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Abstract— This paper investigates the implementation 
of a number of circuits used to perform a high speed clos-

est value match lookup. The design is targeted particu-

larly for use in a search trie, as used in various network-
ing lookup applications, but can be applied to many other 

areas where such a match is required. A range of differ-

ent designs have been considered and implemented on 
FPGA. A detailed description of the architectures inves-

tigated is followed by an analysis of the synthesis results. 

1. Introduction 

The Internet is changing and moving towards interactive 
multimedia communications, with existing discrete ser-
vices integrated onto a single platform. To enable this 
requires greater bandwidth, lower end-to-end propagation 
delays and improved Quality of Service (QoS) guaran-
tees. Applications such as VoIP (Voice over Internet 
Protocol), streaming audio, video and other specialised 
applications have specific bandwidth and propagation 
delay requirements.  Such demands create a bottleneck in 
the routers that form the infrastructure of the Internet as 
they must process ever increasing amounts of data. 
Greater bandwidth requires faster transmission of packets 
which in turn requires faster search and lookup tech-
niques for data associated with packets, paths and packet 
flows.  In fact interactive services are usually based on 
small packets to reduce end to end delays.  As a result the 
packet classification, lookup and scheduling speeds re-
quired increase even more than the bandwidth required.  
It is difficult for the traditional software solutions cur-
rently used in routers to perform high-speed data retrieval 
as required for next generation QoS enabled networking. 
Future designs require hardware architectures that can 
deliver greater control over memory management and the 
number of accesses per lookup to slow off-chip memory. 

This paper investigates the design and implementation 
of a hardware based closest match lookup circuit. A novel 
design based on a trie is proposed, which is composed of 
distributed memory blocks for parallel and pipelined sort 
and lookup. The latest FPGA technology has been chosen 
due to the embedded memory features, which is useful in 
particular for implementing the pipelined search trie. 

2. Related Work 

Associative memory has been widely investigated for 
network processing and pattern, speech and image recog-
nition. Most of these architectures were designed under 
application related constraints, such as the number of 
entries, cost and lookup performance. A number of exist-
ing associative memory implementations are available.  

Content Addressable Memories (CAMs) are “hit or 
miss” components. An entry is either present or not and 

they therefore have limited suitability for closest or non-
exact match lookups, although a number of implementa-
tions have been examined. One common approach makes 
use of standard CAMs, which give either an exact match 
or no match. Different bits of the desired match are 
masked during a series of requests.  At first, no masking 
bits are set.  If there is no match then one bit of the word 
is masked and requested again.  The masking pattern is 
then altered, masking all combinations until a match is 
found.  Obviously this is time consuming, especially for 
wide data words.  This approach is used in a parallel form 
in image coding, using Vector Quantization [1]. 

Other non-CAM approaches seek to avoid the high 
costs and insufficient performance of retrieving inexact 
matches using CAMs.  A highly regular design is de-
scribed in [2]. A basic cell containing a word of memory, 
a comparison unit and control logic is cascaded in a long 
pipeline.  The requested word enters the pipeline as an 
input.  Each cell compares the request with its own con-
tent and if it fits better than in the previous cell, the cur-
rent cell will signal its own address to the next cell.  This 
pipelined approach features a predictable, fixed response 
time and a high throughput rate.  However, the latency is 
very high for large memories because the pipeline length 
is proportional to the memory size. 

Finally, neural networks are an alternative for a best 
match lookup, in particular self-organising feature maps. 
VLSI implementations of neural networks are distributed 
processing systems with extensive connectivity. How-
ever, the fact that these connections have to be adaptable 
leads either to a reduced memory density or the use of 
non-standard VLSI fabrication techniques [2],[3],[4]. 

3. Architecture 

The distinct feature of the proposed closest match lookup 
architecture is the use of a sorter tree, or “trie”, to imple-
ment an associative memory, which is able to return ei-
ther an exact or next smallest match. The term “trie” is 
derived from tree and retrieval. It was proposed by Fred-
kin [5] as a specialised search tree that stores multiple 
strings. This original structure can be adapted to solve a 
range of numeric lookup problems, e.g. finding the entry 
with the smallest Hamming distance to a given value. The 
number of levels in a trie determines the length of strings 
it can store. Its branching factor determines the number of 
literals of which the strings can consist. Since each level 
is usually accessed in one clock cycle, it is favourable to 
keep the number of levels low to reduce the latency of a 
pipelined implementation. Also, fewer levels will require 
less memory. To reduce the tree depth, two or more bits 
can be grouped together into a single literal and stored in 
one trie level (multi-bit trie, branching factor > 2). Fig. 1 
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shows an example of a multi-bit trie with branching fac-
tor four (literals ‘00’, ‘01’, ‘10’ and ‘11’) and three lev-
els, allowing strings with 3 literals or 6 bits. 

