
 Investigation into Programmability for Layer 2 Protocol Frame Delineation

Architectures

Ciaran Toal, Sakir Sezer
Institute of Communications and Information Technology,

Queen’s University Belfast,
Queen's Road, Belfast, Northern Ireland

Ciaran.Toal@ee.qub.ac.uk

Abstract

This paper presents the design and study of

reconfigurable architectures for two data-link layer
frame delineation techniques used for ATM and GFP.

The architectures are targeted to Altera Stratix II

FPGA technology and are investigated in terms of
performance and area. This work addresses the

potential for incorporating programmability into

custom purpose architectures that could enable the
same processing hardware to be used for processing

multiple protocols.

1. Introduction

In communication networks, the physical layer is
responsible for the transmission of raw bit streams
between a source and a destination. Framing is an
essential process of data transmission and it is important
for any data-link layer protocol to provide a mechanism
for packet boundary recognition. Network-layer packets
such as the Internet Protocol (IP) typically do not have a
mechanism in place that determines the start and end of
packets within streamed data.

Frame delineation is a key function of the framing
process of data-link layer protocols, such as Ethernet,
PPP, GFP, HDLC, SDLC and ATM. A number of
frame delineation mechanisms have been adopted by
the standard. Some of these protocols utilise
mechanisms that are based on unique bit patterns, such
as the PPP flag “0111110”, which indicates the start
and/or end of each frame [1]. ATM and the recently
emerged link layer protocol, the Generic Frame
Procedure (GFP), use cyclic coding for Header Error

Check (HEC) and frame delineation. Cyclic code based
frame delineation requires a complex Cyclic
Redundancy Check (CRC) computation circuit for error
and frame boundary detection. The advantage of this
technique is that the frame payload does not need to be
modified before transmission and after reception unlike
HDLC or PPP which must “escape” their frame
delineation pattern to prevent valid payload data from
being mistaken as a frame boundary indicator.

Frame delineation mechanisms for ATM and GFP
are investigated. For each of these protocols, optimised
32-bit frame delineation circuit architectures are
designed and their performance analysed. The designs
of the different protocol frame delineation circuits are
broken down to their fundamental processing blocks
and are cross correlated to examine and understand
possible programmability that could be implemented
into one circuit with the target of developing a multi-
protocol frame delineation architecture.

In this paper, section 2 presents the ATM frame
delineation architecture. A byte-by-byte parallel HEC
hunt circuit is designed for ATM over SONET/SDH
physical layer transmission. GFP is examined and
presented in section 3. Section 4 takes a step back and
examines the low level functions that make up each of
the 2 investigated frame delineation circuits in order to
establish the feasibility of deriving a programmable
frame delineation architecture for both protocols.
Section 5 presents the design and implementation of
two programmable architectures using Altera Stratix II
FPGA technology and analyses the synthesis results in
terms of programmability, throughput performance and
hardware cost.

1-4244-0054-6/06/$20.00 ©2006 IEEE

2. ATM Frame Delineation

The ATM Frame delimiter is based on HEC (header
error check) cyclic coding [10], [11]. ATM Cell
delineation is specified by the ITU-T in
recommendation I.432 [5].

The ATM cell consists of 5 header bytes. The first
four bytes contain information related solely for routing
the protocol. The 5th byte contains the HEC field which
is calculated from the first 4 bytes of the header.

When an ATM cell is received, the HEC value is
again calculated from the first 4 header bytes and
compared with the fifth byte. In the absence of errors,
both values are identical and the cell boundary is
assumed to be located.

The HEC field is calculated as a remainder of the
modulo-2 division of the first 4 header bytes with the
CRC generator polynomial G(x) = 1+x+x2+x8.

HUNT

PRESYNC

SYNC

Bit-by-Bit Check

Cell-by-Cell Check

Correct

HEC

Incorrect

HEC

 Consecutive

Correct HEC

 Consecutive

Incorrect HEC

Figure 1. ATM Cell Delineation State
Diagram.

