design process gathers execution statistics for a target

application through profiling or simulation. These

statistics are then used to estimate the speedup that would

be achieved if selected instructions from the full PowerPC

ISA are added to the ISA of the PowerPC 405 processor.

An experimental study of two embedded benchmarks

show significant speedup when this approach is used to

extend the PowerPC 405 processor to support various

floating-point operations through the use of floating-point

cores developed by QinetiQ.

1. Introduction

In contrast to a general purpose microprocessor or a

digital signal processor, the architecture and/or

instructions implemented by an application specific

instruction processor (ASIP) can be customized for a

target application or application domain. In the work

presented here, a Xilinx Virtex-II Pro FPGA [1] is used to

implement an ASIP.

In the ASIP architecture assumed in this paper,

portions of the architecture are implemented in

reconfigurable hardware, which can be configured to

improve the performance of a specific application or

domain. A main objective of this work is to improve

performance by best matching the instructions supported

by the ASIP to the needs of a target application.

The hardware architecture for the assumed ASIP

consists of a PowerPC 405 processor core integrated with

reconfigurable resources. This architecture allows the

base ISA of the PowerPC 405 to be extended to include

selected instructions from the full PowerPC ISA. Support

for the selected instructions is added to the PowerPC 405

by configuring the FPGA to implement their

functionality. One advantage of this type of architecture is

that the same hardware can be configured differently, if

necessary, for different applications.

The particular focus of this paper is on a design

process that uses application profiling to guide the design

of a hybrid instruction set architecture (ISA) for the

PowerPC 405. The concepts presented here can be

applied to other hard- or soft-processor cores embedded

into a reconfigurable device.

2. Related Work in Application Specific

Instruction Set Processors

2.1. Related Work in ASIP Design Flows

Many design flows for ASIPs have been proposed and

studied. These design flows can be classified into

architectural exploration and instruction set exploration.

In architectural exploration, the design engineer uses tools

that guide the selection of parameters such as cache size,

branch prediction strategy, and number and type of

functional units. Some examples of tools that perform this

type of processor customization are Sherpa [2] and

BUILDABONG [3]. Such approaches allow the engineer

to customize the processor to a target application by

modifying the micro-architecture of the processor and

thereby improve its performance for a given set of

assumptions and constraints associated with the

application.

Sherpa is an ASIP design framework that is used to

search the design space of an ASIP. The exploration of

the design space is performed by modeling the design

1-4244-0054-6/06/$20.00 ©2006 IEEE

problem as a set of independent optimization problems

that represent specific sets of design features of the

processor, such as cache size, register file size, data path

size, branch prediction techniques, etc. A model for the

design space is developed using a data driven analytical

model or a simulation. Finally, the design parameters for

each architectural feature of the processor are tuned using

integer-linear programming in order to optimize the entire

processor design [2].

BUILDABONG focuses on performing optimization

of the architecture and compiler of the ASIP in tandem. In

this approach, the user defines the base instruction set of

the processor and a set of code-generation rules. A

machine model for a custom compiler is extracted from

the base instruction set and a user defined code-

generation rule set. Next, the target application is

simulated and then analyzed by an architecture

exploration tool that automatically explores the

architecture and compiler design spaces in order to prune

the design space [3].

In instruction set exploration, basic units of the

processor such as the cache and branch predictor are

statically defined and the functional units of the processor

can either be modified or augmented by the design

engineer. The instruction set exploration design flow

shown in Figure 1 customizes an ASIP for a specific

application by creating customized instructions for critical

portions of the application (referred to as “hotspots”).

Once a set of customized instructions have been identified

and implemented in hardware, the critical portions of the

application can be sped up by replacing them with calls to

the customized instructions [4]. This design approach

allows the engineer to tailor the processor to a target

application by providing special or custom instructions

that will speedup the application. Examples of work in

this area are MINCE [4] and AutoTie [5].

MINCE selects instructions from a pre-designed

library of instructions and adds them to a processor core

in order to customize the processor to a specific

application. Combinational equivalence is used to ensure

that the selected instructions are equivalent to the segment

of application code they are chosen to implement. This

approach provides an automated framework for

instruction selection that effectively prunes the candidate

instruction set by removing instructions that do not

implement operations performed by the target application

code [4].

