
Mapping DSP Applications on Processor Systems with

Coarse-Grain Reconfigurable Hardware

Michalis D. Galanis
1
, Gregory Dimitroulakos

2
, and Costas E. Goutis

3

VLSI Design Laboratory, Electrical and Computer Engineering Department, University of Patras, Greece

{1mgalanis, 2dhmhgre, 3goutis}@ee.upatras.gr

Abstract

In this paper, we present performance results from
mapping five real-world DSP applications on an

embedded system-on-chip that incorporates coarse-grain

reconfigurable logic with an instruction-set processor.
The reconfigurable logic is realized by a 2-Dimensional

Array of Processing Elements. A mapping flow for

improving application’s performance by accelerating
critical software parts, called kernels, on the Coarse-

Grain Reconfigurable Array is proposed. Profiling is
performed for detecting critical kernel code. For mapping

the detected kernels on the reconfigurable logic a

priority-based mapping algorithm has been developed.
The experiments for three different instances of a generic

system show that the speedup from executing kernels on

the Reconfigurable Array ranges from 9.9 to 151.1, with
an average value of 54.1, relative to the kernels’

execution on the processor. Important overall application

speedups, due to the kernels’ acceleration, have been
reported for the five applications. These overall

performance improvements range from 1.3 to 3.7, with an

average value of 2.3, relative to an all-software execution.

1. Introduction

Reconfigurable architectures have received growing

interest in the past few years [1]. Reconfigurable systems

represent an intermediate approach between Application

Specific Integrated Circuits (ASICs) and general-purpose

processors. Such systems usually combine reconfigurable

hardware with one or more software programmable

processors. Reconfigurable processors have been widely

associated with Field Programmable Gate Array (FPGA)-

based systems. An FPGA consists of a matrix of

programmable logic cells, executing bit-level operations,

with a grid of interconnect lines running among them.

However FPGAs are not the only type of reconfigurable

logic. Several coarse-grain reconfigurable architectures

have been introduced and successfully built [1], [2], [3],

[4], [5], [6], [7], [8]. Coarse-grain reconfigurable logic has

been mainly proposed for speeding-up loops of

multimedia and DSP applications in embedded systems.

They consist of Processing Elements (PEs) with word-

level data bit-widths (like 16-bit ALUs) connected with a

reconfigurable interconnect network. Their coarse

granularity greatly reduces the delay, area, power

consumption and reconfiguration time relative to an

FPGA device at the expense of flexibility [1].

In this work, we consider a subclass of coarse-grain

architectures where the PEs are organized in a 2-

Dimensional (2D) array and they are connected with

mesh-like reconfigurable networks [1], [2], [3], [7]. This

type of reconfigurable logic is increasingly gaining

interest because it is simple to be constructed and it can be

scaled up, since more PEs can be added in the mesh-like

interconnect. In this paper, these architectures are called

Coarse-Grain Reconfigurable Arrays (CGRAs). A variety

of CGRA architectures has been presented in both

academia [1], [2], [3] and in industry [4], [7], [8].

Recently, design flows for System-on-Chip (SoC)

platforms composed by a processor and FPGA [9], [10]

found that when critical parts of the application, called

kernels, are moved for execution on the FPGA the

performance is improved. This is due to the fact that most

embedded DSP and multimedia applications spend the

majority of their execution time in few small code

segments (typically loops), the kernels. This implies that

an extensive solution search space, as in past

hardware/software partitioning works [11], [12] is not a

necessity.

A mapping flow for improving the application

performance in single-chip systems composed by an

instruction-set processor and a CGRA is proposed.

Speedups are achieved by accelerating critical software

parts (kernels) on the CGRA. The processor executes the

non-critical software parts. Mapping flows for processor-

FPGA systems [9], [10] showed that such type of

partitioning is feasible in embedded systems and it leads in

important speedups. Processor-CGRA systems are present

in both academia [2], [3], and in industry [4], [5], [7].

These SoCs is expected to further gain importance since

the CGRAs lead to smaller execution times and lower

power consumption of critical software parts when

This work was partially funded by the Alexander S. Onassis Public

Benefit Foundation

1-4244-0054-6/06/$20.00 ©2006 IEEE

compared with FPGAs. Thus, a mapping methodology

like the one presented in this paper, is considered as a

prerequisite for improving the performance of

applications in such embedded systems.

The mapping flow mainly consists of the following

steps: (a) profiling for detecting critical kernel code, (b)

Intermediate Representation (IR) creation, (c) mapping

algorithm for the CGRA architecture, and (d) compilation

to the instruction-set processor. We emphasize to the

mapping for CGRA architectures, since it considerably

affects the performance improvements through the kernels

acceleration. The proposed mapping procedure for

CGRAs is a priority-based (list-based) algorithm and it

targets a CGRA template architecture which can model a

variety of existing architectures [2], [3], [7].