Figure 1: Multi-bit trie with values 001001, 110101 and 110111 

Data is not stored by writing a value in memory, but by 
setting flags to indicate the presence of a value. The final 
trie level consists of one flag (bit) for each possible value 
the trie can store (43 = 64bits in Fig. 1). To store a string, 
one bit is set in each level of the trie. In the first level, the 
flag corresponding to the first literal of the string is set. 
Then, this tree branch is followed and in the next level 
the flag corresponding to the second literal is set. This 
goes on until the last level is reached. The advantage of 
this approach is that when retrieving data, the result is 
assembled literal by literal while passing through the tree 
levels.  The policies used during the data retrieval process 
allow the required exact or next smallest value lookup to 
be achieved. In each level the desired search string literal 
is compared to the literal present in the trie and an exact 
or next smallest match is returned.  If a non-exact match 
occurs, i.e. a smaller value than that requested is returned, 
all subsequent levels return their maximum value, so that 
if an exact match is absent, then the overall string re-
turned is the closest value in the trie that is smaller than 
the desired search string. For example the closest match 
to “11 01 10” in the trie shown in Fig. 1 is “11 01 01”. 

Figure 2: Implementation of a trie with branching factor 16.

The matcher is shared between nodes in a level since only 
one operation occurs at a time in each level. Therefore, 
each level consists of a memory and a “matcher”. The 
structure (Fig. 2) can be pipelined and is scalable by ei-
ther increasing the branching factor or by adding more 
levels. Since memory access is the most time dominant 
operation, the matcher delay must be as close to this time 
as possible to achieve optimum speed performance. 

3.1 Matcher Architecture 

The matcher requires a linear search to be performed to 
find the next smallest entry within a tree level.  Due to its 
sequential nature the matcher normally determines the 
critical delay. The linear search is performed by ripple 
logic consisting of elements like the one shown in Fig. 3, 
which operates along the memory bits of the entries in 
each trie level.  A decoder “injects” a logic ‘1’ into the 
ripple path at the position of the requested value, which 
propagates through the ripple logic until it reaches a 

memory bit set to ‘1’. The ripple process then stops and 
the corresponding enable line is set to ‘1’.  Finally, the 
resulting value is encoded in binary format.  The critical 
path of the matcher circuit stretches across the input de-
coder, the full length ripple path and the output encoder.  

Figure 3: The basic ripple element with truth table  

The ripple logic is similar to a carry ripple adder and the 
basic compare element is similar to a full adder, allowing 
the definition of the “generate” and “propagate” condi-
tions similar to carry chains in adders [6]. For an adder, 

generate  
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propagate   
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the next carry  
iiii cp gc 1
   (3) 

For the matcher ripple logic,  

generate   
iii m gg     (4) 

propagate   
ii mp    (5) 

the ripple output  
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   (6) 

enable signal )( iiii rdmen   (7) 

Most theorems developed to accelerate the carry chain in 
adders can be applied to the matcher circuit. In order to 
improve its performance, carry-look-ahead, block-carry-
look-ahead and the combination of carry-skip and carry-
look-ahead, carry-select and carry-look-ahead techniques 
have been applied and analysed.  

3.2.1 Look-Ahead Approach 

In this approach instead of each ripple signal ri being 
dependent on the previous ripple signal, it is generated in 
parallel by trying to achieve a propagation delay com-
plexity of O(1). Equation (7) shows the dependency of 
the enable signal eni from the ripple ri, memory mi and
decoder di signals. For parallel generation, Equation (6) is 
extended for each i and it is found that (with g-1 = r-1)

i

µ

i

µ

µii pg gr
0

1
   (8)

Theoretically ri can be obtained in two logic levels, the 
outer OR and inner AND. However, the number of gate 
inputs grows linearly with i, thus the AND and OR func-
tions must to be split into multiple gates for higher i, such 
that the complexity of the propagation delay is not more 
than O(log i). Increasing i means a disproportionate in-
crease of logic due to splitting gates into multiple stages, 
so this approach is only suitable for small ripple chains. 