AutoTie automatically determines the extensions

required to customize a base processor to a specific

application. The application is entered into the design

tools as a C/C++ program. The source code of the

program is then analyzed and compiled for the resulting

ASIP architecture. The compilation process is used to

determine what type and amount of extensions, such as

register files, custom instructions, and operations, should

be added to the base processor core. Performance and

hardware estimation is performed to search the space of

potential ASIP designs and choose the design that best

matches the needs of the target application, thereby

providing maximum performance [5].

2.2. Compiler Approaches

Some of the ASIP design tools and frameworks listed

above include tools that generate a compiler for the

processor that allows programs to be compiled towards

the specific architecture of the ASIP. The type of

compiler generally utilized in this area is a ‘retargetable

compiler’ that allows customization of the compiler for

the new ASIP architecture and that may permit

exploration of the design space of the architecture. These

compiler frameworks generally fall into one of three

categories: (1) automatically generated, (2) user

generated, and (3) developer generated [6].

Compilers that are automatically generated (Category

1) contain all of the information needed to work with any

combination of architecture parameters within a specified

architecture framework. However, these architecture

frameworks generally only allow small variations in the

architecture parameters. Developer generated compilers

(Category 3) have the potential to support a wide set of

architecture design parameters, but they require a

relatively long amount of time to develop. User generated

compilers (Category 2) bridge the gap between

automatically and developer generated compilers,

however they can take on the order of hours or days to

generate [6].

Many compilers for ASIPs allow the designer to

specify “hotspots” in program code that should be

considered by the design tools for instruction extraction

[7]. In [7], the gcc C compiler, part of the GNU Compiler

Collection (GCC), is modified to allow the user to specify

sections of code that are to be extracted as single

instructions. These custom instructions can then be used

elsewhere in the program. This approach assigns a single

opcode for each section of user defined instructions.

Disadvantages of this approach are that programs are not

optimized using the extended instruction set and the

programmer must be familiar with the framework used to

define instructions.

In Section 3.4, a hybrid compiler, which does not have

to be regenerated when the instruction set is altered, is

proposed that not only allows the programmer to use a

custom instruction set, but also performs some

optimizations for the hybrid instruction set.

Design

Constraints

(Performance,

Area, Power)

Application

written in a high

level language

(C, C++)

Identifying the “hotspots” of the

application

(Simulation, Profiling, Tracing)

Manually design instructions to alleviate

“hotspots”

Test/Verify the functionality, speedup,

area, and power consumption of the

instructions

Select instructions based on design

constraints

ASIP

Figure 1. Instruction set exploration
approach to ASIP design, derived from [4].

3. Hybrid Instruction Set Selection Process

3.1. Overview

Figure 2 illustrates a proposed design flow for selecting

instructions to extend the PowerPC 405 ISA. This design

flow can be applied to extend the ISA of a any base

processor core (assumed here is the PowerPC 405) that

implements a subset of a full ISA (assumed here is the

full 32-bit PowerPC ISA such as that of the PowerPC

7400) by adding selected instructions from the full ISA to

the ISA of the base processor. This allows the application

engineer to create a hybrid ISA that contains some but

generally not all of the instructions found in the full ISA.

However, instructions are not removed from the base ISA

(i.e., the hybrid ISA implements all of the instructions of

the base processor’s ISA).

As shown in Figure 2, the target application is compiled

for both the base processor’s ISA and the full ISA. Once

the program has been compiled for both ISAs, the

profiling step gathers statistics about the instructions that

are executed by both versions of the compiled program.

These statistics are used during the hybrid instruction set

selection step to guide the engineer in selecting which

instructions from the full ISA should be included in the

hybrid ISA. Once a hybrid instruction set has been

chosen, the hybrid compiler can be used to compile an

application program based on the selected hybrid ISA.

Sections 3.2, 3.3, and 3.4 describe the profiling,

instruction selection, and compilation steps in more detail.

3.2. Application Profiling

The profiling step of the process outlined in Figure 2

can be performed using a simulator of a processor that

supports the full ISA or by natively executing and tracing

the execution of the compiled application on a processor

that implements the full ISA. For the implementation used

in this paper, the compiled application code is executed

and traced using a PowerPC 7400 (PowerPC G4). The

ISA of the PowerPC 405 processor, which is a subset of

the full PowerPC G4 ISA, represents the base ISA. The

ISA of the PowerPC 405 does not include floating-point

instructions that are included in the ISA of the PowerPC

G4.

