Multi-Clock Pipelined Design of an IEEE 802.11a Physical Layer
Transmitter

Maryam Mizani and Daler Rakhmatov

University of Victoria
Department of Electrical and Computer Engineering
Victoria, BC, V8P5C2 Canada

{mmizani, daler}@ece.uvic.ca

Abstract

Among different wireless LAN technologies 802.11a
has recently become popular due to its high throughput,
large system capacity, and relatively long range. In this
paper, we propose a reconfigurable architecture for the
802.11a physical layer transmitter, which has low la-
tency and low power consumption due to its pipelined
structure. Data from the MAC layer can continuously
flow through the pipeline without excessive buffering
and handshaking within the physical layer. Dynami-
cally reconfiguring this architecture to work at any data
rate supported by 802.11a (eight different modes) can be
performed within a few cycles, simply by adjusting the
period of two clock signals and changing the value of a
3-bit control signal. Our architecture, prototyped on a
Xilinx Virtex-II Pro FPGA, occupies the area of 2059
slices and is estimated to consume 500 mW . These
figures can be improved substantially in custom ASIC
implementations.

1. Introduction

The rapid advances in CMOS technology have led
to remarkable proliferation of mobile devices and wire-
less networks in the recent years. The current IEEE
standards for wireless LAN include 802.11a (5 GHz, 54
Mbps), 802.11b (2.4 GHz, 11 Mbps), and 802.11g (2.4
GHz, 54 Mbps) variants. The 802.11a standard sup-
ports nearly five times the data rate and as much as
ten times the overall system capacity of 802.11b LANs
[1, 2, 3]. In comparison with 802.11g operating at 2.4
GHz, 802.11a may be more popular due to its 5 GHz
frequency. The 5 GHz band offers the advantages of
higher data rates, more available spectrum, less shar-
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ing with other uses (e.g., cordless phones and Bluetooth
radios), and a better environment with less noise and
interference from other electronic devices [4].

The physical layer of a 802.11a transmitter consists
of two protocol functions: the physical layer conver-
gence procedure (PLCP) that maps data units into a
framing format suitable for transmitting, and the phys-
ical medium dependent (PMD) layer. This paper is
focused on the implementation of the PLCP part that
is power-efficient and easily reconfigurable to work at
different rates during transmission.!

The key design idea is to use a pipeline strategy
that supports all eight different modes defined in the
802.11a standard. Each stage of the pipeline can work
on data of different size. To maintain a continuous flow
of data through the pipeline, each stage is driven by a
different clock and a different controller. The whole ar-
chitecture needs four clock signals, two of which are not
variable due to the fixed output rate of 20 Msample/s.
The other two clocks, however, vary to support dif-
ferent transmission rates. Reconfiguration of this sys-
tem for working at different modes is very efficient, as
switching between different data rates requires chang-
ing only the frequency of two clocks and the value of
a 3-bit mode signal. Since data is continuously flow-
ing through the pipeline, we can satisfy the throughput
constraints at slower clocks and, consequently, at lower
supply voltages.

The rest of the paper is organized as follows. In
section 2 we present an overview of the physical layer
of the 802.11a wireless LAN standard [1], related work,
and our contributions. In section 3 we provide the
details of our architectural design, and in section 4 we
present implementation results (delay, area and power)

1We are currently working on the extensions of the proposed
architecture to handle data reception as well.
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Figure 1. 802.11a PHY transmitter.

for the proposed architecture prototyped on a Xilinx
Virtex-II Pro FPGA. Finally, section 5 concludes the

paper.
2. IEEE 802.11a PLCP layer design

The 802.11a PHY transmitter receives MAC Pro-
tocol Data Units (MPDU) broken into octets. These
octets are encapsulated into a frame called PLCP Pro-
tocol Data Unit (PPDU) at the PHY PLCP layer. The
PLCP processes MPDU according to the requirements
specified by the MAC layer. The appropriate header
and the scrambled data are encoded, interleaved, mod-
ulated (BPSK, QPSK, 16-QAM, or 64-QAM), mapped
onto OFDM carriers, and converted to time domain us-
ing IFFT. The output of the IFFT block is cyclicly ex-
tended, windowed, and prepended with the signal field
and preamble. The resulting PPDU is interpolated and
upconverted in the PHY PMD layer and passed to the
RF circuit in I/Q format. A block diagram of the phys-
ical layer transmitter is shown in Figure 1. For more
details the reader is referred to the IEEE 802.11a Stan-
dard document [1].

