
2D Defragmentation Heuristics for Hardware Multitasking on Reconfigurable
Devices

Julio Septién1, Hortensia Mecha1, Daniel Mozos1 and Jesús Tabero2

Abstract

This paper focuses on the fragmentation problem
produced in 2D run-time reconfigurable FPGAs when
hardware multitasking management is considered.
Though allocation heuristics can take fragmentation into
account when a new task arrives, the free area becomes
inevitably fragmented as the tasks finish and exit the
FPGA. The main contributions of our work are a
fragmentation metric able to estimate when the FPGA
fragmentation status has become critical, and several
heuristics to decide when to perform defragmentation and
how to perform it. This defragmentation heuristics can be
of a preventive kind, driven by alarms that fire when
isolated islands appear or a high fragmentation status is
reached. It can be also an on-demand process produced
when a task allocation fails though there is enough free
area in the FPGA to accommodate it.

1. Introduction

The continuous increase in FPGA features and
capabilities has led in recent years to the study of how to
exploit such advances in better ways, by performing
hardware multitasking through space multiplexing. A
single FPGA can be foreseen, in the near future, as
executing several tasks or applications concurrently,
possibly from different users. The problem of HW
multitasking management involves decisions such as the
allocation of FPGA resources for each incoming task, the
scheduling of the task at an instant where its time
constraints are satisfied, and others that have been studied
in detail in [1].

A relevant problem occurs when a task finishes and has
to leave the FPGA, leaving a rectangular hole that has to
be incorporated to the FPGA free area. It becomes
inevitable that such process, repeated once and again,
generates an external fragmentation that can lead to
difficult situations where new tasks are unable to find
room in the FPGA though there is enough free area for
them.

In order to anticipate or solve such situations, two
things have to be done. First, a fragmentation metric that
gives an accurate estimation of the FPGA fragmentation
status anytime must be developed. This metric can be
used to design alarms that initiate, when fired, a routine
defragmentation process. On the other side, if an
incoming task cannot be accommodated inside the FPGA
due to fragmentation, an on-demand defragmentation
process can be initiated as well. In such situations, the
goal of the defragmentation heuristics used can be
different. The first one can have a more ambitious
defragmentation goal than the second one, that must give
a quick solution to the immediate problem.

The problem of defragmentation is different when
FPGAs managed in one or two dimensions are
considered. Current commercial FPGAs are oriented to a
single dimension (i.e., Xilinx Virtex are only column-
programmable, though they consist of a 2D block array),
and defragmentation heuristics are very similar to
memory defragmentation techniques used in SW
multitasking. Compton et al. [2], Brebner et al. [3] or
Koch et al. [4] have proposed architectural features to
perform 1D defragmentation through relocation of
complete columns or rows.

The different aspects of 2D HW multitasking, with
special emphasis on online placement, have been studied
by several researchers in recent years such as [5], [6], [7],
[8], [9] or [10]. Some have even applied 2D techniques to
commercial 1D FPGAs, by considering the special ways
in which the frame reconfiguration process affects the 2D
tasks execution [11]. Finally, most have omitted the I/O or
the interconnection problems, though other authors have
explicitly proposed the use of some kind of global
interconnection network [12]. But only very recently the
specific problems posed by fragmentation have begun to
be dealt with.

Several researchers such as Walder et al. [13], Tabero
et al. [14] or Handa et al. [15] have proposed
fragmentation metrics that are used to help their allocation
algorithms to choose the more suitable location for the
arriving task, though they do not perform an explicit
defragmentation.

Gericota et al. propose in [16] architectural changes to
a classical 2D FPGA to permit task relocation by

2Instituto Nacional de Técnica Aeroespacial
28850 Madrid, Spain

taberogj@inta.es

1Universidad Complutense de Madrid
28040 Madrid, Spain

{jseptien,horten,mozos}@dacya.ucm.es

1-4244-0054-6/06/$20.00 ©2006 IEEE

replication of CLBs, in order to solve fragmentation
problems. But they do not solve the problems of how to
choose a new location or how to decide when this
relocation must be performed.