In the ITU-T recommendation I.432, for the SDH-
based physical layer, values of =7 and =6 are
suggested. For the cell-based physical layer, values of
=7 and =8 are suggested.

ATM cell synchronisation is a sequential process in
accordance with the state graph in figure 1. The
receiver initially operates in the HUNT state and

assumes no knowledge of the next incoming frame
boundary. Incoming data is streamed through the CRC
computation circuit. Once 4 bytes have been processed
by the CRC circuit, the receiver checks if the computed
8-bit CRC value is equal to the next incoming 8 bits i.e.
the HEC field in the frame header. If there is a match
the system enters the PRESYNC state, otherwise it
continues checking incoming data. The comparison of
the computed CRC value with a possible HEC field
must be carried out for each byte entering the
computation circuit. If a correct HEC pattern is
detected, the synchronisation state machine moves to
the PRESYNC state and checks subsequent cells for
matching HEC fields. If it receives consecutive
correct HEC fields it enters the SYNC state. During the
PRESYNCH phase, the synchronisation circuit will
return back to HUNT state if a single incorrect HEC is
found. Once in the SYNC state, the system can only
return to HUNT if consecutive incorrect HEC fields
are received.

 The implementation of the bit-serial and parallel
ATM HEC check architectures have been presented by
G.E. Griffith et al [3], Suh Chung-Wook et al [9], Ng.
Leong Seong et al [6] and A. Maniatopoulos. Chung-
Wook’s investigation is based on a HEC check
implementation for a 16-bit data path targeting at a
throughput rate of 622 Mbps for ATM over SONET.
Leong Seong’s investigation explores an 8, 16 and 32-
bit CRC computation architecture for the ATM HEC
hunt. Both investigations emphasise mainly the CRC
computation of the HEC hunt circuit and targets a
solution only for octet based cell transmission
(SONET/SDH).

The 32-Bit ATM HEC hunt circuit is shown in
Figure 2. It is a pipelined architecture and consists of 4
32-bit in/ 8-bit out CRC calculators and 4 8-bit
comparators. The circuit basically requires one CRC
calculator and one comparator for each incoming byte.

32

Data Buffer 1 Data Buffer 2 Data Buffer 3

Data In

CRC Calc 1

32

CRC Calc 2

32

CRC Calc 4

32

XOR

A

XOR

A

XOR

A

 8

 8

 8

 8

8-Bit

Comparator

 8

8-Bit

Comparator

 8

8-Bit

Comparator

32 32 Data Out

64-Bit in 32-Bit

out MUX

4-Bit Latch

CRC Calc 3

32

XOR

A
 8 8

8-Bit

Comparator

Figure 2. 32-Bit ATM Receiver Frame Delineation Architecture.

3. GFP Frame Delineation

GFP Frame delineation is specified by the ITU-T in
recommendation G.7041 [7], [4]. GFP deploys a HEC
based frame delimiter mechanism in a similar manner
as ATM [8], [2], [12], [13]. The 32-bit GFP frame
delineation circuit utilises 4 CRC HEC calculators and
4 16-bit comparators to accommodate the wide data-
path, a Payload Length Indicator (PLI) frame counter,
frame synchronisation state machine and a single bit
error correction mechanism.

cHEC (Core Header Error Check) field is calculated
from the first 2 bytes of the core header i.e. the Payload
Length Indicator. The calculated cHEC field is used for
frame delimitation/synchronisation and is located at the
third and forth byte positions of the GFP core header.
When a GFP frame is received the cHEC is again
calculated from the first 2 core header bytes and
compared with the third and forth bytes. In the absence
of errors, both values are identical and the frame
boundary is assumed to be located. The cHEC field is
calculated as a remainder of the modulo-2 division of
the PLI field with the CRC generator polynomial G(x)
= 1+x5+x12+x16. One major difference between the GFP
and ATM specifications is that GFP always hunts data
byte-by-byte.