3.2.2 Block Look-Ahead Approach 

To address the disadvantages of the look-ahead approach, 
a hierarchical structure is applied. Fig. 4 shows a func-
tional block that performs the look-ahead operation for a 
restricted number of bits, generating the signals G (group 
generate) and P (group propagate). By introducing addi-
tional hierarchy levels, the input count and thus the hard-
ware cost of the look-ahead-blocks can be reduced. 
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Figure 4: 16 bit Block Look-Ahead structure, block size is 4 bit. 

For an m-bit wide block with m-1 inputs G and P are 
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The maximum value for i in Equation (8) is the length of 
the matcher. In comparison, m in Equation (9) is a frac-
tion of this, so the overall hardware cost and propagation 
delay are reduced, compared to the look-ahead approach. 

3.2.3 Skip & Look-Ahead Approach 

The carry-skip adder delivers a good trade-off between 
delay and area cost. An optimised skip structure is pro-
posed [7] using a look-ahead technique within the skip 
blocks using variable block sizes. This approach can be 
transferred to the matcher problem. A number of bits are 
grouped into a block that bypasses the ripple (carry) sig-
nal for the block if all propagate inputs are ‘1’. Fig. 5 
shows the basic skip block and Fig. 6 the resulting chain 
of skip blocks. The ripple initiating blocks and the block 
where the ripple signal ends cannot be bypassed, all other 
blocks can be bypassed, thus the ripple’s maximum path 
is the first and last block of the skip & look-ahead archi-
tecture, bypassing all other blocks. Furthermore, since the 
lengths of the blocks, other than the first and last, do not 
contribute to the critical path, they can be increased as 
long as alternative paths through the system and enlarged 
blocks cannot become longer than the existing worst case 
path. Increasing the block size reduces the number re-
quired and thus the critical path delay is also reduced. 

Figure 5: Ripple Bypass using the propagate condition 

Figure 6: Variable block size Skip Matcher 

3.2.4 Select & Look-Ahead Approach 

Two acceleration techniques are again combined in this 
approach proposed for adders [8]. The matcher can be 
significantly simplified compared to a carry-select adder. 
The main difference between an adder carry chain and the 
matcher ripple chain is that once the ripple signal has 
“left” the chain (changed back from ‘1’ to ‘0’), it will not 

change to ‘1’ again. The rest of the ripple chain can then 
be ignored unlike an adder where another carry could be 
generated. The ripple chain is divided into blocks but this 
time all blocks calculate their result simultaneously. 
Within the blocks, the ripple process is again accelerated 
using a look-ahead technique. The ripple inputs r_in are 
controlled by the “result control” circuit (Fig. 7). Unlike 
an adder, which can have multiple possible carry propa-
gations, the matcher has only a single search path and can 
therefore perform a true parallel result calculation. 

Figure 7: Select & Look Ahead structure for 16 Bit 

4. Synthesis and Circuit Analysis 

The circuits were described in VHDL and synthesised 
using Quartus II for Altera Stratix II FPGA technology. 
Bi-directional matchers were implemented, consisting of 
two matcher circuits. The first searches for the next 
smallest match and the second for the next highest. This 
is necessary to avoid a “nil” return if a smaller match is 
not present. In this case, the next highest match is re-
turned. The designs have been scaled over a range of 
word lengths and branching factors, although not all are 
suitable for all word lengths. In particular the skip and 
select approaches require a minimum length and the look-
ahead is expensive beyond 64 bits. The block look-ahead 
approach is only useful for lengths equal to (blocksize)m.