Ejnioui et al. [17] have proposed a fragmentation
metric adapted from the one shown in [9]. They propose
to use this estimation to schedule a defragmentation
process when a given threshold is reached. They comment
several possible ways of defining such threshold, though
they do not seem to choose any of them. Though they
suggest several methodologies, they do not give any
experimental results.

Van der Veen et al. [11] use a branch-and bound
approach with restrictions, to accomplish a global
defragmentation process that searches for an optimal
module layout. It is aimed to 2D FPGAs, though column-
reconfigurable as current Virtex FPGAs. This process
seems to be quite time-consuming, of an order of
magnitude of seconds. The authors do not give any
information about how to insert such defragmentation
process, in a HW management system.

2. Our approach to HW management

Our approach to reconfigurable HW management is
summarized in Figure 1. Our environment is an extension
of the operating system that consists of several modules.
The Task Scheduler controls the tasks currently running in
the FPGA and accepts new incoming tasks. Tasks can
arrive anytime and must be processed on-line. The
Vertex-List Updater keeps track of the available FPGA
free area with a Vertex-List (VL) structure that has been
described in detail in [9], updating it whenever a new
event happens. Such structure can be travelled with
different heuristics ([9] and [13]) by the Vertex Selector
in order to choose the vertex where each arriving task will
be placed. Finally, a permanent checking of the FPGA
status is made by the Free Area Analyzer. Such module
estimates the FPGA fragmentation and checks for isolated
islands appearing inside the hole defined by the VL, every
time a new event happens.

FPGA

Vertex List

VL1

HW ManagerHW Manager

Free

Area

Analyzer

Running task list-Lr

t1 t2 t3

Waiting task queue-Qw

New Task Task

Scheduler

Vertex

Selector

Vertex List

Updater

Task I/O ManagerTask I/O Manager

BASIC BLOCK

Processing

Elements

I/O Elements

Figure 1. HW management environment.

As Figure 1 shows, we suppose a 2D-managed FPGA,
with rectangular relocatable tasks made of a number of
basic reconfigurable blocks, each block including
processing elements and I/O elements as part of a global
interconnection network. Each incoming task Ti is
originally defined by the tuple of parameters:

Ti = {wi, hi, t_exi, t_arri, t_maxi}

where wi times hi indicates the task size in terms of
basic reconfigurable blocks, t_exi is the task execution
time, t_arri the task arrival time and t_maxi the maximum
time allowed for the task to finish execution. These
parameters are characteristic for each incoming task.

If a suitable location is found, task Ti is finally
allocated and scheduled for execution at an instant
t_starti. If not, the task goes to the queue Qw, and it is
reconsidered again at each task-end event or after
defragmentation. We call the current time T_curr. All the
times but t_exi are absolute (referred to the same time
origin). We calculate t_confi as the time needed to load
the configuration of the task, that it is proportional to its
size: t_confi = k *wi*hi.

We also define t_margi, as the margin each task has
available before its time-out (defined by t_maxi) is
reached. If the task has been scheduled at time t_starti it
must be computed as:

t_margi = t_maxi – (t_starti + t_confi + t_exi) (1)

But if the task has not been allocated yet, T_curr
should be used instead of t_starti. In this case, t_margi

value decreases at each time cycle as T_curr advances.
When t_margi reaches a value of 0 the task must be
definitively rejected and deleted from Qw.

3. Fragmentation analysis

The fragmentation status of the free FPGA area is
directly related to the possibility of being able to find a
suitable location for an arriving task. We have identified a
fragmentation situation by the occurrence of several
circumstances. First, proliferation of the number of
independent free area holes, each one represented in our
system by a different VL. And second, increasing
complexity of the hole shape, that we relate with the
number of vertices. A particular instance of a complex
hole is created when it contains an occupied island inside.