GFP frame synchronisation state graph is similar to
that of ATM. The receiver initially operates in the
HUNT state and assumes no knowledge of the next
incoming frame boundary. The received data is
streamed through the CRC computation circuit. Once 2
bytes have been processed by the CRC circuit, the
receiver checks if the computed 16-bit CRC value is
equal to the next incoming 16 bits i.e. the cHEC field in
the frame core header. If there is a match the system
enters the PRESYNC state, otherwise it continues
checking incoming data byte-by-byte.

The 32-bit architecture is shown in figure 3. The
design requires 4 16-bit In/16-bit Out CRC units and 4
16-bit comparator units. Every clock cycle, 4 new bytes
of data are scanned in. The circuit is designed to locate
a possible cHEC on all 4 input byte locations. The first
positive match between the PLI field CRC remainder
and the subsequent transmitted CRC field found by a
comparator unit (i.e. a located cHEC) is latched. This
latched signal controls what is essentially a 4-byte
window gate enabling 4 consecutive bytes of a possible
7 to be routed through to the output.

The deployed error correction technique is a ROM
based RS lookup table implementation. Due to the
small number of entries, ROM based logic synthesis on
FPGA presents a more efficient solution than a RAM

based implementation, overcoming memory addressing
issues and resulting in a reasonably small circuit. The
key advantage of synthesizing a ROM table is the
portability to other technologies in form of a technology

independent IP core. The error correction circuit is able
to correct any single bit error in one clock cycle.

32

Data Buffer Data Buffer Data Buffer

Data

In

CRC Calc 1

16
16

16-Bit

Comparator

 16

16-Bit

Comparator

16

16-Bit

Comparator

64 64

Data Out

56-Bit in 32-Bit

out MUX

4-Bit Latch

16

16-Bit

Comparator

16

16

16

Bits 0-7

Bits 8-15

Bits 16-23

Bits 24-31

16

16

16

16

4 Byte

Window Gate

Bits 0-7

Bits 8-15

Bits 16-23

CRC Calc 2

CRC Calc 3

CRC Calc 4

Bits 24-31

Frame Synchronisation State Machine Payload

Counter

Bits 16-31

PLI Field

Single Bit

Error

Correction

Look up

Circuit

Enable &

Control

Enable

Enable

Figure 3. 32-Bit GFP Receiver Frame Delineation Architecture.

4. Programmable Frame Delineation

The ATM and GFP frame delineation circuit
implementations have been explored to determine the
feasibility of deriving a single programmable frame
delimiter architecture that can support both protocols
with high data throughput rates.

The analysis suggests that there is no simple method
of implementing both the frame delineation processes
within the same programmable circuit. For example,
despite the fact that ATM and GFP are based on the

same principle, using CRC HEC computation, their low
level architectures are significantly different.

ATM is based on a CRC-8 calculation of a 32-bit
data word, whereas GFP is based on a different CRC-16
polynomial division of a 16-bit data word, not to
mention very different divisor polynomials. Both
architectures are so different in nature that a
programmable CRC computation circuit cannot be
efficiently mapped onto the same hardware.

Therefore two techniques have been investigated as
possible underlying technology to support

programmability of the target frame delineation
architecture

The first programmable architecture is based
on the implementation of both circuits using
the same hardware. In this case
programmability is achieved by the selective
multiplexing of the data-path between one of
the two circuits.

The second programmable architecture was
based on the use of an embedded
reconfigurable logic that can be configured to
support a specific protocol.

Figure 4 shows the block diagram of the first and
probably less elegant approach for achieving
programmability. It is composed of two protocol
specific (hardwired) frame delineation circuits as
individual blocks with a programmable data-path that
selects the required circuit for the programmed
protocol.

ATM Frame Delineation

Circuit

GFP Frame Delineation

Circuit

Protocol

Select

CLK

32
Data In

Data Out
32

Data Status

Protocol
Select

Enable

Figure 4. Programmable Dual-Protocol
Frame Delineation Architecture.

