
Design and Analysis of Matching Circuit Architectures for a
Closest Match Lookup

Kieran McLaughlin1, Friederich Kupzog2, Holger Blume2, Sakir Sezer1, Tobias Noll2, John McCanny1

The Institute of Electronics, Communications and Information Technology at QUB1

The Institute of Electrical Engineering and Computer Systems at RWTH Aachen University2

Abstract— This paper investigates the implementation
of a number of circuits used to perform a high speed clos-

est value match lookup. The design is targeted particu-

larly for use in a search trie, as used in various network-
ing lookup applications, but can be applied to many other

areas where such a match is required. A range of differ-

ent designs have been considered and implemented on
FPGA. A detailed description of the architectures inves-

tigated is followed by an analysis of the synthesis results.

1. Introduction

The Internet is changing and moving towards interactive
multimedia communications, with existing discrete ser-
vices integrated onto a single platform. To enable this
requires greater bandwidth, lower end-to-end propagation
delays and improved Quality of Service (QoS) guaran-
tees. Applications such as VoIP (Voice over Internet
Protocol), streaming audio, video and other specialised
applications have specific bandwidth and propagation
delay requirements. Such demands create a bottleneck in
the routers that form the infrastructure of the Internet as
they must process ever increasing amounts of data.
Greater bandwidth requires faster transmission of packets
which in turn requires faster search and lookup tech-
niques for data associated with packets, paths and packet
flows. In fact interactive services are usually based on
small packets to reduce end to end delays. As a result the
packet classification, lookup and scheduling speeds re-
quired increase even more than the bandwidth required.
It is difficult for the traditional software solutions cur-
rently used in routers to perform high-speed data retrieval
as required for next generation QoS enabled networking.
Future designs require hardware architectures that can
deliver greater control over memory management and the
number of accesses per lookup to slow off-chip memory.

This paper investigates the design and implementation
of a hardware based closest match lookup circuit. A novel
design based on a trie is proposed, which is composed of
distributed memory blocks for parallel and pipelined sort
and lookup. The latest FPGA technology has been chosen
due to the embedded memory features, which is useful in
particular for implementing the pipelined search trie.

2. Related Work

Associative memory has been widely investigated for
network processing and pattern, speech and image recog-
nition. Most of these architectures were designed under
application related constraints, such as the number of
entries, cost and lookup performance. A number of exist-
ing associative memory implementations are available.

Content Addressable Memories (CAMs) are “hit or
miss” components. An entry is either present or not and

they therefore have limited suitability for closest or non-
exact match lookups, although a number of implementa-
tions have been examined. One common approach makes
use of standard CAMs, which give either an exact match
or no match. Different bits of the desired match are
masked during a series of requests. At first, no masking
bits are set. If there is no match then one bit of the word
is masked and requested again. The masking pattern is
then altered, masking all combinations until a match is
found. Obviously this is time consuming, especially for
wide data words. This approach is used in a parallel form
in image coding, using Vector Quantization [1].

Other non-CAM approaches seek to avoid the high
costs and insufficient performance of retrieving inexact
matches using CAMs. A highly regular design is de-
scribed in [2]. A basic cell containing a word of memory,
a comparison unit and control logic is cascaded in a long
pipeline. The requested word enters the pipeline as an
input. Each cell compares the request with its own con-
tent and if it fits better than in the previous cell, the cur-
rent cell will signal its own address to the next cell. This
pipelined approach features a predictable, fixed response
time and a high throughput rate. However, the latency is
very high for large memories because the pipeline length
is proportional to the memory size.

Finally, neural networks are an alternative for a best
match lookup, in particular self-organising feature maps.
VLSI implementations of neural networks are distributed
processing systems with extensive connectivity. How-
ever, the fact that these connections have to be adaptable
leads either to a reduced memory density or the use of
non-standard VLSI fabrication techniques [2],[3],[4].

