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Abstract

This paper focuses on the fragmentation problem 
produced in 2D run-time reconfigurable FPGAs when 
hardware multitasking management is considered. 
Though allocation heuristics can take fragmentation into 
account when a new task arrives, the free area becomes 
inevitably fragmented as the tasks finish and exit the 
FPGA. The main contributions of our work are a 
fragmentation metric able to estimate when the FPGA 
fragmentation status has become critical, and several 
heuristics to decide when to perform defragmentation and 
how to perform it. This defragmentation heuristics can be 
of a preventive kind, driven by alarms that fire when 
isolated islands appear or a high fragmentation status is 
reached. It can be also an on-demand process produced 
when a task allocation fails though there is enough free 
area in the FPGA to accommodate it. 

1. Introduction

The continuous increase in FPGA features and 
capabilities has led in recent years to the study of how to 
exploit such advances in better ways, by performing 
hardware multitasking through space multiplexing. A 
single FPGA can be foreseen, in the near future, as 
executing several tasks or applications concurrently, 
possibly from different users. The problem of HW 
multitasking management involves decisions such as the 
allocation of FPGA resources for each incoming task, the 
scheduling of the task at an instant where its time 
constraints are satisfied, and others that have been studied 
in detail in [1]. 

A relevant problem occurs when a task finishes and has 
to leave the FPGA, leaving a rectangular hole that has to 
be incorporated to the FPGA free area. It becomes 
inevitable that such process, repeated once and again, 
generates an external fragmentation that can lead to 
difficult situations where new tasks are unable to find 
room in the FPGA though there is enough free area for 
them.  

In order to anticipate or solve such situations, two 
things have to be done. First, a fragmentation metric that 
gives an accurate estimation of the FPGA fragmentation 
status anytime must be developed. This metric can be 
used to design alarms that initiate, when fired, a routine 
defragmentation process. On the other side, if an 
incoming task cannot be accommodated inside the FPGA 
due to fragmentation, an on-demand defragmentation 
process can be initiated as well. In such situations, the 
goal of the defragmentation heuristics used can be 
different. The first one can have a more ambitious 
defragmentation goal than the second one, that must give 
a quick solution to the immediate problem. 

The problem of defragmentation is different when 
FPGAs managed in one or two dimensions are 
considered. Current commercial FPGAs are oriented to a 
single dimension (i.e., Xilinx Virtex are only column-
programmable, though they consist of a 2D block array), 
and defragmentation heuristics are very similar to 
memory defragmentation techniques used in SW 
multitasking. Compton et al. [2], Brebner et al. [3] or 
Koch et al. [4] have proposed architectural features to 
perform 1D defragmentation through relocation of 
complete columns or rows.  

The different aspects of 2D HW multitasking, with 
special emphasis on online placement, have been studied 
by several researchers in recent years such as [5], [6], [7], 
[8], [9] or [10]. Some have even applied 2D techniques to 
commercial 1D FPGAs, by considering the special ways 
in which the frame reconfiguration process affects the 2D 
tasks execution [11]. Finally, most have omitted the I/O or 
the interconnection problems, though other authors have 
explicitly proposed the use of some kind of global 
interconnection network [12]. But only very recently the 
specific problems posed by fragmentation have begun to 
be dealt with. 

Several researchers such as Walder et al. [13], Tabero 
et al. [14] or Handa et al. [15] have proposed 
fragmentation metrics that are used to help their allocation 
algorithms to choose the more suitable location for the 
arriving task, though they do not perform an explicit 
defragmentation. 

Gericota et al. propose in [16] architectural changes to 
a classical 2D FPGA to permit task relocation by 
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replication of CLBs, in order to solve fragmentation 
problems. But they do not solve the problems of how to 
choose a new location or how to decide when this 
relocation must be performed. 