Recent literature reports both software-based and
hardware-based implementations of the 802.11a phys-
ical layer. Constrained by the sequential execution
model, software implementations on high-performance
DSPs require large number of instructions per cycle
to avoid excessively high clock frequencies in order to
achieve the required data rate [5, 6]. Custom hardware,
on the other hand, can fully exploit application-specific
parallelism to achieve high throughput at low frequen-
cies. However, in the context of 802.11a, hardware-
based implementations may suffer from inefficient pro-
grammability to handle different data rates. One ap-

proach is to create hardware blocks with configuration
memories, whose contents can be changed at runtime
to tune a block to a different data rate. Changing
the state of these configuration memories (e.g., loading
control registers) may take tens of cycles, as tens of
configuration bytes may need to be loaded [7]. Even if
hardware programmability is not an issue, there is still
another problem that needs to be addressed: differ-
ent blocks of the PHY transmitter may have different
processing rates. Consequently, the architecture should
incorporate certain buffering and handshaking between
blocks whose processing rates do not match [8] (unless
such blocks are clocked by different signals and care-
fully pipelined). For example, as MPDU octets enter
the transmitter chain, blocks may need to wait for the
acknowledgement of the current octet (usually wait-
ing for a few clock cycles) before processing the next
octet. As a result, the time to prepare a frame may
be quite long, and the system clock frequency may ex-
ceed 100 MHz in order to meet the 802.11a throughput
constraints [9]. In multi-clock pipelined architectures,
where data can be processed non-stop (without waiting
for the acknowledge signals), the same throughput can
be achieved at lower clock frequencies. Reducing the
clock rate enables lower supply voltages, which signif-
icantly reduces the power consumption. Our architec-
ture is an example of such an approach. Furthermore,
its reconfiguration to work at different modes is very ef-
ficient, only requiring the corresponding frequency ad-
justments of two clock signals and changing the value
of the mode signal.
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Figure 2. Pipelined architecture of 802.11a PHY transmitter.

3. Proposed pipelined architecture

The proposed pipelined architecture of the 802.11a
PLCP layer consists of four stages separated by three
inter-stage buffers, as shown in Figure 2. Each of these
buffers has two banks — when the previous stage writes
one bank, the next stage reads the other bank. For
eight different modes, corresponding to eight different
data rates (6, 9, 12, 18, 24, 36, 48, and 54 Mbps), Table
1 shows the modulation type, coding rate, and the data
rate of four pipeline stages. Stage-by-stage operation
of the pipeline is as follows.

Stage 1: Data octets continuously enter the input
buffer after receiving START-REQUEST signal from
the MAC layer, until the END-REQUEST signal is
received. At the same time, the input buffer serially
sends out data to the scrambler. After scrambling,
data is coded and punctured according to the working
mode, and finally saved in the first inter-stage buffer
of size 128x16 bits.

Stage 2: The interleaver generates addresses to
read data in the interleaved order from the first inter-
stage buffer. The modulator receives the interleaved
data bit stream and maps it into a mode-specific M-
QAM constellation. After modulation, regardless of
the mode, there will be 48 complex samples saved in
the second inter-stage buffer of size 128x40 bits.?

Stage 3: The samples from the second inter-stage
buffer and pilot subcarriers enter the IFFT block in the

2We have chosen 40 bits for calculations involving complex
numbers.

proper order. IFFT has a pipeline structure as well, so
that it does not stop the flow of data (see section 3.3
for details). The output of IFFT is stored in the third
inter-stage buffer of size 128x40 bits.

Stage 4: When the first OFDM symbol of the data
is at the first stage of the IFFT pipeline, the RF front
end has already started reading the preamble. Once
the preamble is completely transmitted, the RF front
end starts transmitting the header (previously saved in
bank 1 of the third inter-stage buffer). Meanwhile, the
first OFDM symbol of the data is written into bank 2
of the third inter-stage buffer, ready to be transmitted
after the header. It should be noted that the header
data rate is always fixed at 6Mbps using BPSK modu-
lation. Therefore, to generate the OFDM header sym-
bol, we first enter the header bits into the pipeline and
save the generated OFDM symbol in the first bank of
the last inter-stage buffer. Then, we adjust the clock
rate according to the desired mode and start generating
OFDM symbols of the data.

3.1. Fast reconfigurability

For throughput-constrained applications such as
wireless networking, the reconfiguration time may be of
a special concern since it has a direct influence on the
overall system performance. In such systems, the key
functionalities that are required to be flexible should
be made fast-reconfigurable.

