
A Cost-Effective Context Memory Structure for Dynamically Reconfigurable
Processors

Masayasu Suzuki, Yohei Hasegawa, Vu Manh Tuan, Shohei Abe, and Hideharu Amano

Graduate School of Science and Technology, Keio University
3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522 JAPAN

drp@am.ics.keio.ac.jp

Abstract

Multicontext reconfigurable processors can switch its configu-
ration in a single clock cycle by providing a context memory in
each of the processing elements. Although these processors have
proven to be powerful in many applications, the number of con-
texts is often not enough.

The context translation table which translates the global in-
struction pointer, or the global logical context number, into a local
physical context number is proposed to realize a larger applica-
tion while reducing the actual context memories. Our evaluation
using NEC Electronics’ DRP-1 shows that the proposed method
is effective when the size of the tile is small and the number of
context is large. In the most efficient case, the required number of
contexts is reduced to 25%, and the total amount of configuration
data becomes 6.9%.

The template configuration method which extends this idea har-
nesses the power of multicontext devices by storing basic con-
texts as templates and combining them to form the actual contexts.
While effective in theory, our evaluation shows that the return in
adopting such mechanisms in more finer processors as the DRP-1
is minimal where the size of the context memory adds up relative
to the number of processing units.

1. Introduction

A chip combining an embedded CPU and a coarse grain
dynamically reconfigurable fabric has received attention as
a solution to cope with the increasing complexity and de-
velopment costs brought about by System-on-Chips (SoC).
Since the configuration of a coarse grain reconfigurable de-
vice is flexible, the same chip can be used for various appli-
cations. It can also be “re-fitted” after shipment by rewrit-
ing the configuration data. By changing the configuration
during execution, the same semiconductor area can be used
for various tasks of a single job, thereby improving the area
efficiency with time-multiplexed execution.

Some of these devices employ a multicontext structure
[9, 15] that provides a set of configuration memory mod-
ules in each of the processing elements. By broadcasting
the pointer to the individual configuration memories, the
hardware configuration can be changed in cycle-by-cycle
basis. Hardware configuration is usually referred to as a
hardware context, and these contexts are interchanged to
realize different tasks. Such multicontext dynamically re-
configurable processors execute a single task by changing
several hardware contexts, and raises the per-area ratio in
performance to ordinary semiconductor chips [3]. Com-
mercial chips have been available [13, 10, 12] and have also
been embedded in a portable game engine [11].

As the complexity in the demands placed on these de-
vices increases, there is often a mismatch in the actual num-
ber of contexts that is called for, and the physical number of
contexts made available. These intense applications include
image compression applications that spans over a number
of contexts, and error correction code that could only be re-
alized with several dozens of contexts.

In order to cope with the problem, virtual hardware tech-
niques [2] which replace the configuration data in the con-
text memory dynamically during execution from off-chip
large scale memory have been researched. The technique,
however, is only efficient when the context can be stored in
two main iterations of a task, and in reality, a large number
of hardware contexts is necessary to keep the device work-
ing without stalling.

In multicontext dynamically reconfigurable processors,
the context memory is distributed in each of the processing
element, and drastically increasing the number of contexts
would hinder the per-area efficiency that is otherwise the
advantage of these devices.

On the other hand, we have shown in our previous imple-
mentations that the number of processing elements used in
each of the contexts is different from each other [14]. This
means that the context memory is not efficiently utilized in

1-4244-0054-6/06/$20.00 ©2006 IEEE

all contexts. In order to efficiently use the context mem-
ory, we propose to separate the contexts into logical and the
physical contexts. By providing a translation table from the
logical context number to the physical one, we show that
both the memory requirement and the loading speed of con-
figuration data can be improved.