Ejnioui et al. [17] have proposed a fragmentation 
metric adapted from the one shown in [9]. They propose 
to use this estimation to schedule a defragmentation 
process when a given threshold is reached. They comment 
several possible ways of defining such threshold, though 
they do not seem to choose any of them. Though they 
suggest several methodologies, they do not give any 
experimental results. 

Van der Veen et al. [11] use a branch-and bound 
approach with restrictions, to accomplish a global 
defragmentation process that searches for an optimal 
module layout. It is aimed to 2D FPGAs, though column-
reconfigurable as current Virtex FPGAs. This process 
seems to be quite time-consuming, of an order of 
magnitude of seconds. The authors do not give any 
information about how to insert such defragmentation 
process, in a HW management system. 

2. Our approach to HW management 

Our approach to reconfigurable HW management is 
summarized in Figure 1. Our environment is an extension 
of the operating system that consists of several modules. 
The Task Scheduler controls the tasks currently running in 
the FPGA and accepts new incoming tasks. Tasks can 
arrive anytime and must be processed on-line. The 
Vertex-List Updater keeps track of the available FPGA 
free area with a Vertex-List (VL) structure that has been 
described in detail in [9], updating it whenever a new 
event happens. Such structure can be travelled with 
different heuristics ([9] and [13]) by the Vertex Selector 
in order to choose the vertex where each arriving task will 
be placed. Finally, a permanent checking of the FPGA 
status is made by the Free Area Analyzer. Such module 
estimates the FPGA fragmentation and checks for isolated 
islands appearing inside the hole defined by the VL, every 
time a new event happens. 
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Figure 1. HW management environment. 

As Figure 1 shows, we suppose a 2D-managed FPGA, 
with rectangular relocatable tasks made of a number of 
basic reconfigurable blocks, each block including 
processing elements and I/O elements as part of a global 
interconnection network. Each incoming task Ti is
originally defined by the tuple of parameters:   

Ti = {wi, hi, t_exi, t_arri, t_maxi}

where wi times hi indicates the task size in terms of 
basic reconfigurable blocks, t_exi is the task execution 
time, t_arri  the task arrival time and t_maxi the maximum 
time allowed for the task to finish execution. These 
parameters are characteristic for each incoming task.

If a suitable location is found, task Ti is finally 
allocated and scheduled for execution at an instant 
t_starti. If not, the task goes to the queue Qw, and it is 
reconsidered again at each task-end event or after 
defragmentation. We call the current time T_curr.  All the 
times but t_exi are absolute (referred to the same time 
origin). We calculate t_confi as the time needed to load 
the configuration of the task, that it is proportional to its 
size:  t_confi = k *wi*hi.

We also define t_margi, as the margin each task has 
available before its time-out (defined by t_maxi) is 
reached. If the task has been scheduled at time t_starti it
must be computed as: 

t_margi = t_maxi – (t_starti + t_confi + t_exi) (1)

But if the task has not been allocated yet, T_curr
should be used instead of t_starti. In this case, t_margi

value decreases at each time cycle as T_curr advances. 
When t_margi reaches a value of 0 the task must be 
definitively rejected and deleted from Qw. 



3. Fragmentation analysis 

The fragmentation status of the free FPGA area is 
directly related to the possibility of being able to find a 
suitable location for an arriving task. We have identified a 
fragmentation situation by the occurrence of several 
circumstances. First, proliferation of the number of 
independent free area holes, each one represented in our 
system by a different VL. And second, increasing 
complexity of the hole shape, that we relate with the 
number of vertices. A particular instance of a complex 
hole is created when it contains an occupied island inside. 

The Free Area Analyzer module, shown in Figure 1, 
estimates continuously the fragmentation status of the 
FPGA. This estimation is done with the following metric, 
very similar to the one we presented in [14]: 

F = 1  - h  [ (4/Vh)
n * (Ah/AF_FPGA)]                     (2) 

Where the term between brackets represents a kind of 
“suitability” for a given hole h, with area Ah and Vh

vertices: 
(4/Vh)

n represents the suitability of the shape of hole 
h to accommodate rectangular tasks. Notice that 
any hole with four vertices has the best suitability. 
For most of our experiments we employ n=1, but 
we can use higher or lower values if we want to 
penalize more or less the occurrence of holes with 
complex shapes and thus difficult to use. 
(Ah/AF_FPGA) represents the relative normalized hole 
area. AF_FPGA stands for the whole free area in 
the FPGA. That is AF_FPGA =  Ah. 