The work of [4] describes a design flow for an XPP-

based system. Performance results from mapping DSP

algorithmic kernels on the XPP array are given. In [6] the

instruction-set extension of a RISC processor coupled

with a 4x4 XPP coarse-grain reconfigurable array is

described. Performance improvements relative to the

stand-alone operation of the RISC processor are shown

for an 8x8 IDCT. However, in [4] and in [6] the mapping

of a complete DSP application is not performed. In [13], it

is shown that a hybrid architecture composed by an

ARM926EJ-S and a CGRA similar to MorphoSys [3],

executes 2.2 times faster a H.263 encoder than a single

ARM926EJ-S processor. The design flow for the ADRES

architecture was applied to an MPEG-2 decoder in [14].

The kernel and the overall application speedup over an 8-

issue VLIW processor were 4.84 and 3.05, respectively.

In this paper, we provide results by applying the

proposed mapping flow in five real-life DSP applications,

coded in C language, on three instances of a generic

processor-CGRA system. A 4x4 array of PEs is used for

accelerating critical kernel code, while an ARM processor

executes the non-critical code. The applications are: (a) a

medical image processing application [15], (b) an IEEE

802.11a OFDM transmitter [16], (c) a wavelet-based

image compressor [17], (d) a still-image JPEG encoder,

and (e) a video compression technique [18]. The results

illustrate that the speedup from executing kernels on the

CGRA ranges from 9.9 to 151.1, with an average value of

54.1, relative to the kernels’ execution on the instruction-

set processor. Furthermore, significant overall application

speedups, ranging from 1.26 to 3.70, were achieved

relative to an all-processor execution of the application.

The rest of the paper is organized as follows: section 2

presents the system architecture and the mapping flow for

this system. Section 3 describes the CGRA architecture

template and the mapping algorithm for it. Section 4

presents the experimental results, while section 5

concludes this paper and outlines future research

activities.

2. Mapping flow

2.1. System architecture

A generic diagram of the considered hybrid SoC

architecture, that targets embedded DSP applications, is

shown in Figure 1. The platform includes: (a) Coarse-

Grain Reconfigurable Array for executing kernels, (b)

shared system data memory, and (c) an instruction-set

embedded processor. The processor is typically a RISC

processor, like an ARM7 [19].

CGRA Processor

Shared

Data RAM

Figure 1. Generic hybrid SoC architecture.

Communication between the CGRA and the processor

takes place via the shared data RAM and several direct

signals. Part of the direct signals is used by the processor

for controlling the CGRA by writing values to memory-

mapped registers located in the CGRA. Also, direct signals

are used by the CGRA for informing the processor. For

example, an interrupt signal is typically present which

notifies the processor that the execution of a critical

software part finished on the CGRA. Local data and

configuration memory exist in the CGRA, for quickly

loading data and configurations, respectively. This

generic system architecture can model a variety of

existing processor-CGRA SoCs, like the ones considered

in [2], [3], [5], [7].

2.2. Flow description

The proposed mapping flow for processor-CGRA

systems interests in increasing application’s performance

by mapping critical software parts on the coarse-grain

reconfigurable hardware. This flow takes advantage of the

fact that kernels of DSP and multimedia applications

contribute the most to the execution time.

The mapping flow is illustrated in Figure 2. The input

is an application described in a high-level language, like

ANSI C/C++. Firstly, profiling is performed in the input

source code for identifying the critical code sections, the

kernels. For performing profiling, the standard

debugger/simulator tools of the development environment

of a specific processor can be utilized. For example, for

the ARM processors, the instruction-set simulator (ISS) of

the ARM RealView Developer Suite (RVDS) [19] is

typically used. An instruction-set simulator that targets an

extension of the MIPS IV processor [20] is the

SimpleScalar toolset [21]. This simulator can be used

when this superset of the MIPS IV is coupled with the

CGRA in the targeted SoC platform. We consider as

kernels those code segments that contribute more than a

certain amount to the total application’s execution time on

the processor. For example, parts of the code that account

10% or more of the application’s time can be

characterized as kernels.

Input application (C/C++)

IR creation

Mapping to CGRA
Standard C/C++

Compilation

Configuration Executable code

IR

Kernels

Non-critical code
Profiling

Figure 2. Mapping flow for the processor-CGRA

architecture.

The profiling step outputs the kernels and the non-

critical code segments. The kernels will be mapped on the

CGRA for improving application’s performance, while

the non-critical code will be executed on the processor.

The non-critical segments are compiled using a standard

C/C++ compiler for the specific processor. Then, the

produced executable code runs on the processor and the

execution cycles are calculated using an instruction-set

simulator/debugger for the specific processor.

