
RTOS extensions for dynamic hardware / software
monitoring and configuration management

Laboratoire d ’Electronique des Systèmes TEmps RéelLaboratoire d ’Electronique des Systèmes TEmps Réel

L .E.S.T.E.R

Raar Project
supported by

French FNS ACI
JC9169

Yvan Eustache, Jean-Philippe Diguet, Milad Elkhodary
LESTER (UBS University / CNRS)

Rue de Saint-Maudé, 56325 Lorient Cedex - France
E-mail : yvan.eustache@univ-ubs.fr, jean-philippe.diguet@univ-ubs.fr

Context : How to manage the behavior of an embedded system in a fluctuating environment ?
• Signal & image processing applications in embedded systems involve complex power-efficient resources, but the
dynamic behavior of mobile applications (data & user dependent) doesn’t fit with a general purpose architecture.
• Dynamic reconfigurable platform composed of processor (software for flexibility) and reconfigurable logic
(hardware for performance) are promising candidates for adapting resources to application changeable requirements.
• This work focuses on a flexible & unified implementation of self-adaptive systems on reconfigurable architectures. It is
based on a couple of local & global reconfiguration managers. We describe how managers are implemented in the
context of an usual RTOS and the new services we add for HW and SW monitoring, reconfiguration decision and
reconfiguration control which also includes hardware and software interface modeling.

Communication between tasks and configuration managers

HW

SW
Global Manager

or

Hierarchy Level 1 (LCM)

IRQ HW

SW
Local Manager

or

Hierarchy Level 0

IRQ HW

SW
application tasks

set

and

OS HAL : Services

API for
Common Data

Access Address
Space

Unified flag for
Metrics Update

Local Generic Metrics

Ci Configuration Cost
Estimations / Measures

Hardware Task Memory
Mapping

Flag GCM

Flag LCM

Hierarchy Level 2 (GCM) OS HAL : Distributed Data
Space

IRQ
Config. Tables

Task Configuration
Parameters

Ai Task Metrics

A two step configuration strategy :
• The Local Configuration Manager (LCM) for each application

supervises all tasks,
reads Metrics from each task and computes them,
provides the desired algorithm configuration to the upper configuration level.

• The Global Configuration Manager (GCM)
has a global view of the system and is application independent,
receives data from sensors (Gas Gauge, OS Timers, Application QoS),
and is in charge of global system parameters and HW/SW implementation.

The Unified Communication and Configuration Interface (UCCI).

dormant

ready

wait

run

except

SW : Code Adaptation

SW FSM RTOS

dead

ready

wait

Run stoppable

Run non stoppable

HW Direct Mapping + UCCI

HW FSM RTOS

Test

ConfigWait

Config
Run

Flag Check

Flag

No Flag

Configurable Task FSM

Usual
Code

Extra code for
configuration

Metric EvaluationMetric Signaling

Metric Alert

Post Semaphore Config

Pend Semaphore Config

The abstracted FSM modelizes the task configuration independently from the implementation.
1.) IF a new configuration flag is raised (“Test Config.” state)
2.) THEN the task moves to “Wait Config.” state

and pends for a new configuration on a semaphore request.
3.) WHEN the semaphore is released, the task moves to the “Run” state.
4.) The task computes specific its own metrics
5.) And signals the Local Manager in order to read them
6.) Or modifies itself its configuration and alerts the Local Manager.

Task SW

Wait config.

Test config.

Metrics signal

Metrics evaluation

S

Write : - Configurations
- Control inputs

Process
HW Task Process

S

Read Metrics Status

Write
DataTask State Manager

HW Task State FSM.

M M

IRQ

B
us

/N
oC

 in
te

rf
ac

e

B
us

/N
oC

 in
te

rf
ac

e

Local HAL

HW Interface
The SW Interface implements four new functions : a test of a new configuration, a “wait state” semaphore request, a
metrics evaluation and a metrics signalization .
The HW Interface implements configuration registers like the address of LCM, preceding and following tasks in
the process flow, control signals to start and stop the task, pointers to the valid produced data and the configuration.
It implements also status registers for the metrics and task status. The local HAL manages the communication of
data between tasks. The Task State Manager supervises the task state with a FSM.