4.1 Matcher Results 

The post-layout synthesis results for the matcher architec-
tures are presented in Table 1 and Figures 8 and 9. 

tpd [ns] for different word lengths 

Implementation 4 8 16 32 64 128 

Ripple Cells 2,3 3,9 6,2 8,8 14,2  

Skip & Look-Ahead 5,5 7,6 11,4 

Look-Ahead 2,4 4 5,8 7,7 9,5  

Block Look-Ahead 2,4  5,8  8,5  

Select & Look-Ahead  4,4 5,2 7,1 8,8 10,2 

Table 1: Synthesis results for different matcher architectures. If 

different parameter values are possible, the optimum is shown. 
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For small word lengths (4-8bits), the classic ripple carry 
is best because the simple structure can be mapped to a 
small logic path compared to the complex look-ahead 
approaches. The hardware cost does not significantly 
vary in this range. However, as the word length grows, 
the cost and path-delay become significant. The area cost 
for the look-ahead grows rapidly at approximately O(M2). 
The improvement gained by introducing the block look-
ahead approach is clear for a 64-bit word length, where 
the matcher circuit is up to 3 times smaller than the clas-
sical look-ahead approach. The reduced complexity also 
gives a slightly smaller delay. The combined skip & look-
ahead approach gives a further reduction in area by trad-
ing off ripple delay performance. For word lengths 
greater than 32-bit, it is slower than all the other look-
ahead architectures. The best trade-off, for area versus 
delay performance, is achieved by the select & look-
ahead architecture for word lengths greater than 8 bits. It 
is the most area efficient amongst all look-ahead based 
approaches, while maintaining the smallest ripple delay.  
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Figure 9: AT Diagram for 64 Bit matchers. 

For M=64, the Pareto front [9] in Fig. 9 shows the opti-
mum results to be the ripple cells, select & look-ahead 
and block look-ahead architectures. For low numbers of 
ALUTs the ripple approach dominates all others. For a 
medium number of ALUTs, select & look-ahead has the 
shortest propagation delay. The lowest delay can be 
achieved using the block look-ahead approach. 

4.2 Synthesis of the Lookup Trie 

Based on the results, the lookup trie (Fig. 1) was imple-
mented using the select & look-ahead approach. Three 
tries with word lengths of 12, 16 and 20-bit were imple-
mented with a pipeline scheme. For each word length, 
different combinations of branching factor and number of 
trie levels are possible.  Due to the low latency required 
by the application, branching factors of 8 and 16 were 
chosen to keep the number of levels as low as possible. 
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Theoretically, the critical path of the circuit is determined 
only by the branching factor. For example a trie with 
branching factor 16 has a critical path delay of 5.2 ns 
allowing an implementation at fmax = 1/5.2 ns = 192 MHz.  

In reality this cannot be achieved due to additional rout-
ing delays. Experimental synthesis results showed that for 
a 4 level, 16-bit trie with a branching factor of 16, only 
154MHz is achieved. Figure 10 shows how the additional 
routing delay dependents on the branching factor. This is 
because the trie memory is implemented using the M4K 
memory blocks, which are located at the centre of the 
Altera Stratix II FPGA. As expected, the place and route 
tool places the matcher circuitry around the central mem-
ory, which has implications for the overall routing delay. 
As the number of matcher circuits that need to be ar-
ranged around the centre increases, the routing between 
them and the memory gets increasingly longer. 

5. Conclusions 

The architecture and implementation of a closest match 
lookup circuit has been explored. The design was carried 
out in the context of a search trie for a network process-
ing application, although it is applicable to a range of 
lookup applications. An architecture based on a search 
trie is used to obtain the closest match among a number 
of entries, given a desired value. The detailed study re-
veals a number of design issues concerning associative 
memory design for the lookup problem and identifies the 
matching circuit to be the bottleneck in the architecture. 
Comparable bottlenecks in arithmetic circuits, which 
have been resolved using look-ahead approaches, have 
been investigated and modified for the matcher circuit 
design for different word lengths and branching factors. 
The post layout synthesis results for given word-lengths 
have been analysed in terms of scalability, critical path 
and hardware cost. For word lengths greater than 8-bits, 
the select & look-ahead design achieves the best trade-off 
for area versus delay performance. The study also reveals 
that the select & look-ahead is the most area efficient 
architecture among the look-ahead designs because it is 
possible to simplify the original architecture when apply-
ing it to the matcher design. Although the design is suit-
able for a range of different high speed lookup applica-
tions, the architecture is required for a specific packet 
scheduling architecture using 16-bit word lengths and a 
4x4 bit branching factor. This design enables it to support 
an operation frequency of up to 154MHz using standard 
FPGA technology. The resulting lookup circuit can re-
trieve up to 40 million IP packets per second for service. 
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