For mapping the critical parts on the CGRA, the

Intermediate Representation (IR) of each kernel code

segment is created. We have chosen in this work the

Control Data Flow Graph (CDFG) model of computation

as the IR. The CDFG is a model of computation

extensively used in mapping applications on

reconfigurable hardware [22]. The CDFG of each kernel

is input to our-developed mapping procedure, described in

section 3.2, for CGRA architectures. The mapping

procedure defines the configuration of the CGRA and

reports the clock cycles of the kernels executed on the

CGRA.

The communication mechanism used by the processor

and the CGRA preserves data coherency by requiring the

execution of the processor and the CGRA to be mutually

exclusive. The kernels are replaced in the software

description with calls to CGRA. When a call to CGRA is

reached in the software, the processor activates the CGRA

and the proper configuration is loaded on the CGRA for

executing the kernel. The data required for the kernel

execution are written to the shared data memory by the

processor. These data are read by the CGRA. When the

CGRA executes a specific critical software part, the

processor usually enters an idle state for reducing power

consumption. After the completion of the kernel

execution, the CGRA informs the processor typically

using a direct interrupt signal and writes the data required

for executing the remaining software. Then, the execution

of the software is continued on the processor and the

CGRA remains idle.

The mutual exclusive execution simplifies the

programming of the system architecture since

complicated analysis and synchronization procedures are

not required. However, the parallel execution on

processor and on the CGRA is a topic of our future

research activities.

The total execution cycles after partitioning the

application on the processor and the CGRA are:

Cycleshw/sw = Cyclesproc + CyclesCGRA (1)

where Cyclesproc represents the number of cycles needed

for executing the non-critical software parts on the

processor, and CyclesCGRA corresponds to the cycles that

are required for executing the software kernels on the

CGRA. The communication time between the processor

and the CGRA is included in the Cyclesproc and in the

CyclesCGRA since load and store operations that refer to the

shared data RAM are present in the non-critical parts and

in the kernels of each application. The CyclesCGRA have

been normalized to the clock frequency of the

microprocessor. The Cycleshw/sw are multiplied with the

clock period of the processor for calculating the total

execution time thw/sw after the partitioning.

The proposed mapping flow requires the execution

times of kernels on the coarse-grain reconfigurable

hardware. Since, those times can be also given by other

mapping algorithm than the one considered in this work,

the proposed flow can be applied in conjunction with

other mapping algorithms [22], [23], [24]. Additionally,

the flow is parametric to the type of coarse-grain

reconfigurable hardware, as the mapping procedures

abstract the hardware by typically considering resource

constraints, timing and area characteristics. Due to the

aforementioned factors, the design flow can be considered

retargetable to the type of coarse-grain reconfigurable

hardware. Thus, the proposed mapping flow can also take

into account other types of coarse-grain reconfigurable

hardware [25], and not only CGRAs.

The steps of the IR creation and the mapping to

CGRA, enclosed in the dashed line of Figure 2, have been

automated for an input software description in C

language. In particular, for the CDFG creation from the C

code, we have used the SUIF2 [26] and MachineSUIF

compiler infrastructures [27]. The mapping algorithm for

the CGRA is implemented in C++. In the following

section, we describe the CGRA architecture template and

the developed mapping algorithm for such types of

architectures.

3. Mapping algorithm for CGRAs

3.1. CGRA architecture template

The considered generic CGRA template is based on

characteristics found in the majority of existing 2D

coarse-grain reconfigurable architectures [1], [2], [3], [7]

and it can be used as a model for mapping applications to

such type of architectures. The proposed architecture

template is shown in Figure 3a. Each PE is connected to

its nearest neighbours, while there are cases [3], [7] where

there are also direct connections among all the PEs across

a column and a row. A PE typically contains one

Functional Unit (FU), which it can be configured to

perform a specific word-level operation each time.

Characteristic operations supported by the FU are ALU,

multiplication, and shifts. For storing intermediate values

between computations and data fetched from memory, a

small local data RAM exists inside a PE. Figure 3b shows

an example of a PE architecture. The FU of this PE has

two inputs and one output. The multiplexers are used to

select each input operand that can come from different

sources: (a) from the same PE’s RAM, (b) from the

memory buses and (c) from another PE. The output of

each FU can be routed to other PEs or to its local RAM.

The reconfiguration (context) register of a PE stores

control values (context word) that determine how the FU,

the local RAM and the multiplexers are configured. Also,

this context word determines where the output of the FU

is routed, thus defining the interconnections among the

PEs.

Configuration

memory

Main data

memory

S
cratch

-p
ad

 M
em

o
ry

(a)

In1 In2

Out
FU

register

out1 out2

RAM
in

R
eco

n
fig

u
ratio

n
 reg

ister

control

M
em

or
y

B
us

F
ro

m
P
E

s

..

control

(b)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Figure 3. (a) CGRA architecture template, (b)

Example of PE architecture.

