
The Benefits of Java and Jini in the JGrid System

Szabolcs Pota and Zoltan Juhasz

University of Veszprem
Dept. of Information Systems

Veszprem, Hungary
{pota,juhasz}@irt.vein.hu

Abstract

The Java language and platform have been considered by
many as natural candidate for creating grid systems. The
platform-independent runtime environment, safe and
high-level language and its built-in support for
networking and security are very valuable features.
Despite its potential and the many proof-of-concept
systems developed, the grid community is turning to web
services technology as its implementation base. In this
paper, we show that Java, by joining forces with Jini
Technology can provide a very appealing technology base
for highly dynamic grid systems. The key properties of
Java and Jini technology are examined with reference to
their role in grids. Then, the JGrid Jini-based service-
oriented grid system is overviewed describing its key
concepts, services and how it extends Jini to address
some of the unique requirements of grid systems.

1. Introduction

Future service-oriented grid systems will need to
provide dynamic service discovery, support for interactive
applications, more effective mechanisms to interconnect
and orchestrate multiple services to solve complex
problems, and the ability to integrate and collaborate with
non-computational services.

Java and Jini [1] have many unique and useful
characteristics that make them an ideal candidate for
grid systems. While Java is definitely the language of the
Internet, due to the many legacy applications and systems,
and fear of using one single language, it is not fully
accepted in the grid community. Web Services
technology is preferred on this basis, but interestingly, it
helps spread the use of Java as Java is the primary
language of choice in implementing Web services.

The goals of the JGrid project [2] are to examine and
demonstrate the advantages of Java and Jini in the grid
technology area, and to develop a novel Jini-based

service-oriented grid system that supports discovery,
interactive applications, service composition, and
provides a high-level, effective service-oriented
programming model for developers.

In this paper, we overview those features of Java and
Jini that can be valuable in creating grid systems and
show that Java, by joining forces with Jini Technology
can provide a very appealing technology base for highly
dynamic grid systems. The use and value of these features
are illustrated in the JGrid system.

The outline of the paper is as follows. In section II, a
short overview of previous results related to our paper is
given. Section III introduces the main features of Jini
Technology and shows how these features can be used as
building blocks in a future grid technology. Section IV
explains how the JGrid system extends the capabilities of
Jini to create an infrastructure for service-oriented grid
systems. It also provides a brief overview of the key
concepts and services of the system. Section V illustrates
with a list of demos and proof-of-concept applications
that JGrid can be used in a wide range of application
domains and can be easily extended with new services.
The paper ends with conclusions.

2. Related Work

Service-oriented grid systems, their architecture,
functionality and programming are central to current grid
research. While the current technology preference for
Grid systems is Web Services, due to the lack of high-
level programming support of Web Services, Java-centric
systems are demonstrating alternative ways and strategies
for building grid systems.

Early Java metacomputing systems (e.g. SuperWeb
[3], Javelin [4]) relied on Java applets and RMI [5] but
the inflexibility and scalability problems of RMI limited
their applicability at a global scale. Several of these
systems, such as the Harness system [6] and its successor
H2O [7] and ProActive [8], successfully demonstrate the
advantages of Java, although they are not general grid

1-4244-0054-6/06/$20.00 ©2006 IEEE

environments.
The advantages of dynamic discovery and other unique

features of Jini Technology have been already used and
their value demonstrated in several grid-related projects,
such as ICENI [9], JISGA [10], CoABS [11],
ZENTURIO [12], aiming to create more dynamic and
service-oriented Grid environments.

3. Jini Technology as a Basis for Grid

Systems

Service-orientation has become the accepted model for
creating next-generation distributed (including Grid)
systems. Although Web Services Technology is becoming
dominant as the implementation basis for Grid systems, it
is not the only possible technology to use. In this section
we examine how various features of Jini provide useful
support for Grid systems.