A high level diagram of the second circuit is shown
in figure 5. It has been derived from the analysis of the
low-level functional blocks of both protocol specific
frame delineation architectures. The data buffers are
utilised by both circuits. The comparators have been

designed so that they can be programmed to operate as
8-bit (for ATM) or as full 16-bit (for GFP). The XOR
matrix structures are included as separate components
for the GFP and ATM CRC calculation. This is because
the XOR arrays are different. There is no advantage to
be gained by attempting to reuse the XOR gates so that
the one component can handle both CRC calculations.

ATM contains 4 8-bit in/32-bit out CRC engines
whilst GFP contains 4 16-bit in/16-bit out CRC engines.
Each output CRC bit is fabricated from different input
bits. If the XOR arrays consisted of the same
dimensions in terms of length and breadth then the
argument could be made to implement one component
with an optimised number of XOR gates along with
matching multiplexers that would enable both the CRC
calculations to be performed by the structure. Due to the
very different XOR array structures and plus the fact
that the ATM matrix is effectively 4 8*8 XOR arrays
staggered means that this option is unfeasible. The GFP
error correction engine is obviously only common to the
GFP and as such can only be accessed when the circuit
is configured to process GFP packets.

The counter is synthesised by the synthesis tool. It is
configured so that when processing GFP it reads in the
16-bit PLI value and decrements from this as bytes are
received. When configured for ATM the counter always
resets to 48 since this is always the size of the ATM
cell. The protocol control state machine is effectively a
RAM where each state is a memory address and the
output of the state machine is the data stored at that
memory address. The ATM and GFP state machines are
stored in the same memory bank with the protocol
select register effectively acting as a pointer that selects
the section of memory that contains the micro-code for
each protocol. The tri-state frame synchronisation,
although contains the same three states for GFP and
ATM i.e. HUNT, Pre-SYNC and SYNC, the and
values are different which means that the behaviour of
the two state machines is different as the output
generated when in each state can be different thus
meaning that the data stored in the memory address can
be different.

GFP HEC Calculation

CRC Calc 1

CRC Calc 2

CRC Calc 4

CRC Calc 3

ATM HEC Calculation

CRC Calc 1

CRC Calc 2

CRC Calc 4

CRC Calc 3

32

Data Buffer

Data

In

Control Unit [Dual State Machine]

=

=

=

=

32

Data
Out

32

GFP
Single Bit

Error
Correction

Look up

Circuit

Payload
Counter

Enable &
Control

4 Byte
Window

7 byte in - 4
byte out Data-

Path Mux

Protocol Data Status

CRC Engine

Enable

8-bit/16-bit
comparator configure

Configure Counter
[PLI filed or 48 bytes]

Figure 5. 32-Bit ATM/GFP Programmable Frame Delineation Architecture Incorporating
Common/Programmable Elements.

5. Synthesis and Circuit Study

The two 32-bit frame delineation circuits have been
synthesised and targeted to Altera Stratix II FPGA
technology. The post-layout synthesis results are
included in table 1. Speed and area performance is
examined.

Table 1. 32-Bit ATM/GFP Frame delineation
Circuits.

 Area Speed

Protocol ALUTs Registers ALMs
Clock Frequency

(MHz)

Data

Throughput

(Mbps)

GFP 547 351 361 171.89 5500.48

ATM 281 164 177 260.55 8337.6

The GFP frame delineation circuit is much slower than
the ATM circuit. GFP is a much more complex

architecture than ATM. The design is impeded by the
requirement of the memory correction look-up table,
which not only penalises the area but also imposes a
large area constraint on the circuit.

The Stratix II post-layout synthesis results for the
two dual-protocol frame delineation circuits are
presented in table 2.

Table 2. P
5
 32-bit Implementation.

Area Speed
Programmable

ATM/GFP Frame

Delimiter
ALUTs Registers ALMs LABs

Clock
Frequency

(MHz)

Data Throughput
(Mbps)

Common
Elements

885 387 530 78 165.65 5300.8

Separate Data-
Path

872 531 621 124 159.46 5102.72

The two implementations have very similar
performance, and in fact the circuit that utilises

common elements is surprisingly slightly faster of the
two.