A Linux-based tracing tool was developed that runs on

the PowerPC G4 and can profile applications compiled

for both the base processor’s (PowerPC 405) ISA and the

full (PowerPC G4) ISA. Because the code generated

under Linux for the PowerPC 405 is compatible with the

PowerPC G4, both versions of the binary are traced using

a standard PowerPC G4-based machine.

The profiling tool developed for this work is based on

the Linux ptrace [8, 9] system call. The target application

is traced by the tool, one instruction at a time, using the

PTRACE_SINGLESTEP mode of execution [8]. As each

instruction is executed, the tool determines its mnemonic

and updates how many times each instruction is executed.

Application

Source

Code

Compiler

(Full ISA)
Application

Binary

(Full ISA)

Compiler

(Base ISA)
Application

Binary

 (Base ISA)

Profiler

(Run on a

processor that

implements the

Full ISA)

Instruction

Execution

Statistics
Hybrid

Instruction

Set Selection

Hybird

Instruction

Set

Hybrid

Compiler
Application

Binary

(Hybrid ISA)

Instruction

Execution

Statistics

Profiler

(Run on a

processor that

implements the

Full ISA)

Input

Data

Figure 2. Hybrid instruction set selection for a Hybrid PowerPC 405. “Base ISA” refers to the ISA of
the PowerPC 405 and “Full ISA” refers to the entire 32-bit PowerPC ISA such as implemented by
the PowerPC 7400. This design process can also be applied to other ISA families.

The execution statistics that are gathered by the

profiling tool can be combined with instruction timing

values (cycles required to execute each instruction) to

estimate the number of cycles required to execute the

application on the base ISA, full ISA, and the chosen

hybrid ISA. Due to the nature of the profiling process, the

timing results are based on the assumptions of perfect

caching and branch prediction. Access to a cycle accurate

simulator would result in different (and generally more

accurate) speedup factors than reported in this paper due

to architectural features, such as cache and branch

prediction policies, and would give the engineer a more

precise view of expected performance of the ASIP

implementation of a hybrid ISA. However, the use of a

simulator would increase the amount of time required to

analyze the target application and generate execution

statistics to be used in the ISA selection tool. Also, the

main purpose of estimating cycles required for competing

ISA selections is to determine relative improvements

associated with instruction selections.

Once the application is traced for the base ISA and the

full ISA versions, the speedup of the full ISA version

relative to the base ISA version can be computed. The

profiling tool determines how many cycles are required to

emulate each instruction executed from the full ISA

(which are not supported by the base ISA). This is

calculated by counting the number of base instructions

executed by software modules used to emulate these

instructions and scaling the results according to the

number of clock cycles that are required to execute each

base instruction executed.

After the base ISA emulation of the instructions from

the full ISA is complete, the hybrid instruction set

selection tool can estimate the speedup of a hybrid ISA

over the base ISA. This allows the engineer to choose the

set of instructions from the full ISA to be added to the

base ISA, and observe the results of the choices made.

This calculation of the speedup of the hybrid ISA over the

base ISA is computed without re-tracing the target

application.

3.3. A Framework for Automatic Instruction Set

Selection

Motivated by Linear Programming models used to

optimize the parameters of ASIPs using architectural

exploration in [2], we propose a formal optimization

model for the selection of a hybrid instruction set. The

full ISA (FISA) is assumed to have N instructions that are

labeled 1, 2,…, N and the base ISA (BISA) consists of the

first NN0 instructions of FISA; therefore, BISA

FISA. The instructions of the FISA are supported by a

collection of execution units. Unit 0 represents the base

processor and supports all of the instructions in the BISA.

Units 1, 2,…, U are implemented in reconfigurable

hardware and collectively support the instructions in the

FISA that are not in the BISA. A configuration of the

ASIP includes Unit 0 plus a combination of Units 1

through U. The instructions supported by Unit 1 are

labeled N0 + 1,…, N1. In general, the instructions

supported by Unit i are labeled Ni-1 + 1,…, Ni, for i = 1,

2,…, U (thus, NU = N).

Recall from Figure 2 that the full ISA version of the

application can be profiled. The optimization technique

proposed in the present section requires that the number

cycles required to execute each instruction j in hardware

in the full ISA version of the application (j FISA) is

known. This value is denoted by nj, where j FISA. Also

needed from the profiling process is the number of cycles

required to emulate each FISA instruction j using BISA

instructions, and this quantity is denoted by fj.