3.1. Service-Oriented Architecture

Jini [1] is a true and mature service-oriented
technology, released in 1999 by Sun Microsystems Inc. It
is built on the Java platform, which implicitly provides
many advantages for Grid systems. The Java Virtual
Machine creates a unified, platform-independent
environment on top of the widely heterogeneous set of
Grid resources. It provides a proven programming model
and development methodology used by millions of
developers. It has built-in networking support and
security architecture that can be extended to meet Grid
requirements.

A Jini system consists of services and service clients.
Since Jini was designed to create a federation of program
components that operate automatically, services are
described by Java interfaces as a natural choice. This also
facilitates loose coupling of clients and services in a sense
that service capabilities are separated from the concrete
implementations.

3.2. Dynamic Networking

Large distributed systems are dynamic by default.
Components may disappear due to shut-down or
network/computer failure and appear at any moment. Jini
explicitly supports this dynamism via its service
discovery, join and lookup protocols. Each service
registers in a special service called Lookup Service, with a
Java object. The registration signals the existence of the
service in the Jini network. Clients also use the Lookup
Service to find suitable services. This is similar to
searching for web services in a UDDI directory. Note that
both clients and services need to know the lookup service,
as this represents the entry point to the Jini system. An

entity can use either multicast or unicast discovery,
depending on whether or not it knows the address of the
lookup service, respectively.

An added benefit of using Java is that Jini service
references are represented by Java objects. These
reference objects are embedded in proxy objects which, in
turn, are part of the registration objects stored in the
Lookup Service upon registration. Hence, when a client
finds a suitable service, the result of the lookup operation
is the proxy object of the service that automatically
provides the required service invocation mechanism.

3.3. Mobile Code and the Proxy Object

The combined use of the proxy pattern, mobile code
and dynamic class loading in Jini has many advantages.
Since the proxy is downloaded from the service at run-
time, it is always up-to-date and no prior installation is
necessary. The proxy hides communication and
implementation details from the client. Since the proxy is
provided by the service and communication is private to
the proxy and the service, the service implementer can use
the protocol best suited to the given situation (raw socket,
RMI, HTTP, etc.). The proxy can also provide the basis
for various service execution strategies: (i) the service can
run entirely on the remote server with the proxy merely
delegating requests, (ii) the service can run entirely in the
proxy on the client, or (iii) the proxy and the service can
distribute service functionality by executing service code
in the proxy and the service as well. The last pattern
(smart proxy) could facilitate e.g. intelligent error
handling and recovery, support preserving state between
method calls, reduce communication overhead or provide
(perhaps limited functionality) operation in disconnected
mode.

Since the proxy implements the well-known service
interface, the Jini client accesses services via method calls
on Java objects. Interfaces can evolve by subclassing
prior interfaces. Clients using the old interface will be
able to use new services, albeit with the old functionality
only. It must be emphasised that it is up to the service
implementer to decide how to delegate the method calls to
the service; e.g. via Remote Method Invocation or
proprietary protocols over TCP/IP or HTTP. To the client,
they all appear identical – Java method calls on the proxy.
Another advantage of the proxy pattern is that it benefits
from the Java exception handling mechanism.
Communication, service or proxy problems can be
reported to the client via well-defined Java exceptions.
 Jini services can provide user interfaces as well as
programmatic ones. The Jini ServiceUI specification
describes a standard way to attach user interface objects
to the service proxy that can be downloaded from the
service dynamically on an on-demand basis. This also
provides for the use of multi-modal interfaces, providing

support for users and devices with different capabilities to
use services.

3.4. Security

Since the proxy is the connection point between the
client and the service, it is where the client and service
administrative domains meet. Consequently, this is where
security problems arise. The Jini security model builds
upon the J2SE 1.4 security model (language and type
safety, byte code verification, protection domains) and
provides extensions required in distributed systems:
network security, security constraints, dynamic
permission granting, proxy trust checking, and method
level access control. Network security is achieved with a
new customisable RMI implementation called JERI (Jini
Extensible Remote Invocation) that makes each layer of
the protocol stack configurable, e.g. different transport
protocols can be used to transfer remote method calls (e.g.
TCP, SSL, HTTP, HTTPS).