2. Traditional Methods

A logical diagram of multicontext reconfigurable devices
is often drawn as shown in Figure 1. Like common FPGAs,
operations of each processing element (PE), connection of
components in a PE, and interconnection between PEs are
fixed by configuration data stored in configuration or in-
struction memory. Unlike common reconfigurable devices,
multicontext reconfigurable devices provide a set of config-
uration memory modules which are connected to PEs and
interconnects that run between them through a multiplexer.
By switching the multiplexer, the datapath can be changed
in cycle-by-cycle basis. A context is a combination of PEs
and the datapath that connects them in a specific order: if PE
A is connected to PE B via the interconnects, this is one con-
text. If PE A were then connected onto C, we have a brand
new context. Multicontext devices store number of contexts
within the chip, and switches between them according to the
pointer that comes from the central controller. The context
memories are usually distributed throughout the chip, with
many found as a part of the individual PEs.

M
u

lt
ip

le
xe

r

1

2

n

......
Logic
cells

Output data

Input data

Configuration data

Context memory

Figure 1. Logical diagram of a multicontext
reconfigurable device

The diagram, however, applies only in theory, and most
of the multicontext reconfigurable devices are implemented
with the mechanisms shown in Figure 2. Each PE provides
a memory module that stores the configuration data sets for
the corresponding PE and interconnection of surrounding
buses. The context number is broadcasted throughout the
chip, and used as a pointer to the context memories. By
changing the context number and reading the context mem-
ory simultaneously, the context is switched in a clock cycle.

This in turn means that the configuration data for a context
is distributed to each PEs, and the switching of the multi-
plexer in Figure 1 is replaced by configuration data read-out
from each of the context memories.

PE

Context memory

PE

Context memory

PE

Context memory

PE

Context memory

Context
number

configuration

Figure 2. Context switching mechanism used
in most multicontext devices

2.1 Target model: NEC Electronics’ DRP

Although the configuration memory reduction method
proposed here can be applied to any multicontext reconfig-
urable device using the above context switching structure,
we have selected DRP-1 [10] as the target for our study.

2.1.1 DRP-1

DRP is a coarse grain multicontext reconfigurable core
which can be integrated into ASICs and SoCs. The prim-
itive unit of DRP core is called a tile, and a DRP core con-
sists of arbitrary number of tiles. The number of tiles can
be expandable, horizontally and vertically.

VMEM

HMEM HMEM HMEM HMEM

HMEM HMEM HMEM HMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

Vmemctrl

Vmemctrl

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

Vmemctrl

Vmemctrl
State Transition Controller

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

Figure 3. Structure of a tile

The primitive modules of a tile are processing elements
(PEs), a State Transition Controller (STC), 2-ported memo-
ries (Vertical Memories or VMEMs), its controller (VM-
Ctrl), and 1-ported memories (Horizontal Memories or
HMEMs). The structure of a tile is shown in Figure 3.

In
st

ru
ct

io
n

M
em

or
y

A
L

U
D

M
U

FL
IP

 F
L

O
P

D
at

a
O

ut
pu

t
8b

it

Flag Input

Data Bus

Flag Output

D
at

a
In

pu
t

8b
it

x
2

Flag Bus

Instruction Pointer

Bus Selector

R
eg

is
te

r
Fi

le

Figure 4. Structure of a PE

There are 64 PEs located in one tile. The architecture
of a PE is shown in Figure 4. It has an 8-bit ALU, an 8-
bit data management unit (DMU; for shifts/masks), sixteen
8-bit register file units (RFU), and an 8-bit flip-flop (FFU).
These units are connected via programmable wires speci-
fied by configuration data, and their bit-widths range from
8 bytes through 18 bytes depending on the location. PE has
16-depth context memories and supports multiple context
operation. Its context pointer is delivered from the STC.

The STC is a programmable sequencer in which finite
state machine (FSM) can be stored. STC has 64 states, and
each state is associated with an instruction pointer. FSM
of STC operates synchronized with the internal clock, and
generates the context pointer for each clock cycle according
to the state. Also, STC can receive event signals from PEs
to branch conditionally.