Additionally, 1,0iu , i = 1, 2,…, U, indicates whether

Unit i is configured in the reconfigurable hardware; if ui =

1, then Unit i is configured, otherwise it is not configured.

Because there are U possible reconfigurable units and

each unit is either configured or not, there are 2U possible

configurations for the ASIP architecture under

consideration. Note that in this formulation, each

configurable unit generally supports multiple instructions

from the FISA. Associated with each possible

configuration of the ASIP is the corresponding hybrid

ISA (HISA) it supports.

The speedup associated with a given configuration of

the ASIP relative to the BISA (i.e., the ASIP with none of

the reconfigurable resources utilized) is given by

Equation (1).

U

i

N

Nj
jiji

N

j
j

N

Nj
j

N

j
j

i

i

funun

fn

S

1 11

11

1

0

0

0

)1(

 (1)

Note from Equation (1) that the “boundary conditions”

of the ASIP configurations are consistent. In particular,

consider first the configuration where ui = 1 for all i = 1,

2,…, U, which corresponds to the ASIP configuration in

which all of the units are configured. In this case, the

equation yields a speedup that corresponds to the ratio of

the number of cycles required to execute instructions for

the BISA divided by the cycles required assuming

complete support for the FISA. The other extreme case is

associated with the configuration where ui = 0 for all i =

1, 2,…, U, which corresponds to a ASIP configuration in

which none of the configurable units are implemented. In

this case, the formula yields a speedup of unity, as

expected.

The reconfigurable resources required to implement a

configuration of the ASIP are also modeled and can be

used as a constraint in the optimization of Equation 1. In

this model, ri denotes the reconfigurable resources

required to implement Unit i in reconfigurable hardware

where i = 1, 2,…, U. The expression below describes the

total amount of reconfigurable resources required to

implement a given configuration of the ASIP.
U

i

iiru
1

 (2)

Based on the definitions presented and the expressions

provided in Equations (1) and (2), an optimization

problem can be formulated as follows.

Given the following four items:

1. The assumed total amount of reconfigurable resource

available on the ASIP, denoted by R;

2. The amount of reconfigurable resource required for

each reconfigurable unit under consideration,

denoted as ri, i = 1, 2,…, U;

3. The number cycles required by each instruction in

the FISA to be executed in hardware, denoted by nj,

j = 1, 2,…, N;

4. The total number of cycles required to execute the

BISA instructions used to emulate each instruction in

the FISA, denoted by fj, for all j = 1,…, N;

Ui
ui

S

,,2,1
1,0

max

subject to
U

i
ii Rru

1

The dual problem of minimizing the required amount

of reconfigurable resource subject to a lower-bound

constraint on the speedup can also be formulated.

Note that there are 2U possible configurations for the

ASIP. Thus, an exhaustive search approach for solving

the formulated optimization problem requires up to 2U

evaluations of the formula for S given in Equation (1).

Typically the value of U will be relatively small (less than

ten), thus evaluating the speedup for all combinations in

an off-line design process is reasonable.

3.4. Hybrid Compiler

The final step of the design flow shown in Figure 2

involves a compiler that generates machine code based on

the selected hybrid ISA. The compiler assumed in the

proposed design flow differs from traditional compilers

used with ASIPs that are based on instruction set

exploration. Typically, compilers for instruction set

exploration operate with program source code that has

been annotated to use new instructions generated by the

design tools being used or that have been provided by the

programmer.

The hybrid ISA for the ASIP considered in this paper

is a subset of an existing full ISA. Furthermore, the

hybrid ISA includes all of the instructions of an existing

base ISA, which is also a subset of the full ISA.

A compiler targeting the full ISA can be modified to

compile towards an appropriate subset of the full ISA.

Thus, it is possible to modify an existing full ISA

compiler to create code associated with a hybrid ISA that

is a subset of the full ISA. Because no instructions have

been added, the compiler can still perform all of the

machine independent (i.e., intermediate form) code

optimizations and then use emulation routines as

necessary to create the final hybrid code from the

intermediate form. This requires the availability of a

library that contains the necessary emulation routines to

support the operations not directly supported by the

hybrid ISA. Employment of emulation routines is the

same approach used when a compiler generates code for a

processor lacking a floating-point processing unit (FPU),

e.g., the compiler for the PowerPC 405.