3.5. Distributed Programming Model

In large systems hardware and software failures may
be common. Such systems call for special programming
mechanisms to maintain system health and stability. Jini
provides the concept of leasing to create a self-healing
system. A lease represents a time-based grant to a
resource. For instance, a service registering in the lookup
service receives a lease for that registration. If the service
renews the lease before that lease expires, the registration
object remains in the lookup service. If, for any reason,
the service cannot renew its lease, the lookup service
assumes the service to be faulty; hence it removes the
service's registration entry. This frees up lookup service
resources used by the service registration, and prevents
clients from downloading the proxy of a non-existing
service. The lease concept can be extended and applied to
any interaction between objects. That includes the use of
leases between clients and services. The client of an
interactive application can obtain a lease for the use of a
remote service. If that client disconnects from the service,
even when that disconnection is the result of a network or
client fault, the lack of the client's lease renewal will
cause the service to stop the running computation and
release the allocated resources.

Jini also provides a distributed event mechanism, as
well as support for distributed transactions. Event
notifications are an important requirement for grid
systems where there is a very clear need for stateful
services. Grid services and their clients can rely on the
distributed event mechanism for notifications of particular
state changes. Jini distributed transactions are provided
as a framework, where service implementers can specify
the actual implementation of the transaction. That

mechanism allows services to comply with a set of known
interfaces, and to perform operations under transactions,
if required.

3.6. Legacy Integration Support

Jini is considered by many as pure Java system. This
may be the reason why it has been neglected by the grid
community. The Jini specification does not mandate that
Jini services must be implemented in Java. One of the
advantages of using service proxies is that the proxy hides
service implementation to such level that the
programming language used for service implementation
becomes irrelevant.

Jini services can be implemented in any programming
language. The role of the proxy in this case is to use a
suitable private protocol that is acceptable to the service
implementation, e.g. a raw socket, and communicate
method call and data transfer information over that private
protocol to the non-Java backend. This mechanism
facilitates simple integration of legacy, non-Java services
into a Jini-based grid. Special helper services exist in the
Jini reference implementation that provide discovery,
registration and lease management for non-Java service
implementations.

Restricted devices that cannot run Java code or not the
required version (J2SE 1.4) can use the Surrogate
Architecture in which a surrogate host performs Jini-
related tasks for the device.

4. The JGrid System

The aim of the JGrid project is to demonstrate the
benefits of Java and Jini in grid systems. The JGrid
system is the result of this research and development
effort; it is a service-oriented grid framework building on
and extending the capabilities of Jini.

The Jini properties examined in the previous section
lay down the foundations for creating dynamic grid
systems where services, as well as protocols, can operate
without major maintenance downtimes and evolve
without disrupting the system's operation. However, Jini
has been primarily designed for small client-service
assemblies operating on a LAN.

The JGrid system extends Jini to create a Grid system
spanning administrative domains and introduces higher
level core and application-level grid services that can be
used as building blocks for large grid systems. The JGrid
project provides a complete dynamic service-oriented grid
infrastructure including wide-area service discovery,
security support, core computational service (batch,
compute and storage services) and a high-level
programming API for interacting with the services. In the
rest of this section we describe these additions.

4.1. Service Discovery

Jini lookup services do not provide wide-area discovery
naturally. Some routers do not forward multicast packets;
unicast discovery does not provide spontaneous discovery
as lookup service addresses must be known. It is also a
potential problem if too many lookup services exist (how
to find and iterate over them), and if many lookup or
application service proxies must be downloaded by a
client.

JGrid includes a wide-area discovery system that is a
distributed hierarchical overlay network connecting
dispersed lookup services trying to overcome these
problems. The entry point to the discovery system is the
Grid Access Point (GAP) service that provides lookup
operations for clients and service announcements on the
grid for services. The assumption is that there is a GAP
service near to the client that can be discovered via
multicast discovery, and once this has been done, a client
wishing to discover remote services can issue a query to
this local GAP in a way similar to the standard Jini
lookup semantics. The query is then propagated through
the discovery network and reaches those lookup services
that can return the requested services.