The Free Area Analyzer module, shown in Figure 1,
estimates continuously the fragmentation status of the
FPGA. This estimation is done with the following metric,
very similar to the one we presented in [14]:

F = 1 - h [(4/Vh)
n * (Ah/AF_FPGA)] (2)

Where the term between brackets represents a kind of
“suitability” for a given hole h, with area Ah and Vh

vertices:
(4/Vh)

n represents the suitability of the shape of hole
h to accommodate rectangular tasks. Notice that
any hole with four vertices has the best suitability.
For most of our experiments we employ n=1, but
we can use higher or lower values if we want to
penalize more or less the occurrence of holes with
complex shapes and thus difficult to use.
(Ah/AF_FPGA) represents the relative normalized hole
area. AF_FPGA stands for the whole free area in
the FPGA. That is AF_FPGA = Ah.

This fragmentation metric penalizes the proliferation of
holes in the FPGA, as well as the task placements that
generate holes with complex shapes and small sizes.
Figure 2 shows several fragmentation situations in an
example FPGA of 20x20 basic blocks, and the
fragmentation values estimated by the formula in (2).

A new estimation is done every time a new event
occurs, that is, when a new task is placed in the FPGA,
when a finishing task leaves the FPGA, or when
relocation decisions are taken during a defragmentation
process.

Figure 2. Different FPGA situations and the
fragmentation values given by our metric.

The estimation can be used to help in the vertex
selection process, as is done in [14], or to check the FPGA
status in order to fire a defragmentation process when
needed. In the next sections we will focus in how we
accomplish defragmentation.

4. Defragmentation

Even if we use intelligent (even fragmentation-aware)
heuristics to select the location for each incoming task, it
is unavoidable that situations where fragmentation
becomes a real problem will eventually arise.

In order to be able to defragment the free area available
in an FPGA with several running tasks, we are making
some considerations: we will suppose a pre-emptive
system, that is, that we have the resources needed to
interrupt anytime a currently running task, relocate or
reload the task configuration at a different location
without modifying its status, and then continue its
execution.

We will consider two different defragmentation
heuristis, each one for a different situation:

First, a routine, preventive defragmentation will
be initiated if an alarm is fired by the Free Area
Analyzer module. This alarm has two possible
causes: the appearing of an occupied island inside a
free hole, as in Figure 2.c, or a high fragmentation
FPGA status detected by the metric above, as in
Figure 2.b or 2.d . This preventive defragmentation
is desired but not urgent, and will be performed only
if time constraints for currently running tasks are not
too severe.
Second, an urgent on-demand defragmentation
will be initiated, if an arriving task cannot find a
suitable location in the FPGA, though there is
enough free area to accommodate it. This
emergency defragmentation will try to get room by
moving a single currently running task.

4.1 Defragmentation time-cost estimation

It becomes clear that defragmentation is a time-
consuming process, and therefore an estimation of the
defragmentation time TD will be needed in order to decide
when, how or even if defragmentation will be performed.
We must state also that we will not consider the time
spent by the defragmentation algorithms themselves,
which run in software in parallel with the tasks in the
FPGA.

We have supposed that the defragmentation time cost
due to each task will be proportional to the number of
basic blocks of the task. And thus the total
defragmentation time cost could be estimated as:

d) F= 0.93b) F= 0.75 c) F= 0.75a) F= 0.6

 TD = 2 * t_confi = 2k * (wi * hi) (3)
 i i
 for all the tasks Ti in the FPGA to be relocated.

The proportionality factor k will depend on the
technique we use to relocate the task configuration and on
the configuration interface features (for example, the 8-bit
SelectMap interface for Virtex FPGAs described in [18]).
The factor of 2 appears because we have supposed that
configuration reloading is done for each task through a
readback of the task configuration and status from the
original task location, that are later copied to the new one.

We would get a lower 2k value if relocation could be
done inside the FPGA, with the help of architectural
changes such as the buffer proposed by Compton et al. in
[2]. Such buffer, though, poses problems because
relocation of each task must take into account the
locations of other tasks in the FPGA. But we suppose it is
not done by a task shifting technique such as the one
explained in [6], because in such case relocation time
would depend for each task on the initial and final task
locations.