The main configuration memory of the CGRA (Figure

3a) stores the whole configuration for setting up the

CGRA for the execution of application’s kernels.

Configuration caches distributed in the CGRA and

reconfiguration registers inside the PEs are used for the

fast reconfiguration of the CGRA. A configuration cache

stores a few contexts locally, which can be loaded on

cycle-by-cycle basis. The configuration contexts can also

be loaded from the configuration memory at the cost of

extra delay, if the local configuration caches are not large

enough to store the configuration of the kernel body.

The CGRA’s data memory interface consists of: (a)

the memory buses, (b) the scratch-pad memory [28]

which is the first level (L1) of the CGRA’s memory

hierarchy, and (c) the base memory level, called L0,

which is formed by the local RAMs inside the PEs. The

main data memory of the CGRA is a part of the system’s

shared data memory (Figure 1). The PEs residing in a row

or column share a common bus connection to the scratch-

pad memory, as in [2], [3], [7]. The L1 serves as a local

RAM memory for quickly loading data in the PEs of the

CGRA. The interconnection network together with the L0

acts as a high-bandwidth foreground memory, since

during each cycle several data transfers can take place

through different paths in the CGRA.

We note that the organization of the PEs and their

interface to the data memory largely resembles the

popular MorphoSys reconfigurable array [3]. However,

with little modifications it can model other CGRA

architectures. For example, if we allow only the PEs of

the first row of the CGRA to be connected to the scratch-

pad memory through load/store units then our template

can model the data memory interface of the CGRA in

[14].

3.2. Algorithm description

The task of mapping applications to CGRAs is a

combination of scheduling operations for execution [29],

mapping these operations to particular PEs, and routing

data through specific interconnects in the CGRA. The first

input to the mapping algorithm is a DFG G(V, E) that

represents the kernel (critical basic block) which is to be

mapped to the CGRA. The algorithm is applied to all the

application’s kernels, one at a time, for computing the

execution cycles on the CGRA. The description of the

CGRA architecture is the second input to the mapping

process. The CGRA architecture is modelled by a

undirected graph, called CGRA Graph, GA(Vp, EI). The Vp

is the set of PEs of the CGRA and EI are the

interconnections among them. The CGRA architecture

description includes parameters, like the number of the

PEs, the size of the local RAM inside a PE, the memory

buses to which each PE is connected, the bus bandwidth

and the scratch-pad memory access times.

The PE selection for scheduling an operation, and the

way the input operands are fetched to the specific PE, will

be referred to hereafter as a Place Decision (PD) for that

specific operation. Each PD has a different impact on the

operation’s execution time and on the execution of future

scheduled operations. For this reason, a cost is assigned to

each PD to incorporate the factors that influence the

scheduling of the operations. The goal of the mapping

algorithm is to find a cost-effective PD for each operation.

The proposed priority (list) based mapping algorithm is

shown in Figure 4.

The algorithm is initialized by assigning to each DFG

node a value that represents its priority. The priority of an

operation is calculated as the difference of its As Late As

Possible (ALAP) minus its As Soon As Possible (ASAP)

value. This result is called mobility. Also variable p,

which indirectly points each time to the most exigent

operations, is initialized by the minimum value of

mobility. In this way, operations residing in the critical

path are considered first in the scheduling phase. During

the scheduling phase, in each iteration of the while loop,

QOP queue takes via the ROP() function the ready to be

executed operations which have a value of mobility less

than or equal to the value of variable p. The first do-while

loop schedules and routes each operation contained in the

QOP queue one at a time, until it becomes empty. Then,

the new ready to be executed operations are considered

via ROP() function which updates the QOP queue.

// SOP : Set with operations to be scheduled

// G(V,E) : Kernel’s DFG

// QOP : Queue with ready to schedule operations

SOP = V;

AssignPriorities(G);

p = Minimum_Value_Of_Mobility; // Highest priority

while (SOP ø) {

QOP = queue ROP(p);

 do {

Op = dequeue QOP;

 (Pred_PEs, RTime) = Predecessors(Op);

do {

 Choices = GetCosts(Pred_PEs, RTime);

 RTime++;

} while(ResourceCongestion(Choices));

 Decision =

 DecideWhereToScheduleTimePlace(Choices);

ReserveResources(Decision);

Schedule(Op);

SOP = SOP – Op;

 } while(QOP ø);

p = p+1;

}

Figure 4. CGRA mapping algorithm.

The Predecessors() function returns (if exist) the PEs

where the operation’s Op’s predecessors (Pred_PEs) were

scheduled and the earliest time (RTime) at which the

operation Op can be scheduled. The RTime (eq. (2))

equals to the maximum of the times where each of the

Op’s predecessors finished executing tfin. P is the set

having the predecessor operations of Op.