As for the memory units, a tile has sixteen 2-ported
VMEMs on its right and left sides, and eight 1-ported
HMEMs on its upper and lower boundary. The capacity of a
VMEM is 8-bit×256-word, and four VMEMs can be han-
dled as a FIFO, using VMCtrl. HMEM is a single-ported
memory and it has a larger capacity than the VMEM. It has
8-bit×8K-word entries. Contents of these memories, flip-
flops, and register files of PEs are shared by all contexts.

The DRP core, consisting of several tiles, can change its
contexts every cycle with the instruction pointer distributed
from the central STC (CSTC). The individual STCs within
the tiles can also run independently by programming differ-
ent FSMs. The prototype chip DRP-1 consists of a DRP
core with eight tiles. It is fabricated with 0.15-µm 8-metal
layer CMOS process. It consists of 8-tile DRP core, eight
32-bit multipliers, an external SRAM controller, a PCI in-
terface, and 256-bit I/Os. The maximum operation fre-
quency is 100-MHz.

An integrated design environment for DRP-1 which in-
cludes a high level synthesis tool, a design mapper for DRP,
simulators, and a layout/viewer tool is provided. An ap-
plication program can be written in a C-based high level
hardware description language, synthesized, and mapped

directly onto the chip.

2.1.2 Context switching model used in DRP-1

Unlike the basic context switching mechanism shown in
Figure 2, the DRP-1 changes its context by a built-in se-
quencer called central state transition controller (STC). The
pointer for the context is built in the state transition table
provided within the STC as shown in Figure 5. Using this
mechanism, finite state machine can be realized with multi-
ple states (in the current DRP-1, four at maximum) per each
context. For example, in performing an iteration, only one
context is necessary as shown below:

CONTEXT 1: STATE 0: Input data; set variable ITER-
ATION to 1; go to STATE 1

CONTEXT 1: STATE 1: If variable ITERATION is
zero, DO task A at CONTEXT 8; else go to STATE 2

CONTEXT 1: STATE 2: If the sum from task A is less
than 1000, redo task A by setting 1 to variable ITER-
ATION, and go to STATE 1; else set ITERATION to
zero and go to STATE 1

By grouping states that consume very little PEs into a
single context, the number of necessary context can be re-
duced. Even an iteration formed by multiple states can be
mapped into a single context if there is enough PEs at the
same moment in time.

next
state context

PE

Context memory

STC

PE

Context memory

PE

Context memory

PE

Context memory

state
...

Figure 5. Context switching mechanism used
in DRP-1

3. Motivation and Related Work

Stream processing applications usually consist of sev-
eral tasks which are executed sequentially. Although sim-
ple but intensive tasks for processing JPEG2000 and Viterbi
decoders have been implemented in the current chip [14],
it cannot handle the complicated tasks (e.g. motion vec-
tor search) used in recent image processing algorithms such
as MPEG-2 and H.264. When the chip size is limited, the

usable number of tiles would also be limited. In such cases
where only a small number of tiles are available, the number
of required contexts becomes large [3]. At the same time,
preceding contexts should be stored in the context memo-
ries so as not to interrupt operation. In order to satisfy such
requirements, the number of contexts would become hun-
dreds or even thousands.

Because the context memory must be distributed in each
of the PEs in a multicontext reconfigurable device, the area
of the context memory becomes a crucial factor for the PEs.
For example, in IMEC’s reconfigurable processor ADRES,
half of the PE area is occupied by the 32 word configuration
memory that are 40-bits each [16]. Large context memory
also introduces the overhead to load the configuration data
when the device is initialized or when a totally different task
is introduced onto the device.

Techniques which reduce the context memory have been
researched. Virtual hardware [5, 9] enables to load the con-
figuration data for the next task during execution. Since the
order of task execution is fixed, this mechanism can reduce
the switching overhead between tasks. However, this mech-
anism is only useful when a task itself or main iteration can
be executed with the number of contexts available on the
chip. If the size of the main iteration is beyond a half of the
context number which can be stored on the chip, the exe-
cution speed is much degraded. Differential configuration
[2] is a technique which can reduce the overhead, but it is
only applicable when the application has contexts that are
similar to each other.