This fragmentation metric penalizes the proliferation of 
holes in the FPGA, as well as the task placements that 
generate holes with complex shapes and small sizes. 
Figure 2 shows several fragmentation situations in an 
example FPGA of 20x20 basic blocks, and the 
fragmentation values estimated by the formula in (2).

A new estimation is done every time a new event 
occurs, that is, when a new task is placed in the FPGA, 
when a finishing task leaves the FPGA, or when 
relocation decisions are taken during a defragmentation 
process.

Figure 2. Different FPGA situations and the 
fragmentation values given by our metric. 

The estimation can be used to help in the vertex 
selection process, as is done in [14], or to check the FPGA 
status in order to fire a defragmentation process when 
needed. In the next sections we will focus in how we 
accomplish defragmentation. 

4. Defragmentation 

Even if we use intelligent (even fragmentation-aware) 
heuristics to select the location for each incoming task, it 
is unavoidable that situations where fragmentation 
becomes a real problem will eventually arise.   

In order to be able to defragment the free area available 
in an FPGA with several running tasks, we are making 
some considerations: we will suppose a pre-emptive 
system, that is, that we have the resources needed to 
interrupt anytime a currently running task, relocate or 
reload the task configuration at a different location 
without modifying its status, and then continue its 
execution.

We will consider two different defragmentation 
heuristis, each one for a different situation:

First, a routine, preventive defragmentation will 
be initiated if an alarm is fired by the Free Area 
Analyzer module. This alarm has two possible 
causes: the appearing of an occupied island inside a 
free hole, as in Figure 2.c, or a high fragmentation 
FPGA status detected by the metric above, as in 
Figure 2.b or 2.d . This preventive defragmentation 
is desired but not urgent, and will be performed only 
if time constraints for currently running tasks are not 
too severe.  
Second, an urgent on-demand defragmentation
will be initiated, if an arriving task cannot find a 
suitable location in the FPGA, though there is 
enough free area to accommodate it. This 
emergency defragmentation will try to get room by 
moving a single currently running task. 

4.1 Defragmentation time-cost estimation 

It becomes clear that defragmentation is a time-
consuming process, and therefore an estimation of the 
defragmentation time TD will be needed in order to decide 
when, how or even if defragmentation will be performed. 
We must state also that we will not consider the time 
spent by the defragmentation algorithms themselves, 
which run in software in parallel with the tasks in the 
FPGA.

We have supposed that the defragmentation time cost 
due to each task will be proportional to the number of 
basic blocks of the task. And thus the total 
defragmentation time cost could be estimated as: 

d) F= 0.93b) F= 0.75 c) F= 0.75a) F= 0.6



 TD = 2 *  t_confi  = 2k *  (wi * hi)                   (3)
                i        i 
  for all the tasks Ti in the FPGA to be relocated.   

The proportionality factor k will depend on the 
technique we use to relocate the task configuration and on 
the configuration interface features (for example, the 8-bit 
SelectMap interface for Virtex FPGAs described in [18]). 
The factor of 2 appears because we have supposed that 
configuration reloading is done for each task through a 
readback of the task configuration and status from the 
original task location, that are later copied to the new one.  

We would get a lower 2k value if relocation could be 
done inside the FPGA, with the help of architectural 
changes such as the buffer proposed by Compton et al. in 
[2]. Such buffer, though, poses problems because 
relocation of each task must take into account the 
locations of other tasks in the FPGA. But we suppose it is 
not done by a task shifting technique such as the one 
explained in [6], because in such case relocation time 
would depend for each task on the initial and final task 
locations.  