1,..,
max ,0 fin ii P Op

RTime Op t Op (2)

where iOp P Op . The function GetCosts() returns the

possible PDs and the corresponding costs for the

operation Op in the CGRA in terms of the Choices

variable. It takes as inputs the earliest possible schedule

time (RTime) for the operation Op along with the PEs

where the Pred_PEs have been scheduled. The function

ResourceCongestion() returns true if there are no

available PDs due to resource constraints. In that case

RTime is incremented and the GetCosts() function is

repeated until available PDs are found. The

DecideWhereToScheduleTimePlace() function analyzes

the mapping costs from the Choices variable. The

function firstly identifies the subset of PDs with minimum

delay cost. From the resulting PD subset, it selects the one

with minimum interconnection cost as the one which will

be adopted. The function ReserveResources() reserves the

resources (memory bus, PEs, local RAMs and

interconnections) for executing the current operation on

the selected PE. More specifically, the PEs are reserved as

long as the execution takes place. For each data transfer,

the amount and the duration of bus reservation is

determined by the number of the words transferred and

the memory latency, respectively. The local RAM in each

of the PEs is reserved according to the lifetime of the

variables [29]. Finally, the Schedule() records the

scheduling of operation Op. After all operations are

scheduled, the execution cycles of the input kernel are

reported.

4. Experiments

4.1. Set-up

Five real-life DSP applications, written in C language,

were mapped on three different instances of the generic

processor-CGRA platform using the developed mapping

flow. These applications are: (a) a cavity detector which is

a medical image processing application [15], (b) the

baseband processing of an IEEE 802.11a OFDM

transmitter [16], (c) a wavelet-based image compressor,

public available at [17], (d) a still-image JPEG encoder,

and (e) a video compression technique, called Quadtree

Structured Difference Pulse Code Modulation (QSDPCM)

[18]. The experiments were performed using the following

applications’ inputs: (a) an image of size 640x400 bytes

for the cavity detector, (b) 4 payload symbols for the

OFDM transmitter at a 54 Mbps rate, (c) an image of size

512x512 bytes for the wavelet-based image compressor,

(d) an image of size 256x256 bytes for the JPEG encoder,

and (e) two video frames of size 176x144 bytes each for

the QSDPCM.

We have used three different architectures of 32-bit

ARM processors [19], which are RISC processors widely

used in embedded systems. These processors are: (a) an

ARM7 clocked at 100 MHz, (b) an ARM9 clocked at 250

MHz, and (c) an ARM10 having clock frequency of 325

MHz. These clock frequencies were taken from reference

designs from the ARM website [19] and they are

considered as typical for these processors. The five

applications were compiled to generate binary files for the

ARM processors using the highest level of software

optimizations. The ARM RVDS (version 2.2) [19] was

used for calculating the execution cycles of applications’

parts for each one of the three processors. The instruction-

set simulator of the RVDS was used for profiling the

application’s C source code for detecting kernel code

segments. In this work, kernels are considered those code

sections that contribute 10% or more to the application’s

execution time.

The CGRA architecture used in this experimentation

and coupled each time with one of the three processors is

a 4x4 array of PEs. The PEs are directly connected to all

other PEs in the same row and same column through

vertical and horizontal interconnections, as in a quadrant

of MorphoSys [3]. There is one 16-bit FU in each PE that

can execute any supported operation (i.e. ALU,

multiplication, shift) in one CGRA’s clock cycle. Each PE

has a local RAM of size 8 words; thus the L0 size is 256

bytes. The direct connection delay among the PEs is zero

cycles. Two buses per row are dedicated for transferring

data to the PEs from the scratch-pad (L1) memory. The

delay of fetching one word from the scratch-pad memory

is one cycle. We assume that the CGRA configuration

caches are sufficiently large to store the configuration of

the applications’ kernels to be mapped on the CGRA. In

this case, cycle-by-cycle reconfiguration of the CGRA is

supported. The CGRA’s clock frequency is set to 150

MHz as in the reconfigurable array of [4].

4.2. Results

We have profiled the five DSP applications and we

have detected their kernels for each one of the three ARM

processors. For all applications the detected kernels were

loops that they consist of word-level operations (ALU,

multiplications, shifts) that match the granularity (data

bit-width) of the PEs in the 4x4 CGRA. In all

applications, except from the QSDPCM, the number of

kernels (loops) in each application equals 4. For the

QSDPCM, three loops contributed 10% or more to the

total execution time. Thus, the speedup of each

application will come from accelerating a small number

of kernels. The small number of the detected kernels in

each application means that the usage of exploration

algorithms, which typically examine thousands of

possible partitions and utilize complex algorithms [11],

[12] is not necessary in the case of partitioning the

considered applications on the processor-CGRA SoCs.