On-the-fly decoding of the compressed configuration
data is another approach in reducing the configuration load-
ing time [8]. This approach, however, is not so efficient for
coarse grain devices when compared with fine grain devices
like common FPGAs [7], and Kitaoka and his colleagues
only reduced the data size by 20%-40%.

4. Context Translation Table

4.1 Logical and physical context numbers

The global pointer method shown in Figure 2 and Fig-
ure 5 accesses the same address of every context memory.
This means that the context memory is accessed even if the
PE is not used in the context. Through the implementation
of several applications, we have learned that it is very dif-
ficult to equal out the number of PEs in all of the contexts
[14]. The PE usage is different in each context, and the uti-
lization of context memory is sporadic.

In order to manage the context number independently
by each PE, a table is provided in each PE to translate the
global logical context number into a local physical context
number. As shown in Figure 6, the physical context number
can be assigned independently by each PE, and all contexts

that are not utilized are represented as “NULL”. NULL
entries can be used for storing configuration data of other
contexts. The table for the translation is called the context
translation table. The same mechanism can be used when
multiple states are assigned into a context as in the DRP-1.

next
state

Logical
context

PE

Context memory

STC

PE

Context memory

PE

Context memory

PE

Context memory

state
...

NULL NULL

Physical
context
number

Mapping
Table

Logical
context
number

Physical
context
number

Figure 6. Context number translation tables

There are following two disadvantages in this scheme:

• The cost for translation table is added, and

• There is overhead in reading out the physical context
number.

The former is the trade-off between increasing memory
requirement for the translation table and decreasing con-
text memory, and we will evaluate this in the next section.
The latter stretches the operational clock period if the FSM
spans over multiple states and are complicated. The con-
ditions for state transition, however, are quite simple in ap-
plications implemented so far [14], and there were no cases
where the delay time for number translation hindered the
total system.

4.2 Sharing physical local contexts

By managing local context number in each PEs, the same
configuration data can be shared by multiple global logical
contexts. This means that the PE is used for the same pur-
pose in multiple contexts, and the configuration data can be
shared and reused just by setting the same physical context
number in the translation table. Figure 6 also shows the
sharing method. Since the same operations and data trans-
fer tend to be used in multiple contexts in the same task, this
technique can reduce the total amount of context memory.
We call this technique the physical context sharing method.

4.3 Evaluation based on real applications

4.3.1 Applications

The possibility of memory reduction by introducing the
context translation table is evaluated by using actual stream

applications (Table 1) implemented on the DRP-1. We show
both cases where a single tile or all eight tiles are used to im-
plement the DCT and IMDCT. Designs which require more
than 16 contexts cannot be executed directly in the current
DRP-1 chip, while smaller designs can be tested on the ac-
tual chip.

Table 1. Tested applications
DCT Discrete Cosine Trans. in JPEG encoder [14]
CVT Converter in JPEG encoder [14]

IMDCT Inverse Modified DCT in MP3 decoder [17]
DWT Wavelet transform in JPEG2000 encoder [4]
MQC Arithmetic coder in JPEG2000 encoder [4]
AES Encryption System using Rijndael [1]

4.4 The maximum number of required
physical contexts

By providing the context translation table, the required
number of physical context varies according to the PEs.
From the viewpoint of reducing context memory, the max-
imum number of required contexts is important. We there-
fore show the case without the context translation table
(CTXorg), the maximum number of required contexts
when it is introduced (CTXD), and the case when physi-
cal contexts are shared (CTXDS) in Table 2.