We have developed a prototype hybrid compiler that

effectively merges compilers for the PowerPC 7400 (full

ISA) and the PowerPC 405 (base ISA) to generate code

based on a selected hybrid ISA that is a subset of the full

ISA. This hybrid complier takes the desired hybrid ISA as

an input. Because the data paths, registers, and other

architectural components of the architecture, except for

configurable execution units, are fixed, the hybrid

compiler does not have to be regenerated or recompiled

when the instruction set of the hybrid processor is

modified. This approach enables the compiler to compile

for any subset of the full ISA and still perform

optimizations on the resulting intermediate code and the

final machine code.

For example, the experimental studies of Section 4 can

be supported by combining the PowerPC 405 found in

some members of the Xilinx Virtex family of FPGAs with

floating-point soft-cores provided by QinetiQ [10]. The

hybrid ISA consists of the base PowerPC 405 ISA

extended with floating-point instructions from the full

PowerPC ISA. QinetiQ provides a modified version of

the gcc C compiler [11] that implements a system similar

to the hybrid compiler described in this section.

The modifications made to the gcc C compiler by

QinetiQ include a –mfpu command line switch, through

which the developer is able to select what level of

floating-point support the compiler is to add to the

instruction set used during compilation. The levels of

floating-point support available in QinetiQ’s gcc compiler

include: (1) no floating-point support, (2) basic floating-

point support, (3) basic floating-point support with

division, (4) basic floating-point support with square root,

and (5) full floating-point support [11]. While these levels

of support reflect the capabilities of QinetiQ’s line of

floating-point cores, the modifications made to the

compiler are not vendor specific. It is possible to modify

the compiler to support other soft floating-point cores for

the PowerPC405.

The compiler provided by QinetiQ provides a medium

scale of granularity relative to the control of the floating-

point support provided; i.e., the designer can choose one

of several configurations that add groups of multiple

floating-point instructions to the ISA. Our proposed

design process allows for an even finer level of

granularity in which the addition of single instructions

from the full ISA to the base ISA can be made.

Additionally, this approach can be extended to apply to

instructions other than just floating-point instructions.

4. Experimental Results

In this section, the base PowerPC 405 ISA is extended

by selecting additional instructions from the full PowerPC

G4 ISA using the hybrid instruction set selection process

of Section 3.3. Tools that support all of the steps of Figure

2 have been developed. The study presented here focuses

on the speedup achieved when extending the base

PowerPC 405 ISA to include selected floating-point

instructions from the full PowerPC G4 ISA.

Reconfigurable resource requirements presented are

estimated assuming the use of the Quixilica floating-point

execution unit cores from QinetiQ [10].

In order to determine how many cycles are required by

the floating-point instructions used in the target

application, the profiling tool discussed in Section 3.2,

captures data operands from the floating-point registers

that are used by the floating-point instructions of the full

ISA while the full ISA version of the application is being

traced. These collected register values are then provided

as input to the emulation modules, which use only base

ISA (integer-based) instructions to support the floating-

point operations associated with the full ISA. By profiling

the emulation code in this way, determination of the

number of cycles required is based on the same data

values that were used by the corresponding floating-point

instructions associated with the full ISA version of the

application. This is important because the number of

cycles (required to emulate a floating-point instruction) is

dependent on the values of the input data operands to

these emulation modules.

Because the Quixilica cores and PowerPC 405 run at

different clock rates, the latency of the instructions

supported by the core are normalized to the speed of the

PowerPC 405 (which is assumed to run at 300 MHz as

defined in [12]). Additionally, the latencies account for

communication overhead between the PowerPC 405 and

the Quixilica cores, which are assumed to be connected to

the Processor Local Bus (PLB) of the PowerPC 405 that

is available to reconfigurable resources of the FPGA [12].

The benchmarks studied here are the Basicmath and

Susan benchmarks from the Automotive and Industrial

Control category of the MiBench set of embedded

benchmarks [13]. The purpose of the Basicmath

benchmark is to exercise the processor to see how well it

can perform mathematical operations. The Susan

benchmark is an application that is used to detect corners

and edges in images [13].