This mode of operation is achieved by Router Services
that connect to the GAP and form the routing overlay
network. To avoid network flooding, router services only
hold aggregate service information, which facilitates
content-based query routing. This mechanism allows
lookup messages to be sent only to those lookup services
that have potentially matching services. Routers at
different level in the hierarchy store information at
different representation level. Routers discover their
neighbouring routers in the topology via either multicast
or unicast discovery. Depending on the configuration,
various levels of self-organisation and reliability can be
achieved.

4.2. Security

Building on the Jini 2.0 security architecture, JGrid
provides secure access to and communication with
services. The JGrid security is based on public key
security infrastructure combined with role-based access
control. This is provided by two JGrid core services;
Authentication and Registration services.

The Authentication service is responsible for logging
in users to the grid; authenticate them with the appropriate
(configurable) authentication method. Once the user is
authenticated, the authentication service issues a short-
term X.509 certificate that will be used in subsequent
service method calls.

Clients authenticate services by checking service
certificates. Trusted services are accessed via JERI
method calls that transfer the short-term certificate issued

by the authentication service. When the target service
receives the method call, it checks whether the client is
authorised to execute the method. This is done by
contacting the registration service associated with the
target service. If the user has the required role in the
registration service database, the method call will execute
otherwise a security exception is thrown to the caller.

The main advantage of this architecture is that users
only have to log-in to the grid once, and individual
services do not need to store user data separately for each
user. Services only need to define access roles and assign
these roles to users and store it in the registration service.

Future versions of JGrid will support the federation of
authentication services and registration services, creating
a single sign-on system, similar to Liberty but adopted to
the Jini world.

4.3. Core Computational Services

The original aim of developing the JGrid system was to
create a dynamic Jini-based computational grid. The most
important functionalities (processing and storage) have
been abstracted out as Jini services. This section describes
the Compute and Batch services used for executing Java
and non-Java programs and the Storage service to access
remote files.

Compute Service. We believe that using the same,
platform-independent programming language has
enormous advantages over other approaches. Developers
do not need to be concerned by the target architecture,
whether it is compiled correctly to that platform, or
libraries are deployed. Also, the number of potential
target boxes for large computational applications
increases with several orders of magnitude.

Recent advances in virtual machine optimization
technology make Java a strong contender in numerical
computation as well. SciMark 2.0 numerical benchmark
results show that Java 1.4 and 1.5 HotSpot virtual
machines achieve performance close to optimized C. Our
experiments show that on average 95% of C performance
is achieved, with Java outperforming C in several
benchmark categories (Monte Carlo, SOR).

The compute service therefore is one of the most
important services in JGrid. Its role is to create a
distributed Java execution environment in which
sequential and parallel Java programs (objects) can be
executed transparently at remote services representing
single, multi-processor computers or clusters. In essence,
it is similar to a distributed Java Virtual Machine, but
transparency is achieved at the application not at the JVM
level.

The Compute Service was designed to support
dynamic grid applications that can adapt to changes in the
number and quality of resources, detect and react to

execution errors or environment failures in a highly
heterogeneous environment.

The service offers four different types of execution
modes: (i) synchronous remote evaluation, (ii)
asynchronous remote evaluation, (iii) process spawning
that creates dynamic server objects accessible via remote
method invocation, and (iv) parallel execution using MPI-
like message passing. Common in all execution modes
that a Java task object is sent to the Compute service at
run-time that will execute in the service’s thread pool
under the control of the service task scheduler.

These execution modes support interactive grid
applications as the client is connected to these
dynamically ‘outsourced’ tasks during execution, hence,
clients can communicate with the task when required.
This enables one to create long-running interactive
simulations (e.g. man-in-the-loop systems), collaborative
experiments and visualization applications, etc.

One of the important properties of the compute service
is that it can coexist with any other application running on
the host computer. As a result, it can be configured to use
spare CPU cycles in organisations where a dedicated
compute server farm is not available. The compute
service threads run below normal priority and give way to
user payload immediately while continuing the task at a
reduced performance.