The solution that would get the most significant
reduction of 2k would be using an FPGA architecture
with two different contexts, a simplified version of the
classical multicontext architecture proposed by
Trimberger [19]. A second context would allow to
schedule and accomplish a global defragmentation with a
minimal time cost. The configuration load in the second
context could be done while tasks go on running, and we
would have to add only the time needed to transfer the
status of each currently running task from the active
context to the other one.

4.2 Preventive defragmentation

This defragmentation is fired by the Free Area
Analyzer module, with two possible alarms being the
cause: an island alarm, or a fragmentation metrics
alarm. Such situations correspond, respectively, to the
examples shown in Figures 2.c and 2.b/d. The first alarm
checked is the island alarm. An island is made of one or
more tasks that have become isolated when all the tasks
surrounding them have already finished. An island can
appear only when a task-end event happens. It is obvious
that to remove an island by relocating its tasks can lead to
a significant reduction of the fragmentation value, and
thus we treat it separately.

The second alarm cause is that the fragmentation value
rises above a certain threshold. This can happen as a
consequence of several different events, and the system
will try to perform, if possible, a global or quasi-global
relocation of the currently running tasks.

This routine defragmentation is not urgent, or at least it
is not fired by the immediate need to allocate an incoming

task, and its goal is to get a significantly lower
fragmentation FPGA status by taking one of the
mentioned actions.

This process will be performed only if the free area is
large enough, and it will try first to relocate islands inside
the free hole, if they exist, or to relocate most of the
currently running tasks if possible.

4.2.1 Island alarm management. Though islands are not
going to appear frequently, when they appear inside a
hole they must be dealt with before any other
consideration is done. An island inside a hole is
represented in our system as part of the hole frontier, its
vertices belonging to the VL defining the hole as all the
other vertices do. We connect the island vertices with the
external ones by using two virtual edges, which do not
represent, as normal vertices do, a real frontier, and thus
they are not considered when intersections are checked.
Figure 3.a shows an example with a simple island made of
two tasks and its VL is shown in figure 3.b. The island
alarm is then only a bit that is set whenever the Free Area
Analyzer module detects the presence of a pair of virtual
edges in VL, that in the example appear as discontinued
arrows.

If the island alarm has been fired, we check first if we
can relocate it or not, by demanding that for every task Ti

in the island the following condition is satisfied:

C1: t_margi TD_island (4)

Where t_margi is computed as in (1) and TD_island is the
time needed to relocate the complete island, proportional
to the island block size and computed as in (3). If
condition C1 is satisfied, then new locations for the island
tasks are selected by the 3D-adjacency allocation heuristic
explained in [14]. The tasks are allocated by decreasing
values of t_remi, the time the will still remain in the
FPGA, that is given by t_remi = t_starti+t_confi+t_exi–
T_curr. Figure 3.c shows the FPGA status after the island
has been removed. Usually, the fragmentation estimation
after island removal will lower substantially, below the
alarm firing value, and thus we can consider the
defragmentation accomplished.

Figure 3. FPGA status with an island (a)
and its vertex list (b), and FPGA status
after defragmentation (c).

Island

T1

T2

T3

T1

T2

T3

a) F=0.75 b) VL c) F=0.6

T4 T4

If the island cannot be moved because the C1 condition
is not met, then the defragmentation process will not be
done.

4.2.2 Fragmentation alarm firing. The Free Area
Analyzer module checks continuously the fragmentation
status of the FPGA, estimating its value with the metric in
(2). The fragmentation alarm fires whenever the estimated
value surpasses a given threshold.

One of our problems has been to set a value for this
threshold. We have considered the formula in (2), and
analyzed how it behaves in several situations. If n=1, we
can see that for two rectangular holes the fragmentation
becomes 0.75 or higher. Also, for a single hole, it
estimates a fragmentation of 0.6 for a VL with 10 vertices,
or 0.75 for a VL with 16 vertices. For the examples shown
in this paper, with an average running task number
between four and five tasks, we have chosen as threshold
a value of 0.75, supposing that a VL with 16 vertices or
more, or with several holes, is highly fragmented. With
this threshold value, fragmentation alarm would be fired
for Figure 2 cases b) and d).