We note that the detected kernels of all applications were

critical code parts when executed on each one of the three

ARM processors.

We have unrolled the detected critical loops 16 times

for mapping them on the CGRA. We have investigated

that unrolling the kernels of the considered applications

more than 16 times, the execution cycles, when these

kernels were mapped on the 4x4 CGRA, slightly

decrease. Thus, we have selected the unroll factor equal to

16 since it gives significant reductions of the execution

cycles of kernels over the execution of the original loop

body on the 4x4 CGRA.

Figure 5 shows the speedups for executing all the

kernels of each application on the 4x4 CGRA relative to

the execution of the kernels on the processor. For every

application, the speedup is relative to each one of the

three ARM processor used. For example, the left most bar

in each application corresponds to the performance

improvement obtained when the execution cycles of the

kernels are compared to the ones for the execution of the

kernels on the ARM7. The kernel speedup is defined as:

Spkernel = Cycleskernels_sw / Cycleskernels_CGRA_norm (3)

where Cycleskernels_sw represents the number of cycles

required for executing the kernels on the processor and

the Cycleskernels_CGRA_norm represents the number of cycles

for executing the kernels on the CGRA. We note that the

cycles reported from the CGRA mapping algorithm

described in section 3.2, are normalized to the clock

frequency of the processor in the system platform, using

the following relation:

ker _ _ ker _

proc

nels CGRA norm nels CGRA

CGRA

Clock
Cycles Cycles

Clock
 (4)

where the Cycleskernels_CGRA are the clock cycles reported

from the developed mapping tool for CGRAs, Clockproc is

the clock frequency of the processor and ClockCGRA is the

clock frequency of the CGRA.

90.9
102.8

53.7

151.1

119.0

30.9 37.1

16.4

48.1 43.5

21.6 25.4

9.9

30.4 30.3

0

20

40

60

80

100

120

140

160

C
av

ity

O
FD

M

C
om

pr
es

so
r

JP
EG

Q
SD

PC
M

ARM7 ARM9 ARM10

S
p

ee
d

u
p

Figure 5. Kernel speedups on the 4x4 CGRA for

various processor systems.

From Figure 5, it is deduced that important speedups

are achieved when critical kernels are executed on the

CGRA. The performance improvements range from 9.9 to

151.1, with an average value of 54.1 for all the

applications and all the cases of ARM processors. Even in

the case where the processors are clocked in a higher

clock frequency than the CGRA (as in the ARM9 and

ARM10 SoCs) the speedups are significant. The speedups

are due to the fact that the inherent operation parallelism

of the kernels is better exploited by the available

Processing Elements of the CGRA than the functional

units of the ARM processors. These results prove that the

CGRA architectures are efficient in accelerating critical

loops of DSP and multimedia applications which leads in

improving the overall performance of an application

executed on a processor-CGRA system as it will be

shown in Table 1.

For the ARM7 system the average kernel speedup for

the five applications is 103.5, for the ARM9 system is

35.2, and for the ARM10 system is 23.5. From Figure 5 it

is noted that the kernel speedup decreases when a newer-

generation and higher-clocked instruction-set processor is

used in the platform. The largest speedup is obtained

relative to the ARM7 solution, which is the oldest-

generation of the ARM processors used in this work and

the lowest-clocked one. The speedup relative to the kernel

execution on the ARM9 is approximately 3 times in

average smaller than the ARM7 one. Furthermore, the

kernel speedup decreases more slowly when the ARM10

is used in the platform. In this case, the speedup relative

to the kernel execution on the ARM10 is approximately

1.5 times in average smaller than the ARM9 one. This is

justified by the facts that the clock difference of the

ARM9 and ARM10 is smaller than the ARM7 and ARM9

and that the ARM9 is a more contemporary

microprocessor generation to the ARM10 than the ARM7.

Table 1. Execution cycles and speedups for the

processor-CGRA SoCs

Application
Proc.

Type
Cyclesinit Cycleshw/sw Speedup

ARM7 178,828,950 87,512,166 2.04

ARM9 161,441,889 85,566,541 1.89 Cavity

ARM10 155,356,758 87,255,890 1.78

ARM7 397,851 121,873 3.26

ARM9 362,990 118,197 3.07 OFDM

ARM10 334,375 119,455 2.80

ARM7 25,832,508 11,564,753 2.23

ARM9 20,574,658 10,135,735 2.03 Compressor

ARM10 17,854,928 10,013,173 1.78

ARM7 23,003,868 6,212,160 3.70

ARM9 19,951,193 6,785,540 2.94 JPEG

ARM10 16,930,629 6,254,858 2.71

ARM7 4,026,384,618 3,075,311,802 1.31

ARM9 3,895,248,922 3,039,239,650 1.28 QSDPCM

ARM10 3,608,029,180 2,840,231,680 1.27

Average: 2.27

The execution cycles and the performance results from

applying the proposed mapping flow in the five

applications are presented in Table 1. For every

application, each one of the three considered ARM

processor types (Proc. Type) is used for estimating the

clock cycles (Cyclesinit) required from executing the

whole application on the processor. The application

speedup is calculated as:

Spapp = Cyclesinit / Cycleshw/sw (5)

where Cycleshw/sw represents the execution cycles after the

partitioning and the mapping of the kernels on the CGRA

and the non-critical code on the processor.