The solution that would get the most significant 
reduction of 2k would be using an FPGA architecture 
with two different contexts, a simplified version of the 
classical multicontext architecture proposed by 
Trimberger [19]. A second context would allow to 
schedule and accomplish a global defragmentation with a 
minimal time cost. The configuration load in the second 
context could be done while tasks go on running, and we 
would have to add only the time needed to transfer the 
status of each currently running task from the active 
context to the other one.  

4.2 Preventive defragmentation 

This defragmentation is fired by the Free Area 
Analyzer module, with two possible alarms being the 
cause: an island alarm, or a fragmentation metrics 
alarm. Such situations correspond, respectively, to the 
examples shown in Figures 2.c and 2.b/d. The first alarm 
checked is the island alarm. An island is made of one or 
more tasks that have become isolated when all the tasks 
surrounding them have already finished. An island can 
appear only when a task-end event happens. It is obvious 
that to remove an island by relocating its tasks can lead to 
a significant reduction of the fragmentation value, and 
thus we treat it separately.  

The second alarm cause is that the fragmentation value 
rises above a certain threshold. This can happen as a 
consequence of several different events, and the system 
will try to perform, if possible, a global or quasi-global 
relocation of the currently running tasks.  

This routine defragmentation is not urgent, or at least it 
is not fired by the immediate need to allocate an incoming 

task, and its goal is to get a significantly lower 
fragmentation FPGA status by taking one of the 
mentioned actions.  

This process will be performed only if the free area is 
large enough, and it will try first to relocate islands inside 
the free hole, if they exist, or to relocate most of the 
currently running tasks if possible. 

4.2.1 Island alarm management.  Though islands are not 
going to appear frequently, when they appear inside a 
hole they must be dealt with before any other 
consideration is done. An island inside a hole is 
represented in our system as part of the hole frontier, its 
vertices belonging to the VL defining the hole as all the 
other vertices do. We connect the island vertices with the 
external ones by using two virtual edges, which do not 
represent, as normal vertices do, a real frontier, and thus 
they are not considered when intersections are checked. 
Figure 3.a shows an example with a simple island made of 
two tasks and its VL is shown in figure 3.b. The island 
alarm is then only a bit that is set whenever the Free Area 
Analyzer module detects the presence of a pair of virtual 
edges in VL, that in the example appear as discontinued 
arrows.

If the island alarm has been fired, we check first if we 
can relocate it or not, by demanding that for every task Ti

in the island the following condition is satisfied: 

C1:   t_margi TD_island                   (4) 

Where  t_margi is computed as in (1) and TD_island is the 
time needed to relocate the complete island, proportional 
to the island block size and computed as in (3). If 
condition C1 is satisfied, then new locations for the island 
tasks are selected by the 3D-adjacency allocation heuristic 
explained in [14]. The tasks are allocated by decreasing 
values of t_remi, the time the will still remain in the 
FPGA, that is given by t_remi = t_starti+t_confi+t_exi–
T_curr. Figure 3.c shows the FPGA status after the island 
has been removed. Usually, the fragmentation estimation 
after island removal will lower substantially, below the 
alarm firing value, and thus we can consider the 
defragmentation accomplished. 

Figure 3. FPGA status with an island (a) 
and its vertex list (b), and FPGA status 
after defragmentation (c). 
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If the island cannot be moved because the C1 condition 
is not met, then the defragmentation process will not be 
done.

4.2.2 Fragmentation alarm firing. The Free Area 
Analyzer module checks continuously the fragmentation 
status of the FPGA, estimating its value with the metric in 
(2). The fragmentation alarm fires whenever the estimated 
value surpasses a given threshold. 