Finally, even when the fragmentation estimation
reaches a high value, we have set another condition in
order to decide if defragmentation is started: we only
perform it if the hole has a significant size. We have set a
minimum size value of two times the average task size:
AF_FPGA 2 * average(Ai) . Only when this happens the
theoretical fragmentation value can be taken as truly
significant, and the alarm is really fired.

4.2.3 Running tasks analysis. If a high fragmentation
alarm has fired, the system can try a global FPGA
defragmentation. In order to decide if such a
defragmentation is possible, it must check if all the
currently running tasks can be relocated or not, by
demanding that for every task Ti in the FPGA the
following condition is satisfied:

C2: t_margi TD (5)

Where TD is the time needed to relocate all the running
tasks computed as in (3). If all the tasks satisfy condition
C2, then a global defragmentation is performed where
all the tasks are relocated, starting from an empty FPGA.
The task configurations are readback first, and then are
relocated at their new locations. In order to reduce the
probability of a new fragmentation situation too soon,
tasks are relocated in order of decreasing values of t_remi,
and the allocation heuristic used is based on the 3D-
adjacency concept described in [14]. Figure 4.a shows the
FPGA status of Figure 2.d with t_remi example values for
each task Ti.

Figure 4. FPGA status before (a) and after
(b) a global defragmentation.

A global defragmentation will lead to the situation of
Figure 4.b. We have supposed all tasks meet condition
C2.

On the contrary, if there are one or more tasks Tj not
meeting the condition above, we say these tasks have
severe time constraints. In such case, a global immediate
defragmentation cannot be made and we have to try a
different approach. Then we set as a reference the time
interval defined by the average time-lapse between
consecutive task arrivals, T_av. Two situations can
happen, depending on the instant the problematic tasks are
going to finish, related to T_av. If the condition:

C3: t_remj < T_av (6)

is met by all tasks Tj not satisfying C2, a delayed
global fragmentation will be tried. If this is not the case,
an immediate quasi-global defragmentation will be
performed, affecting only the non-problematic tasks.

4.2.4 Delayed global defragmentation. This heuristic is
used when condition C3 is met by all tasks Tj not
satisfying C2, that is, the task or tasks Tj with severe time
constraint will end “soon”. If all the problematic tasks end
before this reference threshold is reached, then we can
wait the largest t_remj value and accomplish a delayed
global defragmentation. During this defragmentation we
do not perform new incoming task allocations. The tasks
arriving during this time-lapse (it would be most probably
only one task) will be directly copied to Qw, if they have
no severe time constraints. When a task with a severe time
constraint arrives the defragmentation process is instantly
aborted. Figure 5.a shows a situation derived from Figure
4.a, where condition C2 is not met now by task T6,
though it satisfies C3. The situation depicted corresponds
to a time instant after 10 cycles when task T6 has already
finished. We also suppose no tasks have arrived later than
task T5. The figure shows how it is possible to get a much
better fragmentation status, though not immediately.

4.2.5 Immediate quasi-global defragmentation. This
approach is chosen if the tasks with severe time
constraints will finish “late”, that is, the condition C3 is

T1
60

T2
40

T5
20

T3
110

T6
10

T3
110

T1
60

T6
10

T2
40

T5
20

a) F= 0.93 b) F= 0.6

T4 30 T4 30

not met. In such case, a quasi-global defragmentation is
done immediately, by relocating all the tasks except the
problematic ones. Such defragmentation is not optimal,
but can reduce the fragmentation value very soon. The
configurations of the tasks to be relocated are readback,
and then they are relocated as in a global defragmentation,
but with a Vertex-List including the problematic tasks,
instead of with an empty FPGA.

 Figure 5.b shows a situation also derived from Figure
4.a, where condition C2 is not met now by tasks T5 and
T6, and thus they cannot be moved. The resulting FPGA
fragmentation status is not so good as the delayed one of
Figure 5a, but is immediate.

4.3 On-demand defragmentation

The on-demand defragmentation is only accomplished
on an urgent basis, when a new task TN cannot fit inside
the FPGA due to fragmentation in spite of all the
preventive measures already explained. Reasons for such
failing can be the presence of many tasks with severe time
constraints in the FPGA, or a fragmentation level below
the alarm threshold. Then, as a final action, we try to
move a single task in order to get room for the new one.