3. Architecture

The distinct feature of the proposed closest match lookup
architecture is the use of a sorter tree, or “trie”, to imple-
ment an associative memory, which is able to return ei-
ther an exact or next smallest match. The term “trie” is
derived from tree and retrieval. It was proposed by Fred-
kin [5] as a specialised search tree that stores multiple
strings. This original structure can be adapted to solve a
range of numeric lookup problems, e.g. finding the entry
with the smallest Hamming distance to a given value. The
number of levels in a trie determines the length of strings
it can store. Its branching factor determines the number of
literals of which the strings can consist. Since each level
is usually accessed in one clock cycle, it is favourable to
keep the number of levels low to reduce the latency of a
pipelined implementation. Also, fewer levels will require
less memory. To reduce the tree depth, two or more bits
can be grouped together into a single literal and stored in
one trie level (multi-bit trie, branching factor > 2). Fig. 1

1-4244-0054-6/06/$20.00 ©2006 IEEE

shows an example of a multi-bit trie with branching fac-
tor four (literals ‘00’, ‘01’, ‘10’ and ‘11’) and three lev-
els, allowing strings with 3 literals or 6 bits.

Figure 1: Multi-bit trie with values 001001, 110101 and 110111

Data is not stored by writing a value in memory, but by
setting flags to indicate the presence of a value. The final
trie level consists of one flag (bit) for each possible value
the trie can store (43 = 64bits in Fig. 1). To store a string,
one bit is set in each level of the trie. In the first level, the
flag corresponding to the first literal of the string is set.
Then, this tree branch is followed and in the next level
the flag corresponding to the second literal is set. This
goes on until the last level is reached. The advantage of
this approach is that when retrieving data, the result is
assembled literal by literal while passing through the tree
levels. The policies used during the data retrieval process
allow the required exact or next smallest value lookup to
be achieved. In each level the desired search string literal
is compared to the literal present in the trie and an exact
or next smallest match is returned. If a non-exact match
occurs, i.e. a smaller value than that requested is returned,
all subsequent levels return their maximum value, so that
if an exact match is absent, then the overall string re-
turned is the closest value in the trie that is smaller than
the desired search string. For example the closest match
to “11 01 10” in the trie shown in Fig. 1 is “11 01 01”.

Figure 2: Implementation of a trie with branching factor 16.

The matcher is shared between nodes in a level since only
one operation occurs at a time in each level. Therefore,
each level consists of a memory and a “matcher”. The
structure (Fig. 2) can be pipelined and is scalable by ei-
ther increasing the branching factor or by adding more
levels. Since memory access is the most time dominant
operation, the matcher delay must be as close to this time
as possible to achieve optimum speed performance.

3.1 Matcher Architecture

The matcher requires a linear search to be performed to
find the next smallest entry within a tree level. Due to its
sequential nature the matcher normally determines the
critical delay. The linear search is performed by ripple
logic consisting of elements like the one shown in Fig. 3,
which operates along the memory bits of the entries in
each trie level. A decoder “injects” a logic ‘1’ into the
ripple path at the position of the requested value, which
propagates through the ripple logic until it reaches a

memory bit set to ‘1’. The ripple process then stops and
the corresponding enable line is set to ‘1’. Finally, the
resulting value is encoded in binary format. The critical
path of the matcher circuit stretches across the input de-
coder, the full length ripple path and the output encoder.

Figure 3: The basic ripple element with truth table

The ripple logic is similar to a carry ripple adder and the
basic compare element is similar to a full adder, allowing
the definition of the “generate” and “propagate” condi-
tions similar to carry chains in adders [6]. For an adder,

generate
iii b ag (1)

propagate
iii b ap (2)

the next carry
iiii cp gc 1
 (3)

For the matcher ripple logic,

generate
iii m gg (4)

propagate
ii mp (5)

the ripple output
iii1i rp gr 11
 (6)

enable signal)(iiii rdmen (7)

Most theorems developed to accelerate the carry chain in
adders can be applied to the matcher circuit. In order to
improve its performance, carry-look-ahead, block-carry-
look-ahead and the combination of carry-skip and carry-
look-ahead, carry-select and carry-look-ahead techniques
have been applied and analysed.