Bus/NoC interface

HW Task

Metrics
Process Metrics,

Task Status

Configuration Reg.
Config. Id., @Read Data, @Pointer
Data @Write Data, @LCM, Metric

Alert Thresholds, CTRL signals

Read
Data

SW Interface

PT CT
Write
@ pointer or flag

PT CT
Write
@ pointer or flag

PT
MB
or Flag CT

@ pointer for MailBox (MB), flag event and configuration between the Local Manager (LCM) and tasks (T) or
data producer and consumer tasks (PT / CT)

HW SW

HW

SW

irq

read irq IRQ Vector CT

Flag
/

MBPT

PT /
LCM

CT / T

L
H
A
L

LCM T
Write
Config / Ctrl

irq

read irq IRQ Vector T
Flag

LCM ;

Mem CT

Mem T

Write @pointer

Write config /
Ctrl

UAS

Write
Config / Ctrl

LCM T HAL

Write
@ pointer or Flag

MB
or Flag

UAS

LCM TWrite
Config/Ctrl

MB
UAS

L
H
A
L

L
H
A
L

L
H
A
L

L
H
A
L

L
H
A
L

Deterministic Non Blocking Operations of Communication and Synchronization cases.

HAL

UAS

Config. table Config. table

The Abstraction Layer routes communication, synchronization and configuration data between hardware and
software tasks independently to the implementation. Each hardware task required a Local Hardware Abstraction
Layer (LHAL) configured by the Local Manager whereas software tasks share the HAL service of the RTOS.
HW HW : direct from the producer to the consumer through the LHAL.
HW SW : producer sends an IRQ transformed into a flag by the SW IRQ Vector and writes the message in the
memory.
SW SW : direct from the producer to the consumer through the Unified Access Service.
SW HW : direct from the producer to the consumer through the Unified Access Service then RTOS HAL service.

Metrics from the tasks (T) to the Local Manager (LCM)

T LCM
L
H
A
L

Signal
Metrics_ok L

Read Metrics

T

IRQ

IRQ Vector LCM
FlagL

H
A
L

read irq

Read Metrics

T LCM

Global variables

Flag

Read
Metrics

SW
UAST

Global variables

Flag

LCM

Read
Metrics

UAS HAL

sk
LCM

SWHWTa

H
A
LHW

HAL

HW HW : The task signals the LCM which reads the metrics.
HW SW : producer sends an IRQ transformed into a flag by the SW IRQ Vector. The LCM then reads the metrics
through the HAL.
SW SW : The task signals the LCM through the Unified Access Service and writes metrics into a global variable
read by the LCM.
SW HW : The task signals the LCM through the Unified Access Service and HAL and writes metrics into a
global variable read by the LCM.

HAL services for HW abstraction, synchronization and configuration management.

Generic
OS Service Access Task

(SAT daemon)

Task i
HW

Version SW of Task i
in minimal mode

"HW correspondent"

Communication
usual services

Semaphore; Mutex;
Message Queue; Mailbox; Flag

ISR OS

Pend, … Post, …

Create or
Start

HW interface control

Flag

OS access

Hardware

HW/SW com
services

Software

RTOS

ISR Manager
-Metric Flag
-Fast Alert

Flag

Fa
st

 S
yn

ch
ro

ni
za

tio
n

Us
ua

l R
TO

S
Sy

nc
ho

.
&

Co
m

 fo
r H

W
 T

as
ks

UC
CISet with configuration

HA
L

se
rv

ice
s f

or
 H

W
 ab

st
ra

ct
io

n,

Sy
nc

hr
o.

 &
 C

on
fig

. M
an

ag
em

en
t

OS HAL :
Distributed Data

Space

Ai Task Metrics

Ai Config . choices

LM Generic Metrics

Task Configuration
Parameters

Hardware Task Memory
Mapping (HAL)

Ai Task Cost
Estimations / measures

Necessary when a hardware task needs to pend on a semaphore, mutex or flag event for synchronization or
communication, the Service Access Task (SAT) is a daemon that tests, periodically in a non blocking way, flags set
by the hardware tasks through ISR. In A software version of the hardware task is started, uses an software
“correspondent Hardware” event of RTOS and waits.
For a fast signalization (alert or metric flag) the SAT can be bypassed by a specific ISR sending directly a software
flag to the LCM.

This work is a part of the RaaR project dedicated to auto-adaptive systems on embedded reconfigurable SOCs.
In this paper, we have presented the HAL services and the interfaces we have designed for implementing hardware
and software tasks. The first interest of our work is that both hardware and software task specifications can be
implemented in this new adaptive architecture with minor modifications through a systematic encapsulation
procedure. The second point is that all usual OS services are available transparently between hardware and
software tasks. The last point is the integration of services required for the implementation of the configuration
controller. As a proof of concept we currently implement a smart camera application for object tracking on a Stratix
device.

Conclusion

ResourceLCM