Batch Service. The role of the Batch service is to provide
traditional batch job execution facilities for users. The
Batch service enables the integration of legacy batch
runtime systems (such as Sun Grid Engine [13], Condor
[14]) into a Jini service community as well as allows
users execute non-Java programs. The batch service also
provides a user-friendly ServiceUI-based graphical
interface for job submission and management, and can be
integrated into more complex execution environments due
to its programmatic interface.

All files required for execution must be available on a
specified file server for download. This, typically, is an
HTTP server, although a JGrid Storage service can be
used either. The batch service receives a job description
template, downloads the executable from the file service
if necessary then submits the job on behalf of the user to
the local batch runtime environment. The results of the
execution are stored on an HTTP server and the user
receives a URL pointing to the location of the results.

Internally, the batch service is a Jini service wrapper. It
receives requests from the user, and forwards them in the
appropriate format to the batch environment. The current
implementation of the batch service relies on the
DRMAA (Distributed Resource Management) – a Global
Grid Forum – specification that provides a uniform
programming interface to various batch execution
environments.

Storage Service. The Storage service represents a remote
file system as a Jini service. It enables clients to perform
file and directory operations on a remote system. The key
difference between the storage service and an ordinary
file service is that it not only is a download/upload
service; it provides programmatic file operations such as
read/write on remote files.

Storage service users use a hierarchical set of proxies
to perform operations. The main service proxy provides
access to a user’s own storage space that is the root of the
user file system. Directory proxies represent the next level
of the hierarchy, while file proxies are at the lowest level.
When a file is selected, its proxy is downloaded, opened
and presented to the client as a remote file stream on
which read/write operations can be performed
transparently. This feature enables clients to access
remote files just like local ones. Users can also create
delegated file and directory proxies that allow other
services to read or write files on behalf of their owner.
The use of hierarchical proxies illustrates how proxies can
be used to partition service functionality.

5. Applications

Since JGrid is a service-oriented Grid system, it is not
merely a computation grid. Anything can be represented
as a service and hence can become part of the JGrid
service grid.

Consequently, as part of our project, we developed
several proof-of-concept applications to demonstrate the
applicability of the system, the development
methodology, the dynamic and reliable operation.

5.1. Computational Demos

We used JGrid to execute a biological application
performing pair-wise alignment of biological sequences.
The core computations used algorithms from the BioJava
library [15] dedicated to provide a Java framework for
processing biological data. The application demonstrated
the reliability of JGrid in executing long running
numerical applications, interaction of the Compute and
Storage services during execution, and also showed that
appropriate computational performance can be achieved
in a Java-based computational environment.

In another case study, a financial parallel Monte Carlo
simulation was developed using the master-worker
paradigm. The client application behaved as the master
process allocating computational tasks asynchronously to
Compute Services discovered dynamically at run time, as
well as collecting and evaluating the results.

5.2. Application Services

An interesting prototype Media Service has been

created for delivering on-demand streaming media
delivery. Based on the Java Media Framework (JMF), this
Jini service can stream media to clients. The benefit of
this service is that it is completely transparent, its
dynamic user interface supports media search;
consequently, users can find and play various media
contents very effectively. The user opens the main
window in the service browser, specifies keywords of the
requested media clip, then selects one from the results and
starts the playback process. The media can be controlled
similarly to a tape recorder.

 An Internet Radio Service has also been developed
that demonstrated the integration of Java, Jini and the
Java Media Framework in creating a service that feeds
live radio broadcast to clients.

Other examples of services include a live data source
service, a collaboration service with stereo 3D user
interface, and a dictating service to store recorded sound
memos at remote locations. They successfully
demonstrated that in a very straightforward manner JGrid
can be extended with services to support various scientific
and business applications.

6. Conclusions

In this paper we examined the advantages of using
Java and Jini in creating grid systems. We argued that
Java has an important role as a programming language
and platform for grids and that Jini extends this
environment with dynamic networking capabilities and a
distributed service-oriented programming model that
forms a strong base for grid technology.