Table 2. Reduction of context numbers
Appl. Tile CTXorg CTXD CTXDS TOPn

DCT 1 70 36 18 7
DCT 8 16 16 13 22
CVT 2 28 17 9 8

IMDCT 1 70 40 27 9
IMDCT 8 16 16 11 13
MQC 1 10 10 8 15
AES 1 7 7 5 11

This table shows that the context translation table is ef-
fective when the number of tiles is small and the number
of required context is large. For example, the required con-
text number becomes half of the original just by introducing
the context translation table in DCT implemented with one
tile, and it can further be reduced by sharing. On the other
hand, in cases where the context numbers are small, there is
less return. However, by using physical context sharing, the
required contexts become 68%-80% of the original imple-
mentation.

Since the context translation table itself requires mem-
ory, the total memory requirement including context mem-

ory and table must be evaluated. The translation table needs
entries corresponding to the logical context number and the
bit width for physical context number. Here, the total mem-
ory amount (bits) with the table is represented with the fol-
lowing expression:

CTXorg × �log2CTXDS� + n × CTXDS

where n is the number of configuration data bits for each
PE.

On the other hand, the original method without transla-
tion table requires:

n × CTXorg.

n varies depending on the PE architecture, and usually
runs from 50-bits to 120-bits1. TOPn shown in Table 2
shows the value of n when both of the total memory re-
quirements are the same. If n is greater than TOPn, using
the context translation table is better than going without it.
Since the largest value of TOPn is 22 and most PE would
require 50-bits for its configuration, employing the context
translation table returns more contexts in all applications.

4.5 Total configuration data

The proposed method can reduce the total amount of
configuration data by sharing the same physical contexts.
By reducing the configuration data, the time to load the con-
figuration data can also be reduced. Table 3 shows the ratio
(R) of required configuration data by the proposed method
to one by the original method. Note that the data stored in
the translation table is included. The tendency is almost the
same as Table 2 which shows the maximum number with
some exceptions, but the total amount of configuration data
becomes 6.9%-42.7%. This result is better than Kitaoka’s
compression method which reduces 50% at maximum [7].
We therefore conclude that the proposed method has an ad-
vantage in reducing the loading time of configuration data.

Table 3. The ratio of total configuration data

Appl. # of Tile R(%)

DCT 1 12.8
DCT 8 13.8
CVT 2 35.0

IMDCT 1 6.9
IMDCT 8 16.4

AES 1 42.7
MQC 1 30.0

1n for DRP-1 has not been made public.

5. Template Configuration

5.1 Concept of template configuration

The context translation table only enables to share physi-
cal contexts with the completely same structure, and similar
contexts with a minor difference cannot be easily handled.
Because there is so many possibilities in the configuration
of a PE, there may be cases where all but one of the compo-
nent is different while others are completely the same. An
example of this may be a case where all the operations of
the PE between two contexts are the same except for the
address of the output register.

In order to cope with such cases, template configuration
method is proposed. As shown in Figure 7, a portion of
the frequently changing configuration data is defined as a
variable part called the modifier, and the remaining com-
mon part is called the template. The template is accessed
with the local physical address, while the modifier is stored
in the context translation table and indexed by the global
logical number. The configuration data is generated from
the summation of the template data with the modifier. This
scheme, called the template configuration, is advantageous
when an application consists of common but slightly differ-
ent contexts.

next
state

Logical
context

PE

Template memory

STC

state
...

Modifier

Modifier

Template memory number

PE

Template memory

Modifier

Modifier

Template memory number

....

Figure 7. Template configuration

The problems associated with template configuration are
as follows:

• Since the modifier is stored in the translation table,
there is increase in the required memory.

• It is difficult to decide which part should be selected as
the modifier.

• If the modifier includes the immediate data or config-
uration data for interconnection, the bit length tends to
be large.

If this idea were to be compared against the instruction
set of common computers, the physical address indicating

the template can be considered as the operation code, and
the modifier corresponds to the operands or immediate data.
From this point of view, the template configuration is some-
how similar to the vertical micro-instruction code used in
old micro-programmable computers. The major difference
between them is that template configuration is used in each
of the PE in the array.