Using our proposed pipelined architecture, the data
rate at the third and forth stage of the pipeline is fixed,



Stagel Stage2 Stage3 Staged
Mode | Modulation | Coding rate | Data rate | Data rate Data rate Data rate

(Mbps) (Mbps) | (Msample/s) | (Msample/s)

0 BPSK 1/2 6 12 18 20

1 BPSK 3/4 9 12 18 20

2 QPSK 1/2 12 24 18 20

3 QPSK 3/4 18 24 18 20

4 16-QAM 1/2 24 48 18 20

5 16-QAM 3/4 36 48 18 20

6 64-QAM 2/3 48 72 18 20

7 64-QAM 3/4 54 72 18 20

Table 1. Modulation types, coding rates and data rates for different modes.

as it is shown in Table 1. As a result, the hardware
blocks of these two pipeline stages are not reconfig-
urable. At the first and second stages of the pipeline,
only the puncturer, interleaver, and modulator are re-
configurable.

The reconfigurable puncturer applies different punc-
turing patterns to change the data rate according to
the working mode. The coding rate of 1/2 at the out-
put of the coder will be increased to 3/4 for mode
1, 3, 5, and 7 and to 2/3 for mode 6. The reconfig-
urable interleaver uses different types of permutations
according to the working mode, as discussed in section
3.2. The reconfigurable modulator breaks the input bit
stream into bit-groups of the required size and maps a
complex number to each bit-group. The size of bit-
groups, Ngpsc, representing the number of coded bits
per OFDM subcarrier, varies between 1, 2, 4, and 6 for
BPSK, QPSK, 16-QAM, and 64-QAM modulations, re-
spectively.

A major advantage of our proposed architecture is
that it allows efficient frame-by-frame reconfigurabil-
ity since only a few blocks should be adjusted through
the reconfiguration. The mode signal which defines the
functionality of the reconfigurable hardware blocks is
only 3-bit wide. It is an immediate input to the sys-
tem and its value can be changed very quickly. The
mode signal is also fed to the clock circuitry that gen-
erates the two adjustable clocks for the first and second
stage of the pipeline. The frequencies of these clocks
are adjusted according to the selected mode. In other
words, changing the reconfiguration of the transmitter
to work with a different data rate is as simple as chang-
ing the value of the mode signal and waiting for a few
clock cycles till the clocks are correctly adjusted. This
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process is much faster compared to the conventional
methods with time-consuming configuration memory
downloads.

3.2. Optimized interleaver

Figure 3 illustrates a regular interleaver, where data
is read from buffer Bufl and is written into buffer Buf2
in an interleaved order. Instead of the regular inter-
leaver, we use a simple circuit that provides interleaved
addresses to Bufl, so that data is read directly out of
Bufl in the interleaved order. The block diagram is re-
duced to what is shown in Figure 4. The delay and area
of the interleaver ROM and Buf2 are thus eliminated.

The interleaver circuit applies two permutations to



generate the interleaved addresses as defined by equa-
tions (1) and (2) [1]. In these equations k is the index
(address) of coded bits saved in Bufl, i is the generated
index after the first permutation, and j is the gener-
ated index after the second permutation. In a regular
interleaver, 7 would be the address of interleaved bits
that are saved in Buf2. The interleaved address gen-
erator shown in Figure 4, directly computes k indices
while stepping over the values of j.

7; _ (NclséPS) (k‘ mOd 16) + I—%J’ (1)
k=0,1,.... Nopps — 1,

j= 3|_%J + (i—l—NCBpS — |_ 161 J) mod s,

) Nceps
1= 0, 1, m»NCBPS — 17

(2)
where s = maz{¥eLsc 1},

The value of the mode signal decides about the
Nepps, and Nppsc in these equations. Neppg is
the block size corresponding to the number of coded
bits in a single OFDM symbol, specifically 48, 96, 192,
or 288 for data rates 6 and 9, 12 and 18, 24 and 36, or
48 and 54 Mbps, respectively. Nppgc is the number of
bits which are considered at the modulator to construct
one OFDM subcarrier, specifically 1, 2, 4, and 6 bits
for BPSK, QPSK, 16-QAM and 64-QAM, respectively.

3.3. Pipelined implementation of IFFT

The IFFT operation in the 802.11a physical layer is
performed on 64 data points. We implemented our 64-
point IFFT block in a pipelined fashion to improve the
throughput and power consumption. A 64-point IFFT
has six stages, each containing 32 butterfly operations,
and one more stage for scrambling the output data. To
perform the total of 192 butterfly operations, we use
six pipeline stages, as shown in Figure 5. There is one
Processing Element (PE) per stage, responsible for the
processing of 32 pairs of complex numbers. Represent-
ing a pair of complex numbers as Re(in0) + Im(in0)
and Re(inl) 4+ I'm(inl), the operations performed by
each PE can be expressed as follows.