We presented an overview of the JGrid system that
aims to demonstrate the benefits of Jini in the grid area.
We described the aims of the project, described how it
extends Jini, what services it contains and how they can
be used to create Grid applications.

Our current work, besides improving the system and
developing new services/applications, focuses on the use
of JGrid for business and health care applications.

Acknowledgments

The authors thank Krisztian Kuntner and Mark
Magyarodi for the design and implementation of the
discovery and security architecture of the JGrid
environment as well as Gergely Sipos, Peter Kacsuk
(MTA SZTAKI), Tamas Zsemlye (Sun Microsystems),
Laszlo Lovei, Gabor Pecsy (Eotvos University) for their
contribution to the JGrid project.

This work was supported in part by the Hungarian
Ministry of Education under Grant IKTA-5 089/2002 and
the National Office for Research and Technology

Department of Commerce under Grant GVOP-3.1.1.-
2004-05-0035/3.0. The generous support of Sun
Microsystems, Inc. under their Academic Equipment
Grant is gratefully acknowledged.

References

[1] J. Waldo and K. Arnold, The Jini Specifications. Jini
Technology Services, Addison-Wesley, Reading, MA,
USA, second edition, 2001.

[2] JGrid: A Jini-based Universal Service Grid,
http://www.irt.vein.hu/jgrid.

[3] A. Alexandrov, M. Ibel, K. E. Schauser, and C. Scheiman,
“SuperWeb: Research Issues in Java-Based Global
Computing,” Concurrency: Practice and Experience, June
1997.

[4] B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O.
Neary, K. E. Schauser , D. Wu, “Javelin: Internet-based
parallel computing using Java,” Concurrency: Practice and
Experience, Dec 1998, vol. 9, No. 11, pp. 1139-1160

[5] Sun Microsystems. Java Remote Method Invocation
Specification, JDK 1.1,
http://java.sun.com/products/jdk/rmi_ed, 1997.

[6] M. Migliardi, V. Sunderam. “The Harness metacomputing
framework,” In Proceedings of the Ninth SIAM Conference
on Parallel Processing for Scientific Computing, San
Antonio (TX), USA, March 22-24 1999.

[7] D. Kurzyniec, T. Wrzosek, D. Drzewiecki, V. Sunderam,
“Towards self-organizing distributed computing
frameworks: The H2O approach,” Parallel Processing
Letters, 2003, vol. 13, No. 2, pp. 273–290.

[8] D. Caromel, “ProActive Java Library for Parallel,”
Distributed and Concurrent Programmming, 2001,
http://www-sop.inria.fr/oasis/ProActive/

[9] N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J.
Darlington, “ICENI: An Open Grid Service Architecture
Implemented with Jini,” in Proc SuperComputing 2002
(SC2002), Baltimore, MD, USA (2002).

[10] Y.Huang, “JISGA: A Jini-based Service-oriented Grid
Architecture,” The International Journal of High

Performance Computing Applications 17 (2003) 317–327
ISSN 1094-3420.

[11] M. L. Kahn1, C. De. T. Cicalese1, “The CoABS Grid”, In
Proc. First International Workshop on Radical Agent
Concepts, January 2002, vol. 2564, pp. 125-134.

[12] R. Prodan, T. Fahringer, “ZENTURIO: An Experiment
Management System for Cluster and Grid Computing”, In
Proc. of the IEEE International Conference on Cluster

Computing, 2002, p. 9
[13] Sun Microsystems, Sun N1 Grid Engine 6,

http://www.sun.com/software/gridware/
[14] D. H. J Epema, M. Livny, R. van Dantzig, X. Evers, and J.

Pruyne, “A Worldwide Flock of Condors : Load Sharing
among Workstation Clusters,” Journal on Future
Generations of Computer Systems, 1996, vol. 12.

[15] M. Pocock, T. Down, T. Hubbard, “BioJava: open source
components for bioinformatics,” ACM SIGBIO Newsletter,
August 2000, vol. 20, No. 2, pp. 10-12.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