3.2.1 Look-Ahead Approach

In this approach instead of each ripple signal ri being
dependent on the previous ripple signal, it is generated in
parallel by trying to achieve a propagation delay com-
plexity of O(1). Equation (7) shows the dependency of
the enable signal eni from the ripple ri, memory mi and
decoder di signals. For parallel generation, Equation (6) is
extended for each i and it is found that (with g-1 = r-1)

i

µ

i

µ

µii pg gr
0

1
 (8)

Theoretically ri can be obtained in two logic levels, the
outer OR and inner AND. However, the number of gate
inputs grows linearly with i, thus the AND and OR func-
tions must to be split into multiple gates for higher i, such
that the complexity of the propagation delay is not more
than O(log i). Increasing i means a disproportionate in-
crease of logic due to splitting gates into multiple stages,
so this approach is only suitable for small ripple chains.

3.2.2 Block Look-Ahead Approach

To address the disadvantages of the look-ahead approach,
a hierarchical structure is applied. Fig. 4 shows a func-
tional block that performs the look-ahead operation for a
restricted number of bits, generating the signals G (group
generate) and P (group propagate). By introducing addi-
tional hierarchy levels, the input count and thus the hard-
ware cost of the look-ahead-blocks can be reduced.

m i d i r i - 1 r i en i

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 * *

1 0 0 0 0

1 0 1 0 1

1 1 0 0 1

1 1 1 * *

REG

4

16
MEM
16 x

16 Bit 16 MEM

256 x
16 Bit 16

4

4

4

4

4

12 Bit
Request

Pipeline
Cut

Matcher

12 Bit Result

* don’t care

Memory Bit “0“

Memory Bit “1“

00 01 10 11

m i

r i - 1

 r i

en i
Ripple Cell

Ripple Input

Ripple Output

Enable Line
to encoderd i

Input from
Decoder

Memory Bit

Figure 4: 16 bit Block Look-Ahead structure, block size is 4 bit.

For an m-bit wide block with m-1 inputs G and P are

2

0

1

1

11

m

µ

m

µ

µm pg gG
 (9)

1

0

m

pP
 (10)

The maximum value for i in Equation (8) is the length of
the matcher. In comparison, m in Equation (9) is a frac-
tion of this, so the overall hardware cost and propagation
delay are reduced, compared to the look-ahead approach.

3.2.3 Skip & Look-Ahead Approach

The carry-skip adder delivers a good trade-off between
delay and area cost. An optimised skip structure is pro-
posed [7] using a look-ahead technique within the skip
blocks using variable block sizes. This approach can be
transferred to the matcher problem. A number of bits are
grouped into a block that bypasses the ripple (carry) sig-
nal for the block if all propagate inputs are ‘1’. Fig. 5
shows the basic skip block and Fig. 6 the resulting chain
of skip blocks. The ripple initiating blocks and the block
where the ripple signal ends cannot be bypassed, all other
blocks can be bypassed, thus the ripple’s maximum path
is the first and last block of the skip & look-ahead archi-
tecture, bypassing all other blocks. Furthermore, since the
lengths of the blocks, other than the first and last, do not
contribute to the critical path, they can be increased as
long as alternative paths through the system and enlarged
blocks cannot become longer than the existing worst case
path. Increasing the block size reduces the number re-
quired and thus the critical path delay is also reduced.

Figure 5: Ripple Bypass using the propagate condition

Figure 6: Variable block size Skip Matcher

3.2.4 Select & Look-Ahead Approach

Two acceleration techniques are again combined in this
approach proposed for adders [8]. The matcher can be
significantly simplified compared to a carry-select adder.
The main difference between an adder carry chain and the
matcher ripple chain is that once the ripple signal has
“left” the chain (changed back from ‘1’ to ‘0’), it will not

change to ‘1’ again. The rest of the ripple chain can then
be ignored unlike an adder where another carry could be
generated. The ripple chain is divided into blocks but this
time all blocks calculate their result simultaneously.
Within the blocks, the ripple process is again accelerated
using a look-ahead technique. The ripple inputs r_in are
controlled by the “result control” circuit (Fig. 7). Unlike
an adder, which can have multiple possible carry propa-
gations, the matcher has only a single search path and can
therefore perform a true parallel result calculation.

Figure 7: Select & Look Ahead structure for 16 Bit

4. Synthesis and Circuit Analysis

The circuits were described in VHDL and synthesised
using Quartus II for Altera Stratix II FPGA technology.
Bi-directional matchers were implemented, consisting of
two matcher circuits. The first searches for the next
smallest match and the second for the next highest. This
is necessary to avoid a “nil” return if a smaller match is
not present. In this case, the next highest match is re-
turned. The designs have been scaled over a range of
word lengths and branching factors, although not all are
suitable for all word lengths. In particular the skip and
select approaches require a minimum length and the look-
ahead is expensive beyond 64 bits. The block look-ahead
approach is only useful for lengths equal to (blocksize)m.