Re(out0) = Re(in0) 4 [Re(inl) - cos(w) — Im(inl) - sin(w)],
Im(out0) = Im(in0) + [Im(inl) - cos(w) + Re(inl) - sin(w)],

Re(outl) = Re(in0) — [Re(inl) - cos(w) — Im(inl) - sin(w)],
Im(outl) = Im(in0) — [Im(inl) - cos(w) + Re(inl) - sin(w)],

where cos(w) and sin(w) are coefficients generated by
the W-Gen blocks. The size of RAM1 is 32x40 bits,
while the other RAMSs are 64x40-bit. It takes 32 cycles
to complete each stage. When IFFT starts working,

32 complex numbers enter RAMI1. In the following 32
cycles, these numbers and the next 32 numbers entering
IFFT will enter PE1 in pairs, and the results will be
saved in RAM2. The other stages work in a similar
manner, as it is shown in Figure 6. In the last stage,
data is saved in either RAM70 or RAMT71, and it will
be read out in a scrambled order using the addresses
that are generated by the scrambler block. This IFFT
structure has high throughput: when the pipeline is
full, a complex sample is produced every clock cycle,
i.e., IFFT does not stop the flow of input and output
data. In other words, it is ideally suited in the proposed
pipelined architecture of the 802.11a PHY transmitter.

4. Implementation results

We have prototyped the proposed architecture on a
Xilinx Virtex-II Pro XC2VP50 FPGA [10]. The archi-
tecture uses 2059 slices, 27 18Kb RAM blocks, and 72
18x18-bit multipliers.

Table 2 shows the maximum clock frequencies for
the four pipeline stages in our implementation, along
with the minimum required clock frequencies for the
fastest 54 Mbps input data rate. If the clock is slower
than the minimum frequency, then the system will not
be fast enough to handle the 54-Mbps mode. The time
slack corresponding to the difference between the max-
imum and the minimum clock frequencies can be used
to scale voltage down, resulting in significant power
savings.

The minimum clock frequencies are computed as fol-
lows. The clock frequency of Stage 1 is 54 MHz, which
corresponds to the input data rate of 54 Mbps. The
second stage of the pipeline must provide 48 complex
numbers every 4 ps (Every 48 complex number will
be used later to construct an OFDM symbol in 4 ps
of the symbol time interval). In order to generate one
complex number in the 54-Mbps mode, the modulator
takes 6 clock cycles. Therefore, the minimum clock fre-
quency of Stage 2 is 72 MHz. The clock frequency of
Stage 3 is fixed for all modes at 18 MHz, which is the
result of dividing 72 by 4 ps, where 72 is the number
of clock cycles required by the pipelined IFFT block to
generate 64 OFDM subcarriers. The clock frequency
of Stage 4 is also fixed at 20 MHz, which is obtained
by dividing 80 samples per OFDM symbol by the 4 ps
of the symbol time interval.

The larger the difference between the maximum fre-
quency allowed by the implementation and the mini-
mum required frequency to support a given data rate,
the larger delay slack that can be utilized for voltage
scaling. In ASIC implementations, the critical path
delay is usually much smaller than in FPGA imple-
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Stagel

Maximum clock

frequency (MHz) 126

Minimum clock

frequency (MHz) 54

Stage2 | Stage3 | Staged
117 57 226
72 18 20

Table 2. Maximum and minimum clock frequencies of the pipeline stages for the 54-Mbps mode.

mentations, leading to the greater delay slack available
for more aggressive voltage scaling.

Estimated power consumption of our FPGA proto-
type is approximately 500 mW , without utilizing avail-
able delay slack for voltage scaling. Since the maximum
clock frequencies in the 54 Mbps mode are approxi-
mately 1.6x greater than the minimum required clock
frequencies (see Table 2), the supply voltage can be
reduced by the factor of 1.6, which can lead to the
2.56x reduction in power consumption. If we choose
not to reduce the voltage and the clock frequency by
half, then our implementation can handle 86 Mbps, i.e.,
1.6 times the data rate of 54 Mbps. Finally, we note
that the estimated latency of the transmitter pipeline
is 57 ps, after which complex samples are produced at
each clock cycle at 20 Msamples/s.

5. Conclusion

In this paper, we described a multi-clock pipelined
architecture for the IEEE 802.11a PHY transmitter.
The proposed design supports all eight different modes
of the 802.11a transmission. Frame data octets con-
tinuously flow through the pipeline, whose four stages
are driven by four individual clocks and four individual
controllers. Two of the clocks are configurable to sup-
port different transmission rates. As data octets are
processed non-stop, the throughput constraints can be
met at low clock frequencies, leading to lower supply
voltages. Our architecture has been prototyped on a
Xilinx Virtex-IT Pro FPGA, with a custom implemen-
tation to follow soon. Our current design efforts are
focused on extending this architecture to handle data
reception as well as transmission.
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