From the results given in Table 1, it is evident that

significant performance improvements are achieved when

critical software parts are mapped on the 4x4 CGRA. The

application speedup for the five applications and for the

processor used ranges from 1.27 to 3.70, with an average

value of 2.27. Such amounts of speedups were also

considered as important in previous works as in [13],

where a video encoder executed 2.2 times faster on a

processor-CGRA SoC than an all-software solution. It is

noticed from Table 1 that the largest overall application

performance gains are achieved for the ARM7 system,

fact that is explained by the obtained kernel speedups

illustrated in Figure 5 which were the largest ones among

the three ARM-based systems. The average application

speedup of the five DSP benchmarks for the ARM7

system is 2.51, for the ARM9 is 2.24, while for the

ARM10 system is 2.07. Thus, even when the 4x4 CGRA

is coupled with a modern embedded processor, like the

ARM10, which is clocked at a higher clock frequency

(approximately two times larger), the overall application

speedup is significant.

Table 2. Exploration of the speedup relative to the

clock frequency of the CGRA

Application
Proc.

Type

Speedup

(100 MHz)

Speedup

(150 MHz)

ARM7 2.03 2.04

ARM9 1.86 1.89 Cavity

ARM10 1.75 1.78

ARM7 3.23 3.26

ARM9 2.99 3.07 OFDM

ARM10 2.70 2.80

ARM7 2.21 2.23

ARM9 1.96 2.03 Compressor

ARM10 1.71 1.78

ARM7 3.67 3.70

ARM9 2.88 2.94 JPEG

ARM10 2.63 2.71

ARM7 1.31 1.31

ARM9 1.28 1.28 QSDPCM

ARM10 1.26 1.27

Average: 2.23 2.27

We mapped the five applications in the three SoCs

where the 4x4 CGRA is now clocked at 100 MHz, instead

of 150 MHz as in the previous results. The clock

frequency of the CGRA in the MorphoSys SoC [3] was

also 100 MHz. The three considered ARM processors

have similar clock frequencies as in the previous

experiments. In Table 2, the application speedups for

these two different clock frequencies of the CGRAs are

given. From these results it is deduced that the speedup

slightly decreases when the clock frequency of the CGRA

becomes smaller. The average speedup for the five

applications and for the three ARM-based systems is 2.23

for the clock of 100 MHz, while for the 150 MHz clock

the average speedup is slightly larger since it is equal to

2.27. Thus, we can achieve somewhat similar speedups if

the CGRA is clocked at a smaller frequency. In this case,

the system’s energy consumption is expected to be

reduced.

5. Conclusions - Future work

A mapping flow for improving system performance by

executing critical kernel code on the coarse-grain

reconfigurable hardware of a processor-based SoC was

presented. Results from mapping five DSP applications

on three instances of a processor-CGRA platform show

that the CGRAs are efficient in accelerating kernel code

since the average kernel speedup was 54.1. This resulted

in important overall performance improvements that

ranged from 1.3 to 3.7. Future work focuses on exploiting

the possible performance improvements of parallel

execution of the processor and the CGRA.

References

[1] R. Hartenstein, “A Decade of Reconfigurable Computing:

A Visionary Retrospective”, in Proc. of ACM/IEEE DATE

’01, pp. 642-649, 2001.

[2] T. Miyamori and K. Olukutun, “REMARC: Reconfigurable

Multimedia Array Coprocessor”, in IEICE Trans. On

Information and Systems, pp. 389-397, 1999.

[3] H. Singh, L. Ming-Hau, L. Guangming, F.J. Kurdahi, N.

Bagherzadeh, E.M. Chaves Filho, “MorphoSys: An

Integrated Reconfigurable System for Data-Parallel and

Communication-Intensive Applications”, in IEEE Trans. on

Computers, vol. 49, no. 5, pp. 465-481, May 2000.

[4] V. Baumgarte, G. Ehlers, F. May, A. Nuckel, M. Vorbach,

M. Weinhardt, “PACT XPP - A Self-Reconfigurable Data

Processing Architecture”, in the Journal of

Supercomputing, Springer, vol. 26, no. 2, pp. 167-184,

September 2003.