Figures 3 and 4 show the estimated speedup of the

Basicmath and Susan benchmarks versus specific

floating-point instructions that can be added to the base

PowerPC 405 ISA. The maximum speedup for Basicmath

is 6.9 and 3.5 for Susan. Figures 5 and 6 show the number

of slices (a measure of the amount of utilized

reconfigurable resource for the Virtex-family of parts)

required to configure hardware support for these extra

instructions in a Virtex-II Pro FPGA; these values are

derived from [10].

Note that the speedup and number of slices required

for the selected instructions is cumulative, e.g., the

speedup shown for the fsub instruction in Figure 3

assumes that the hybrid instruction set also includes the

instructions fadd, fmul, and fmadd. Since the Quixilica

floating-point execution unit cores provide support for a

subset of the floating-point instructions present in the full

PowerPC G4 ISA, the model used in this study only

allows the instructions supported by Quixilica to be added

to the base ISA. The remaining instructions, fabs, fcmpu,

fctiwz, fmr, fnabs, fneg, and frsp, which are not shown in

Figures 3 - 6, must be performed using emulation

libraries. Also, the model assumes that floating-point load

and store instructions are supported in hardware.

The order in which instructions are added to the hybrid

ISA affects the shape of the speedup curve observed for a

particular benchmark. Furthermore, observe that in the

speedup results for both Basicmath and Susan there is a

point at which no increase in speedup occurs as more

instructions are selected. This occurs because these

instructions are not executed (frequently) in the

benchmark.

Figures 5 and 6 show how multiple instructions can be

added to the instruction set together without requiring

extra hardware resources. This benefit comes as a result

of adding functional units to the base processor as needed

instead of modifying the existing hardware to

accommodate the new instruction(s). In this unit-based

approach, certain instructions become intrinsically

supported when an instruction associated with the same

unit is added to the instruction set.

1

2

3

4

5

6

7

8

no
ne

fm
ad

d
fm

ul

fa
dd

fs
ub fd

iv

fn
m

su
b

fm
su

b

fa
dd

s
fd

iv
s

fm
ul

s

fs
ub

s

Instructions Added

S
p

e
e
d

u
p

Figure 3. Speedup for Basicmath where
floating-point instructions are added to the
hybrid ISA according to the number of
cycles required to execute the base ISA
version due to emulation.

1

1.5

2

2.5

3

3.5

4

no
ne

fa
dd

s
fs
ub

fd
iv
s

fm
ad

d

fs
ub

s
fm

ul

fa
dd

fm
ul

s
fd

iv

fm
su

b

fn
m
su

b

Instructions Added

S
p

e
e
d

u
p

Figure 4. Speedup for Susan where floating-
point instructions are added to the hybrid
ISA according to the number of cycles
required to execute the base ISA version
due to emulation.

0

1000

2000

3000

4000

5000

6000

no
ne

fm
ad

d
fm

ul

fa
dd

fs
ub fd

iv

fn
m

su
b

fm
su

b

fa
dd

s
fd
iv
s

fm
ul

s

fs
ub

s

Instructions Added

N
u

m
b

e
r

o
f

S
li
c
e
s
 R

e
q

u
ir

e
d

Figure 5. Amount of reconfigurable
resources required to support Basicmath
for the instructions shown in Figure 3.

0

1000

2000

3000

4000

5000

6000

no
ne

fa
dd

s
fs

ub
fd
iv
s

fm
ad

d

fs
ub

s
fm

ul

fa
dd

fm
ul

s
fd
iv

fm
su

b

fn
m
su

b

Instructions Added

N
u

m
b

e
r

o
f

S
li
c
e
s
 R

e
q

u
ir

e
d

Figure 6. Amount of reconfigurable
resources required to support Susan for the
instructions shown in Figure 4.

Table 1 presents the result of enumerating all possible

configurations for the Basicmath application when only

three double-precision floating-point units (provided as

part of the Quixilica floating-point cores) are considered

for inclusion in the ASIP. Note that Quixilica [10]

provides both single and double precision versions of the

floating-point units; however, Basicmath [13] only uses

double precision floating-point instructions. As discussed

earlier, certain floating-point instructions are not

supported by the Quixilica floating-point execution unit

cores and are always emulated using emulation libraries.

Table 1 illustrates that some configurations of the

ASIP that require more reconfigurable resource than

others do not always deliver better performance in terms

of speedup. For example, compare the configurations

where a floating-point adder and divider are used versus

the configuration where a floating-point adder and

multiplier are used.