One of our problems has been to set a value for this 
threshold. We have considered the formula in (2), and 
analyzed how it behaves in several situations. If n=1, we 
can see that for two rectangular holes the fragmentation 
becomes 0.75 or higher. Also, for a single hole, it 
estimates a fragmentation of 0.6 for a VL with 10 vertices, 
or 0.75 for a VL with 16 vertices. For the examples shown 
in this paper, with an average running task number 
between four and five tasks, we have chosen as threshold 
a value of 0.75, supposing that a VL with 16 vertices or 
more, or with several holes, is highly fragmented. With 
this threshold value, fragmentation alarm would be fired 
for Figure 2 cases b) and d). 

Finally, even when the fragmentation estimation 
reaches a high value, we have set another condition in 
order to decide if defragmentation is started: we only 
perform it if the hole has a significant size. We have set a 
minimum size value of two times the average task size: 
AF_FPGA  2 * average(Ai) . Only when this happens the 
theoretical fragmentation value can be taken as truly 
significant, and the alarm is really fired. 

4.2.3 Running tasks analysis. If a high fragmentation 
alarm has fired, the system can try a global FPGA 
defragmentation. In order to decide if such a 
defragmentation is possible, it must check if all the 
currently running tasks can be relocated or not, by 
demanding that for every task Ti  in the FPGA the 
following condition is satisfied: 

C2:   t_margi TD               (5) 

Where TD is the time needed to relocate all the running 
tasks computed as in (3). If all the tasks satisfy condition 
C2, then a global defragmentation is performed where 
all the tasks are relocated, starting from an empty FPGA. 
The task configurations are readback first, and then are 
relocated at their new locations. In order to reduce the 
probability of a new fragmentation situation too soon, 
tasks are relocated in order of decreasing values of t_remi,
and the allocation heuristic used is based on the 3D-
adjacency concept described in [14]. Figure 4.a shows the 
FPGA status of Figure 2.d with t_remi example values for 
each task Ti.

Figure 4. FPGA status before (a) and after 
(b) a global defragmentation. 

A global defragmentation will lead to the situation of 
Figure 4.b. We have supposed all tasks meet condition 
C2. 

On the contrary, if there are one or more tasks Tj not 
meeting the condition above, we say these tasks have 
severe time constraints. In such case, a global immediate 
defragmentation cannot be made and we have to try a 
different approach. Then we set as a reference the time 
interval defined by the average time-lapse between 
consecutive task arrivals, T_av. Two situations can 
happen, depending on the instant the problematic tasks are 
going to finish, related to T_av. If the condition: 

C3: t_remj < T_av      (6) 

is met by all tasks Tj not satisfying C2, a delayed
global fragmentation will be tried. If this is not the case, 
an immediate quasi-global defragmentation will be 
performed, affecting only the non-problematic tasks. 

4.2.4 Delayed global defragmentation. This heuristic is 
used when condition C3 is met by all tasks Tj not 
satisfying C2, that is, the task or tasks Tj  with severe time 
constraint will end “soon”. If all the problematic tasks end 
before this reference threshold is reached, then we can 
wait the largest t_remj value and accomplish a delayed 
global defragmentation. During this defragmentation we 
do not perform new incoming task allocations. The tasks 
arriving during this time-lapse (it would be most probably 
only one task) will be directly copied to Qw, if they have 
no severe time constraints. When a task with a severe time 
constraint arrives the defragmentation process is instantly 
aborted. Figure 5.a shows a situation derived from Figure 
4.a, where condition C2 is not met now by task T6, 
though it satisfies C3. The situation depicted corresponds 
to a time instant after 10 cycles when task T6 has already 
finished. We also suppose no tasks have arrived later than 
task T5. The figure shows how it is possible to get a much 
better fragmentation status, though not immediately. 

4.2.5 Immediate quasi-global defragmentation. This
approach is chosen if the tasks with severe time 
constraints will finish “late”, that is, the condition C3 is 
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not met. In such case, a quasi-global defragmentation is 
done immediately, by relocating all the tasks except the 
problematic ones. Such defragmentation is not optimal, 
but can reduce the fragmentation value very soon. The 
configurations of the tasks to be relocated are readback, 
and then they are relocated as in a global defragmentation, 
but with a Vertex-List including the problematic tasks, 
instead of with an empty FPGA. 