The concept of template configuration is similar to the
differential configuration [2]. The difference exists in that
the pairs of address and the configuration data for each dif-
ferential part is stored for each context in differential config-
uration. In template configuration, the template is provided
for each PE, and the location of the modifier is fixed.

5.2 Similarity of contexts

Template configuration is only effective when a template
can be shared with a certain number of contexts. This means
that the configuration data for a PE differs only slightly in
a certain number of contexts. We therefore investigated the
similarity of configuration data for a PE that requires the
largest context numbers in each application as shown in Ta-
ble 1. Table 4 shows the number of contexts whose config-
uration is slightly different from others.

Table 4. Similarity of PE structure in all con-
texts

Application # of. similar contexts Different part

DCT (1Tile) 2 Connection
2 Register usage
2 DMU operation

DCT (8Tile) 2 DMU operation
2 DMU operation

CVT 2 Register usage
IMDCT (1Tile) 2 Register usage

2 Register usage
IMDCT (8Tile) 2 DMU operation

AES-EBC 2 DMU operation
2 ALU operation
2 Register usage

DES 2 DMU operation
2 ALU operation

From this table, we conclude that there are PEs in every
application that are similar but partially different. We also
learned that there were not too many of such cases. In this
investigation, there are no cases where a PE took a simi-
lar structure in more than two contexts. Furthermore, the
different part varies depending on the application.

We also investigated the number of contexts which can
be reduced by sharing contexts with template configuration.
Table 5 shows the relative number of contexts to the total

contexts used for each PE. Match is the number of com-
pletely same contexts that can be reduced with the physical
context sharing proposed in the previous section. DMU is
the reduced number when the function of the DMU is cho-
sen as the modifier. Other columns ALU, RFU, FF, and SW
show cases where the corresponding part is chosen as the
modifier. From Table 5, DMU has an edge over the other
modifiers except in CVT and AES-EBC. The relative num-
ber is not large compared with the number of completely
same contexts.

Table 5. The ratio of context number which
can be reduced
Appl. Match DMU ALU RFU FF SW

DCT (2T) 0.43 0.010 0.025 0.019 0.014 0.003
DCT (4T) 0.25 0.13 0.044 0.012 0.003 0.0
DCT (6T) 0.20 0.12 0.023 0.025 0.004 0.003
DCT (8T) 0.12 0.11 0.027 0.026 0.003 0.004

CVT 0.27 0.015 0.028 0.018 0.006 0.005
IMDCT 0.11 0.047 0.041 0.016 0.003 0.005

DES 0.19 0.085 0.023 0.043 0.0 0.001
SHA1 0.21 0.010 0.041 0.0 0.0 0.0

AES-EBC 0.20 0.003 0.015 0.025 0.0 0.0

From these tables, we have no choice but to conclude
that the effect of template configuration is small when it is
applied to DRP-1. This comes from rather small granularity
of PEs (8-bits) in DRP-1, and we will try this method for
other coarser grained architectures.

Another method to extend the template configuration is
to share a template by multiple PEs. Figure 8 shows this
concept. By sharing the template memory with multiple
PEs, the similarity between PEs can be used. However, this
extension accompanies the access conflict problem, and the
delay for transferring the template to each PE will be an-
other problem. The extension of the concept of template to
the horizontal direction is our future work.

next
state

Logical
context

PE

Shared
Template
memory

STC

state
...

Modifier

Modifier

Template memory
number

PE

Modifier

Modifier

Figure 8. Sharing template memory

6. Conclusion

The context translation table which translates a global
logical context number into a local physical context num-
ber is proposed to reduce the context memory and to raise
the total amount of configuration realizable on a multicon-
text reconfigurable device. From the evaluation using NEC
Electronics’ DRP-1, it appears that the proposed method is
worthwhile when the size of the tile is small and the number
of context is large. In the most efficient case, the required
context number is reduced to 25%, and the total amount of
configuration data becomes 6.9%.