[5] J. Becker, M. Vorbach, “Architecture, Memory and

Interface Technology Integration of an Industrial/Academic

Configurable System-on-Chip (CSoC)”, in Proc. of

Workshop VLSI (WVLSI ’03), IEEE Press, pp. 107-112,

2003.

[6] J. Becker, A. Thomas, “Scalable Processor Instruction Set

Extension”, in IEEE Design & Test of Computers, vol. 22,

no. 2, pp. 136-148, 2005.

[7] Morpho Technologies, www.morphotech.com, 2005.

[8] D-Fabrix array, Elixent Ltd., www.elixent.com, 2005.

[9] J. Villareal, D. Suresh, G. Stitt, F. Vahid, W. Najjar,

“Improving Software Performance with Configurable

Logic”, in Design Automation for Embedded Systems,

Springer, vol. 7, pp. 325-339, 2002.

[10] G. Stitt, F. Vahid, S. Nematbakhsh, “Energy Savings and

Speedups from Partitioning Critical Software Loops to

Hardware in Embedded Systems”, in ACM Trans. on

Embedded Computing Systems (TECS), vol.3, no.1, pp.

218-232, Feb. 2004.

[11] P. Eles, Z. Peng, K. Kuchchinski and A. Doboli, “System

level hardware/software partitioning based on simulated

annealing and tabu search”, in Design Automation for

Embedded Systems, Springer, vol. 2, no. 1, pp. 5-32, Jan.

1997.

[12] D.D. Gajski, F. Vahid, S. Narayan, and J. Gong, “SpecSyn:

An environment supporting the specify-explore-refine

paradigm for hardware/software system design”, in IEEE

Trans. on VLSI Syst., vol. 6, no. 1, pp. 84–100, 1998.

[13] Y. Kim, C. Park, S. Kang, H. Song, J. Jung, K. Choi,

“Design and Evaluation of a Coarse-Grained

Reconfigurable Architecture”, in Proc. of International

SoC Design Conference (ISOCC ’04), pp. 227-230, 2004.

[14] B. Mei, S. Vernalde, D. Verkest, R. Lauwereins, “Design

Methodology for a Tightly Coupled VLIW/Reconfigurable

Matrix Architecture, A Case Study”, in Proc. of ACM/IEEE

DATE ’04, pp. 1224-1229, 2004.

[15] M. Bister, Y. Taeymans, J. Cornelis, “Automatic

Segmentation of Cardiac MR Images”, Computers in

Cardiology, IEEE Computer Society Press, pp.215-218,

1989.

[16] IEEE 802.11a Wireless LAN standard,

http://grouper.ieee.org/groups/802/11/, 2005.

[17] Honeywell Inc.,

http://www.htc.honeywell.com/projects/acsbench, 2005.

[18] P. Strobach, “Qsdpcm - A New Technique in Scene

Adaptive Coding”, in Proc. of 4th European Signal

Processing Conf., Grenoble, France, pp. 1141-1144, Sep.

1988.

[19] ARM Corp., www.arm.com, 2005.

[20] MIPS Corp., www.mips.com, 2005.

[21] SimpleScalar LLC, www.simplescalar.com, 2005.

[22] N. Bansal, S. Gupta, N. Dutt, A. Nikolau, R. Gupta,

“Network Topology Exploration of Mesh-Based Coarse-

grain Reconfigurable Architectures”, in Proc. of

ACM/IEEE DATE ’04, pp. 474-479, 2004.

[23] B. Mei, S. Vernalde, D. Verkest, H. De Man, R.

Lauwereins, “Exploiting Loop-Level Parallelism on

Coarse-grained Reconfigurable Architectures Using

Modulo Scheduling”, in Proc. of ACM/IEEE DATE ’03, pp.

255-261, 2003.

[24] J. Lee, K. Choi, N. D. Dutt, “Compilation Approach for

Coarse-grained Reconfigurable Architectures”, in IEEE

Design & Test of Computers, vol. 20, no. 1, pp. 26-33, Jan.-

Feb., 2003.

[25] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and

R. R. Taylor, “PipeRench: A virtualized programmable

datapath in 0.18 micron technology”, in Proc. of IEEE

Custom Integrated Circuits Conference, pp. 63-66, 2002.

[26] SUIF2 compiler infrastucture,

http://suif.stanford.edu/suif/suif2/index.html, 2005.

[27] MachineSUIF,

http://www.eecs.harvard.edu/hube/research/machsuif.html,

2005.

[28] P. R. Panda, N. Dutt, and A. Nicolau, Memory Issues in

Embedded Systems-on-Chip: Optimizations and

Exploration, Springer, 1999.

[29] G. De Micheli, Synthesis and Optimization of Digital

Circuits, McGraw-Hill, 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