4.1 Matcher Results

The post-layout synthesis results for the matcher architec-
tures are presented in Table 1 and Figures 8 and 9.

tpd [ns] for different word lengths

Implementation 4 8 16 32 64 128

Ripple Cells 2,3 3,9 6,2 8,8 14,2

Skip & Look-Ahead 5,5 7,6 11,4

Look-Ahead 2,4 4 5,8 7,7 9,5

Block Look-Ahead 2,4 5,8 8,5

Select & Look-Ahead 4,4 5,2 7,1 8,8 10,2

Table 1: Synthesis results for different matcher architectures. If

different parameter values are possible, the optimum is shown.

4,4
5,2

10,2

7,1

8,8

0

2

4

6

8

10

12

14

16

0 16 32 48 64 80 96 112 128
word width

D
e
la

y
[n

s]

Ripple Cells

Look-Ahead

Select & Look-Ahead

Block Look-Ahead

Skip & Look-Ahead

Log. (Select & Look-Ahead)

Figure 8: Matcher delay comparison

r-1

w0 w1 w2 w3

cl
os

es
t m

at
ch

D
ec

od
er

E
nc

od
er

(n
on

-p
rio

rit
y)

memory lines

fo
un

d

fo
un

d

fo
un

d

fo
un

d

r_
in

en
ab

le

result

control

re
qu

es
t

va
lu

e

r_
in

en
ab

le

r_
in

en

ab
le

r_
in

en
ab

le

Lo
ok

-A
he

ad

B
lo

ck

pr
op

ag
at

e
si

gn
al

s

rin

rout

en
ab

le
 s

ig
na

ls

01

MUX

generate

signals

&

g & p computing logic

en computing logic

r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0

r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0

d16 m16

en16

r-1

d, m

g p g p g p g p

G P r r r r

g p g p g p g p

G P r r r r

g p g p g p g p

G P r r r r

g p g p g p g p

G P r r r r

g p g p g p g p

G P r r r r

Word Length M

For small word lengths (4-8bits), the classic ripple carry
is best because the simple structure can be mapped to a
small logic path compared to the complex look-ahead
approaches. The hardware cost does not significantly
vary in this range. However, as the word length grows,
the cost and path-delay become significant. The area cost
for the look-ahead grows rapidly at approximately O(M2).
The improvement gained by introducing the block look-
ahead approach is clear for a 64-bit word length, where
the matcher circuit is up to 3 times smaller than the clas-
sical look-ahead approach. The reduced complexity also
gives a slightly smaller delay. The combined skip & look-
ahead approach gives a further reduction in area by trad-
ing off ripple delay performance. For word lengths
greater than 32-bit, it is slower than all the other look-
ahead architectures. The best trade-off, for area versus
delay performance, is achieved by the select & look-
ahead architecture for word lengths greater than 8 bits. It
is the most area efficient amongst all look-ahead based
approaches, while maintaining the smallest ripple delay.

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500

#ALUTs

D
el

ay
 [
ns

]

Look-Ahead

Select & Look-Ahead

Block Look-Ahead

Skip & Look-Ahead

Ripple Cells

Pareto Front

Figure 9: AT Diagram for 64 Bit matchers.

For M=64, the Pareto front [9] in Fig. 9 shows the opti-
mum results to be the ripple cells, select & look-ahead
and block look-ahead architectures. For low numbers of
ALUTs the ripple approach dominates all others. For a
medium number of ALUTs, select & look-ahead has the
shortest propagation delay. The lowest delay can be
achieved using the block look-ahead approach.

4.2 Synthesis of the Lookup Trie

Based on the results, the lookup trie (Fig. 1) was imple-
mented using the select & look-ahead approach. Three
tries with word lengths of 12, 16 and 20-bit were imple-
mented with a pipeline scheme. For each word length,
different combinations of branching factor and number of
trie levels are possible. Due to the low latency required
by the application, branching factors of 8 and 16 were
chosen to keep the number of levels as low as possible.