Template configuration which bundles similar contexts
to return more contexts is also proposed. Our evaluation
results show that such idea cannot be used effectively in a
device like DRP-1 where the PEs are small in size. Our
future work is to apply the method to a system with a more
coarser grained PE.

Acknowledgments

The authors would like to thank NEC Electronics and the
DRP Group at NEC Laboratories for their valuable advice.
A part of the simulation used in this project was supported
by the Mentor Graphics University Program.

References

[1] S. Abe, Y. Hasegawa, and H. Amano. Implementation of
AES on the Dynamic Reconfigurable Processor. In Proc. of
IEEE Cool Chips VIII, pp.192, 2005.

[2] H. Amano, T. Inuo, H. Kami, T. Fujii, and M. Suzuki. Tech-
niques for Virtual Hardware on a Dynamically Reconfig-
urable Processor. In Proc. of FPL, pp.464–473, 2004.

[3] H. Amano, et al. Performance and Cost Analysis of Time-
multiplexed Execution on the Dynamically Reconfigurable
Processor. In Proc. of FCCM, 2005.

[4] K. Deguchi, et al. Implementing Core Tasks of JPEG2000
Encoder on the Dynamically Reconfigurable Processor. In
Proc. of International Workshop on Dynamically Reconfig-
urable Systems, March 2005.

[5] R. Enzler, C. Plessl, and M. Platzner. Virtualzing Hardware
with Multi-context Reconfigurable Arrays. In Proc. of FPL,
pp.151–160, 2003.

[6] F. Furtek, E. Hogenauer, and J. Scheuermann. Interconnect-
ing Heterogeneous Nodes in an Adaptive Computing Ma-
chine. In Proc. of FPL, pp.125–134, 2004.

[7] T. Kitaoka, H. Amano, and K. Anjo. Reducing the Configu-
ration Loading Time of a Coarse Grain Multicontext Recon-
figurable Device. In Proc. of FPL, pp.171–180, Sept. 2003.

[8] Z. Li and S. Hauck. Configuration Compression for Virtex
FPGA. In Proc. of FCCM, pp.142–154, 2001.

[9] X.-P. Ling and H. Amano. WASMII: A Data Driven Com-
puter on a Virtual Hardware. In Proc. FCCM, pp. 33–42,
1993.

[10] M. Motomura. A Dynamically Reconfigurable Processor Ar-
chitecture. Microprocessor Forum, 2002.

[11] M. Okabe, et al. An 90nm Embedded DRAM Single Chip
LSI with a 3D Graphics, H.264 Codec Engine, and a Recon-
figurable Processor. Hot Chips, 2004.

[12] M. Petrov, T. Murgan, F. May, M. Vorbach, P. Zipf, and M.
Glesner. The XPP Architecture and Its Co-simulation within
the Simulink Environment. In Proc. of FPL, pp.761–770,
2004.

[13] T. Sugawara, K. Ide, and T. Sato. Dynamically Recon-
figurable Processor Implemented with IPFlex’s DAPDNA
Technology. IEICE Trans. on Inf.&Syst., Vol.E87-D, No.8,
pp.1997–2003, May 2004.

[14] M. Suzuki, et al. Stream Applications on the Dynamically
Reconfigurable Processor. In Proc. of ICFPT, Dec. 2004.

[15] S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A
Time-Multiplexed FPGA. In Proc. of FCCM, pp. 22–28,
1997.

[16] F. J. Veredas, M. Scheppler, W. Moffat, and B. Mei. Cus-
tom Implementation of the Coarse-Grained Reconfigurable
ADRES Architecture for Multimedia Purposes. In Proc. of
FPL, pp.106–111, Aug. 2005.

[17] Y. Yamada, et al. Core Processor/Multicontext Device Co-
design. In Proc. of Cool Chips VI, pp.82, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