First, it must be guaranteed that the real problem is
fragmentation and not the lack of space. Thus, we will
take defragmenting actions only if the free FPGA area is
two times the area of the incoming task:

 AF_FPGA 2 * (wi*hi) (7)

If this condition is met, we choose as best candidate
task for relocation, TR, the task Ti with the highest
percentage of its perimeter Pi belonging to the hole
borders, what we have called its relative adjacency radji,
that can be actually moved.

Figure 5. FPGA status derived from Figure
4.a, after a delayed global defragmentation
(a), and an immediate quasi-global
defragmentation (b)

 The radji value is computed by the allocation
algorithm for every task in the hole border as:

radji = [(Pi VL) / 2(wi + hi)] (8)

TR will be thus the task Ti with the maximal value of
radj. The allocation algorithm keeps continuous track of
such relocation candidate, anytime the VL is modified,
considering only values of radji greater than 0.5. Any
task forming an island would give the highest possible
value of radji, that is 1. Good candidates would be tasks
“joined” with a single side to the rest of the hole
perimeter. Figure 6.a shows a candidate TR intermediate
between such two situations, with a radj value of 0.9286.
On the contrary in Figure 6.c, with all tasks having a radj
value of 0.5 or lower, no candidate TR is available any
longer because an advantageous quick task move is not
obvious.

Moreover, TR must satisfy: t_margR tDR, tDR being
the relocation time of the candidate task TR. A similar
condition must be satisfied by the incoming task TN as
well: t_margN tDR . If these two conditions are met, TR

is relocated with a 3D-adjacency heuristic, and then the
new task TN is considered again, and a suitable location
perhaps can be found as in Figure 6.c.

If there is not a valid TR candidate, though, then the on-
demand defragmentation will not take place and the task
TN will go directly to Qw, in hope of a future chance
before its t_margN is spent. It happens the same if the
defragmentation does not give the desired results.

Figure 6. FPGA status before (a) and after
(b, then c) an on-demand defragmentation.

Atask = 63
AF_FPGA = 164
AF_FPGA 2*Atask

a) F=0.71

b) F= 0.66

TN

TN

TR

c) F=0.71

b) F= 0.71

T1

T3

T6

T2

T5

T4

a) F= 0.6

 T1

 T3 T2

T5

T4

6. Conclusions and Future Work

We have presented an approach to 2D hardware
multitasking that estimates the fragmentation FPGA status
and takes defragmentation decisions when needed. Two
basic approaches have been shown: preventive and on-
demand defragmentation. Preventive heuristics try to
anticipate to possible allocation problems due to
fragmentation. They can be fired by two alarm sources:
the presence of an island in the vertex list, or a high
fragmentation value given by the metric. When fired, it
performs an immediate global or quasi-global
defragmentation, or a delayed global one depending on
the time constraints of the involved tasks. On-demand
heuristics try an urgent move of a single candidate task,
the one with the highest relative adjacency with the hole
border. Such battery of defragmentation measures can
help avoiding most problems produced by fragmentation
in HW multitasking on 2D reconfigurable hardware.

 Future work-plans include the substitution of the
fragmentation metric of section 3, vertex-based, by
another one based on the relationship between the hole
area and its perimeter length, and the study of new
architectural features in order to reduce the value of k
described in section 4.1, based on a two-context approach.

7. Acknowledgements

This work has been supported by Spanish Government
research grants TIC2002-00160 and TEC2005-04752.

8. References

[1] G. Wigley, D. Kearney, “Research Issues in Operating Systems for
Reconfigurable Computing”, Proc. of the International Conference
on Engineering of Reconfigurable Systems and Algorithms
(ERSA’02), Las Vegas, USA. June 2002.

[2] K. Compton, J. Cooley, S. Knol, S. Hauck, "Configuration
Relocation and Defragmentation for Reconfigurable Computing",
Transactions on VLSI Systems, Vol. 10, No. 3, pp. 209-220, June
2002.