Table 1. The amount of reconfigurable
hardware required and the resulting
speedup for Basicmath when different
combinations of the Quixilica double-
precision floating-point cores are used to
augment the PowerPC 405 BISA.

FP

Add

FP

Multiply

FP

Divide

of

Slices

Speedup

0 0 0 0 1.0

0 0 1 3127 1.1

0 1 0 923 1.3

0 1 1 4050 1.5

1 0 0 815 1.3

1 0 1 3942 1.5

1 1 0 1738 4.5

1 1 1 4865 6.9

5. Conclusions

A process for selecting an ISA for a configurable ASIP

is introduced. The approach assumes the ASIP is capable

of supporting a range of possible ISAs. Each of these

ISAs represents a hybrid combination of two extreme

ISAs referred to as the base ISA and the full ISA. The

ISA selection approach is evaluated in the context of an

existing commercially available product that can function

as an ASIP. Future work includes finalizing the initial

development of a hybrid compiler, which is necessary to

complete the implementation of the proposed process,

extension of the analytical model, and development of a

prototype ASIP using a Xilinx Virtex FPGA.

6. References

[1] Telikepalli, A., “Virtex-II Pro FPGAs: The Platform for

Programmable Systems has Arrived,” XCell Journal,

http://xilinx.com/xcell, Mar. 2002, No. 42.

[2] Sherwood, T., Oskin, M., and Calder, B., “Balancing Design

Options with Sherpa,” Proceedings of the 2004 International

Conference on Compilers, Architecture, and Synthesis for

Embedded Systems, Sep. 2004, pp. 57-68.

[3] Fischer, D., Teich, J., Thies, M., et al, “Efficient

Architecture/Compiler Co-Exploration for ASIPs,” Proceedings

of the 2002 International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems, Oct. 2002,

pp. 27-34.

[4] Cheung, N., Parameswaran, S., Henkel, J., et al, “MINCE:

Matching Instructions using Combinational Equivalence for

Extensible Processor,” Proceedings of the 2004 Design

Automation and Test in Europe Conference and Exhibition, vol.

2, Feb. 2004, pp. 1020-1025.

[5] Goodwin, D., and Petkov, D., “Automatic Generation of

Application Specific Processors,” Proceedings of the 2003

International Conference on Compilers, Architecture, and

Synthesis for Embedded Systems, Oct. 2003, pp. 137-147.

[6] Liem, C., Retargetable Compilers for Embedded Core

Processors: Methods and Experiences in Industrial

Applications, Kluwer Academic Publishers, Boston, MA, 1997.

[7] La Rosa, A., Lavagno, L., and Passerone, C., “A Software

Development Tool Chain for a Reconfigurable Processor,”

Proceedings of the 2001 International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems,

Nov. 2001, pp. 93-98.

[8] Sandeep, S., “Process Tracing using Ptrace,” Linux Gazette,

Iss. 81, http://www.linuxgazette.com/node/1333, August 2002.

[9] Bovet, D. and Cesati, M., Understanding the Linux Kernel,

Second Edition, O’Reilly and Associates, Cambridge,

Massachusetts, 2002.

[10] Quixilica Floating Point Cores: IEEE-754 Compliant

Variable Wordlength Floating Point Arithmetic Cores for Xilinx

Virtex and Spartan FPGA Families, Datasheet

QINETIQ/S&E/APC/TDS030105, Issue 3, QinetiQ, Ltd.,

http://www.qinetiq.com/home_rtes/quixilica_products/firmware

_cores.html, June 2004.

[11] GCC Compiler for the Quixilica Floating Point Unit for the

Xilinx Virtex-II Pro FPGA, QinetiQ, Ltd., Email:

support@quixilica.com, Aug. 2005.

[12] Virtex-II Pro and Virtex-II Pro X Platform FPGAs:

Complete Data Sheet, DS083, version 4.3, Xilinx, Inc.,

http://www.xilinx.com/bvdocs/publications/ds083.pdf, June

2005.

[13] Guthaus, M. R., Ringenberg, D. E., Austin, T. M., et al,

“MiBench: A Free, Commercially Representative Embedded

Benchmark Suite,” Proceedings of the 4th Annual IEEE

Workshop on Workload Characterization, Dec. 2001, pp. 3-14.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