 Figure 5.b shows a situation also derived from Figure 
4.a, where condition C2 is not met now by tasks T5 and 
T6, and thus they cannot be moved. The resulting FPGA 
fragmentation status is not so good as the delayed one of 
Figure 5a, but is immediate. 

4.3 On-demand defragmentation 

The on-demand defragmentation is only accomplished 
on an urgent basis, when a new task TN cannot fit inside 
the FPGA due to fragmentation in spite of all the 
preventive measures already explained. Reasons for such 
failing can be the presence of many tasks with severe time 
constraints in the FPGA, or a fragmentation level below 
the alarm threshold. Then, as a final action, we try to 
move a single task in order to get room for the new one. 

First, it must be guaranteed that the real problem is 
fragmentation and not the lack of space. Thus, we will 
take defragmenting actions only if the free FPGA area is 
two times the area of the incoming task: 

 AF_FPGA  2 * (wi*hi)     (7) 

If this condition is met, we choose as best candidate 
task for relocation, TR, the task Ti with the highest 
percentage of its perimeter Pi belonging to the hole 
borders, what we have called its relative adjacency radji,
that can be actually moved. 

Figure 5. FPGA status derived from Figure 
4.a, after a delayed global defragmentation 
(a), and an immediate quasi-global 
defragmentation (b) 

 The radji value is computed by the allocation 
algorithm for every task in the hole border as: 

radji =  [(Pi VL) / 2(wi + hi)]        (8) 

TR will be thus the task Ti with the maximal value of 
radj. The allocation algorithm keeps continuous track of 
such relocation candidate, anytime the VL is modified, 
considering only values of radji  greater than 0.5. Any 
task forming an island would give the highest possible 
value of radji, that is 1. Good candidates would be tasks 
“joined” with a single side to the rest of the hole 
perimeter.  Figure 6.a shows a candidate TR intermediate 
between such two situations, with a  radj value of 0.9286. 
On the contrary  in Figure 6.c, with all tasks having a radj
value of 0.5 or lower, no candidate TR is available any 
longer because an advantageous quick task move is not 
obvious. 

Moreover, TR must satisfy: t_margR tDR, tDR being 
the relocation time of the candidate task TR. A similar 
condition must be satisfied by the incoming task TN as 
well: t_margN tDR . If these two conditions are met, TR

is relocated with a 3D-adjacency heuristic, and then the 
new task TN  is considered again, and a suitable location 
perhaps can be found as in Figure 6.c.  

If there is not a valid TR candidate, though, then the on-
demand defragmentation will not take place and the task 
TN will go directly to Qw, in hope of a future chance 
before its t_margN  is spent. It happens the same if the 
defragmentation does not give the desired results. 

Figure 6. FPGA status before (a) and after 
(b, then c) an on-demand defragmentation. 
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6. Conclusions and Future Work 

We have presented an approach to 2D hardware 
multitasking that estimates the fragmentation FPGA status 
and takes defragmentation decisions when needed. Two 
basic approaches have been shown: preventive and on-
demand defragmentation. Preventive heuristics try to 
anticipate to possible allocation problems due to 
fragmentation. They can be fired by two alarm sources: 
the presence of an island in the vertex list, or a high 
fragmentation value given by the metric. When fired, it 
performs an immediate global or quasi-global 
defragmentation, or a delayed global one depending on 
the time constraints of the involved tasks. On-demand 
heuristics try an urgent move of a single candidate task, 
the one with the highest relative adjacency with the hole 
border. Such battery of defragmentation measures can 
help avoiding most problems produced by fragmentation 
in HW multitasking on 2D reconfigurable hardware.  

     Future work-plans include the substitution of the 
fragmentation metric of section 3, vertex-based, by 
another one based on the relationship between the hole 
area and its perimeter length, and the study of new 
architectural features in order to reduce the value of k
described in section 4.1, based on a two-context approach. 
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