[3] G. Brebner, O. Diessel, “Chip-Based Reconfigurable Task
Management”, Proc. of the Int’l Workshop on Field Programmable
Gate Arrays (FPL’01), pages 182–191, 2001.

[4] D. Koch, A. Ahmadinia, C. Bobda, H. Kalte, “FPGA Architecture
Extensions for Preemptive Multitasking and Hardware
Defragmentation”. Proc. of the IEEE International Conference on
Field-Programmable Technology. Brisbane, Australia, pp. 433-436,
December 2004.

[5] K. Bazargan, R. Kastner, M. Sarrafzadeh. “Fast Template Placement
for Reconfigurable Computing Systems”, IEEE Design and Test of
Computers, volume 17, pages 68–83, 2000.

[6] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, B. Schmidt,
“Dynamic scheduling of tasks on partially reconfigurable FPGAs2.
IEE Proc.-Computer Digital Technology, Vol. 147, No. 3, May
2000, pp. 181-188.

[7] C. Steiger, H. Walder, M. Platzner. “Operating Systems for
Reconfigurable Embedded Platforms: Online Scheduling of Real-

Time Tasks”. IEEE Transactions on Computers vol. 53 (11),
pp.1393-1407, 2004.

[8] A. Ahmadinia and J. Teich, “Speeding up online placement for
XILINX FPGAs by reducing configuration overhead”, Proc. of the
IFIP International Conference on VLSISOC. Darmstadt, Germany:
IFIP, Dec. 2003, pp. 118–122.

[9] J. Tabero, J. Septien, H. Mecha, D. Mozos, and S. Roman, "Efficient
Hardware Multitasking through Space Multiplexing in 2D RTR
FPGAs," Euromicro Digital System Design Conference, September
2003.

[10] M. Handa and R.Vemuri "An Efficient Algorithm for Finding
Empty Space for Online FPGA Placement". In 41st Design
Automation Conference (DAC’04), San Diego, CA, USA. June
2004.

[11] J. van der Veen, S. Fekete, M. Majer, A. Ahmadinia, C. Bobda, F.
Hannig, and J. Teich, “Defragmenting the Module Layout of a
Partially Reconfigurable Device,” Proc. of the International
Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA´05), Las Vegas, USA, June 2005.

[12] C. Bobda, A. Ahmadinia, "Dynamic Interconnection of
Reconfigurable Modules on Reconfigurable Device", IEEE Design
and Test of Computers, vol. 22 (5), pp. 443-451, 2005.

[13] H. Walder, M. Platzner, “Non-preemptive Multitasking on FPGAs:
Task Placement and Footprint Transform”, Engineering of
Reconfigurable Systems and Algorithms (ERSA’02), June 2002

[14] J. Tabero, J. Septien, H. Mecha, D.Mozos. “A Low Fragmentation
Heuristic for Task Placement in 2D RTR HW Management”, Proc.
of the International Conference on Field-Programmable Logic and
Applications (FPL’04), ser. Lecture Notes in Computer Science,
vol. 3203. Springer-Verlag, 2004, pp. 241-250.

[15] M. Handa and R. Vemuri, "Area Fragmentation in Reconfigurable
Operating Systems", Engineering of Reconfigurable Systems and
Algorithms (ERSA’04), Las Vegas, USA, June 2004.

[16] M. Gericota, G. Alves, M. Silva, and J. Ferreira, “Run-Time

Management of Logic Resources on Reconfigurable Systems”,
Design, Automation and Test In Europe Conference (DATE’03),
Munich, Germany, 3-7 March 2003, pp. 974-979.

[17] A. Ejnioui and R. F. DeMara, “ Area Reclamation Metrics for
SRAM-based Reconfigurable Device,” in the Proceedings of The
International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA’05), Las Vegas, USA, June 2005.

[18] www.xilinx.com
[19] S. Trimberger, D. Carberry, A. Johnson, and J. Wong, "A

timemultiplexed FPGA", Proc. of the 5th IEEE Symposium on
FPGA-Based Custom Computing Machines (FCCM 97), April
1997, pp. 22--28.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