192 192

227

128

154

214

0

50

100

150

200

250

12 Bit (4x3 Bit) 16 Bit (4x4 Bit) 20 Bit (5x4 Bit)

Data width

fm
a
x

[M
H
z]

theoretically achievable

actual result including

additional routing delay

Figure 10: Theoretical matcher delay compared to actual maxi-

mum operating frequencies for different data word lengths

Theoretically, the critical path of the circuit is determined
only by the branching factor. For example a trie with
branching factor 16 has a critical path delay of 5.2 ns
allowing an implementation at fmax = 1/5.2 ns = 192 MHz.

In reality this cannot be achieved due to additional rout-
ing delays. Experimental synthesis results showed that for
a 4 level, 16-bit trie with a branching factor of 16, only
154MHz is achieved. Figure 10 shows how the additional
routing delay dependents on the branching factor. This is
because the trie memory is implemented using the M4K
memory blocks, which are located at the centre of the
Altera Stratix II FPGA. As expected, the place and route
tool places the matcher circuitry around the central mem-
ory, which has implications for the overall routing delay.
As the number of matcher circuits that need to be ar-
ranged around the centre increases, the routing between
them and the memory gets increasingly longer.

5. Conclusions

The architecture and implementation of a closest match
lookup circuit has been explored. The design was carried
out in the context of a search trie for a network process-
ing application, although it is applicable to a range of
lookup applications. An architecture based on a search
trie is used to obtain the closest match among a number
of entries, given a desired value. The detailed study re-
veals a number of design issues concerning associative
memory design for the lookup problem and identifies the
matching circuit to be the bottleneck in the architecture.
Comparable bottlenecks in arithmetic circuits, which
have been resolved using look-ahead approaches, have
been investigated and modified for the matcher circuit
design for different word lengths and branching factors.
The post layout synthesis results for given word-lengths
have been analysed in terms of scalability, critical path
and hardware cost. For word lengths greater than 8-bits,
the select & look-ahead design achieves the best trade-off
for area versus delay performance. The study also reveals
that the select & look-ahead is the most area efficient
architecture among the look-ahead designs because it is
possible to simplify the original architecture when apply-
ing it to the matcher design. Although the design is suit-
able for a range of different high speed lookup applica-
tions, the architecture is required for a specific packet
scheduling architecture using 16-bit word lengths and a
4x4 bit branching factor. This design enables it to support
an operation frequency of up to 154MHz using standard
FPGA technology. The resulting lookup circuit can re-
trieve up to 40 million IP packets per second for service.

References
[1] S. Panchanathan, M. Goldberg, “A Content-Addressable Memory

Architecture for Image Coding Using Vector Quantization,” IEEE
Transactions on Signal Processing, Sept. 1991, pp. 2066 – 2078.

[2] L. T. Clarc, R. O. Grondin, “A Pipelined Associative Memory Im-

plementation in VLSI,” IEEE Journal of Solid-State Circuits, 1989.
[3] T. Kohonen, “Self-Organization and Associative Memory,”

Springer- Verlag, 1984.
[4] H. P. Graf, P. d. Vegvar, “A CMOS Associative Memory Chip Based

on Neuronal Networks,” ISSCC 87, Feb. 1987, pp. 304-305, 437.
[5] E. Fredkin: Trie Memory. Communications of the ACM, 3(9): 490-

499, Sept. 1960.
[6] B. Parhami: Computer Arithmetic, Algorithms and Hardware

Design. Oxford University Press, 2000.
[7] M. J. Schulte, K. Chirca et al, “A Low Power Carry Skip Adder with

fast saturation” Proc. of the IEEE International Conference ASAP
’04, pp. 269 – 279, 2004.

[8] Y. Wang, C. Pai, X. Song, “The Design of Hybrid Carry-

Lookahead/Carry-Select Adders,” IEEE Transactions on Circuits
and Systems Vol. 40 No. 1, 2002.

[9] M. Brayton, R. Spence: Sensitivity and Optimization, Elsevier,
Amsterdam, 1980.

 Word Length

F
m

a
x
 (

M
H

z
)

D
e
la

y
 (

n
s
)

ALUTs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