Not only it is faster but it is also smaller in terms of
hardware cost. Although it contains 13 more ALUTs, it
requires 144 less registers, which is approximately a
50% reduction of the register cost. The overall LAB
(Logic Array Block) cost is therefore reduced for the
FPGA technology. It is anticipated that the reduction of
the register count will contributes more significantly to
the overall hardware cost reduction in terms of silicon
area for a cell based technology.

The register reduction is not unexpected considering
the reused components such as the buffers, comparators
and pipeline stages of both circuits.

This initial analysis has produced some positively
conclusive evidence as to the design style that should be
followed in designing a multi-protocol processor on an
ASIC or structured ASIC design in order to obtain
maximum performance.

5. Conclusions

The primary objective of the research described in
this paper was to ascertain the feasibility of
implementing architectures that could handle multiple
protocol frame delineation functions. Two architectures
were developed that were each programmable and able
to perform 32-bit frame delineation for both GFP and
ATM. The first architecture is composed of the
originally designed GFP and ATM circuits with a
common data-path included for input and output. The
desired frame delineation function is selected via
multiplexers. The second circuit is a much more
complex design and is composed of common low-level
function blocks such as buffering registers and
comparators. Function blocks that could not serve both
protocols efficiently were included separately. The
GFP/ATM frame delimiter architecture that contained
common logic resulted in a slightly faster and smaller
circuit than the classical architecture based on
multiplexing data-path between protocol specific
circuits. The study has produced conclusive evidence
that programmability can be achieved by designing a
configurable data-path of common, configurable and
domain specific function blocks.

8. References

[1] C. Toal and S Sezer, “A 32-Bit SoPC Implementation of
a P5”, IEEE Symposium on Computers and
Communications”, Antalya , Turkey, July 2003.

[2] P. Bonenfant, A. Rodriguez-Moral, “Generic Framing
Proceedure (GFP): The Catalyst for Efficient Data over
Transport”, IEEE Communications Magazine, May 2002.

[3] G.E. Griffith, T. Arslan and A. T. Erdogan,
“Asynchronous Transfer Mode Cell Delineator
Implementations” IEEE SoC Conference”, Speptember
2003.

[4] ITU-T Recommendation G.7041/Y.1303, “Generic
Framing Procedure (GFP)”, December 2003.

[5] ITU-TS Recommendation. I.432 “B-ISDN user-network
interface - Physical layer specification”, June 1992.

[6] L.S. Ng and Bill Dewar, “Parallel realization of the ATM
cell header CRC” Computer Communications”, 1996.

[7] H. Qureshi, S. Ferguson, C. Scotland, “Generic Framing
Procedure ITU-T G.7041 White Paper”, Electronic
Products Solutions Group, Telecomms Networks Test
Division, Scotland, Agilent Technologies, July 2002.

[8] M. Scholten, Z. Zhu, Enrique Herandez-Valencia, John
Hawkins, “Data Transport Applications Using GFP”,
IEEE Communications Magazine,” May 2002.

[9] C. W. Suh and K. S. Kim, “High-speed HEC algorithm
for ATM”, 1st International Conference on Information,
Communications and Signal Processing”, 1997.

[10] C. Toal and S. Sezer, “The Implementation of a Scalable
ATM Frame Delineation Circuits”, IEEE International
Conference on Telecommunications”, August 2004.

[11] C. Toal, S. Sezer, “A 10Gbps HEC HUNT Circuit for
ATM over SDH/SONET”, The IEE Irish Signals and
Systems Conference”, June 2004.

[12] C. Toal, S. Sezer, “Exploration of GFP Frame
Delineation Architectures for Network processing”, IEE
SoC Conference”, September 2004.

[13] C. Toal, S. Sezer, “A 10 Gbps GFP Frame Delineation
Circuit with Single Bit Error Correction on an FPGA”,
IEEE Advanced Industrial Conference on
Telecommunications”, July 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

