
Babylon v2.0:Middleware for Distributed, Parallel, and Mobile Java Applications

Willem van Heiningen1, Tim Brecht2, and Steve MacDonald2

1 Integrative Biology 2David R. Cheriton School of Computer Science
Hospital for Sick Children University of Waterloo

Toronto, ON Canada Waterloo, ON Canada
willem@sickkids.ca {brecht, stevem}@uwaterloo.ca

Abstract

Babylon v2.0 is a collection of tools and services that
provide a 100% Java compatible environment for develop-
ing, running and managing parallel, distributed and mobile
Java applications. It incorporates features like object mi-
gration, asynchronous method invocation and remote class
loading while providing an easy-to-use interface. Addi-
tionally, Babylon v2.0 enables Java applications to seam-
lessly create and interact with remote objects while protect-
ing those objects from other applications by implementing
access restrictions and separate name spaces.

This paper describes the most important programming
features of the Babylon v2.0 system, using a heat diffusion
example to show how they are used in practice. The po-
tential cluster computing benefits of the system are demon-
strated with experimental results which show that sequen-
tial Java applications can achieve significant performance
benefits from using Babylon v2.0 to parallelize their work
across a cluster of workstations.

1 Introduction

The Java language [7] has many features that facilitate
distributed systems programming. Java’s built-in security,
threading and dynamic class loading support can greatly
simplify the development of distributed applications. Fur-
thermore, Java applications are compiled into a machine in-
dependent representation called bytecodes that can be run
on any machine that runs the Java Virtual Machine (JVM).
Java also supports Remote Method Invocation (RMI) which
can hide much of the complexity of communication with
objects residing in other JVMs, possibly on other machines.

Nevertheless, Java and RMI do not include support for
many important features for distributed object programming
such as dynamic remote object creation, asynchronous re-
mote method invocation, remote object migration and re-
mote object administration facilities.

Babylon v2.0 overcomes these limitations by providing
programmers with Java classes and interfaces for remote
object creation, interaction and administration. Babylon
v2.0 contributes several new features and approaches in the
area of Java-based distributed and parallel systems without
special language extensions, preprocessors or compilers.
• Babylon v2.0 uses Java’s dynamic proxy objects to

provide transparent access to remote worker objects.
Clients use these dynamic proxies to call methods on
workers using standard Java method invocation syntax.

• Babylon v2.0 implements an asynchronous method
invocation technique based on asynchronous tickets.
Method invocations using asynchronous tickets are
syntactically identical to local method invocations but
are executed asynchronously.

• Babylon v2.0 provides two forms of remote object cre-
ation. Clients can create a new remote object instance
based only on a programmer-specified class name or
take an existing locally-created object and turn it into
a remote object.

Babylon v2.0 provides all of these features while main-
taining 100% Java compatibility and can be used on any
platform that supports the JVM. We believe that the per-
formance results and the combination of features provided
in Babylon v2.0 make it a powerful system for distributed
application developers.

2 Related Work

There are currently a large number of commercial and
academic Java-based distributed computing projects in var-
ious stages of development. The objectives and underly-
ing technologies of each of these projects vary significantly.
Some focus on the emerging grid, while others are de-
signed for very specialized groups of computational prob-
lems. Babylon v2.0 is designed to handle a variety of paral-
lel, distributed and mobile Java computations.

The original implementation of Babylon [12], referred to
here as Babylon v1.0, was an important initiative to make

1-4244-0054-6/06/$20.00  ©2006 IEEE



distributed computing resources more widely available to
developers. Much of the design for Babylon v1.0 came from
experiences with Ajents [13] and ParaWeb [4]. Babylon
v1.0 builds on these systems to provide mechanisms for re-
mote object creation, migration and remote I/O, but lacks a
flexible mechanism to use and interact with remote objects.
Babylon v1.0 suffers from deficiencies in key areas such as
remote class loading and object migration. However, the
most serious drawback of Babylon v1.0 is its reliance on
a non-standard remote method invocation interface that is
awkward to use and error-prone because it prevents normal
compile-time method invocation checks.

Several other existing systems, like JavaParty [9] and
Java/DSM [21], use a modified JVM or special preproces-
sors and language extensions to implement distributed Java
frameworks. Babylon v2.0 provides support for distributed
programming without requiring a modified JVM implemen-
tation, new keywords or other custom language extensions.

Others systems, such as Javelin [17], Charlotte [3] and
Ninflet [18], only support distributed applications that can
be formulated as master-worker or branch-and-bound com-
putational problems. Babylon v2.0 does not limit itself
to a particular computational model and provides support
for general remote object interaction using standard Java
method invocation syntax. As a result, distributed appli-
cations that require more complex object interactions, such
as the mesh computation-based heat diffusion application
described in Section 3 and used in our experiments, can be
written using Babylon v2.0. In contrast, this program could
not have been implemented easily using these systems.

ProActive [2] provides similar services to Babylon v2.0,
using similar techniques that do not require JVM changes or
external tools. As well, it provides a group communication
abstraction. ProActive generates proxies for remote objects
at runtime using bytecode engineering libraries as it pre-
dates Java’s dynamic proxies. This capability is used to cre-
ate new remote objects and export local ones. ProActive can
execute remote methods synchronously or asynchronously,
but the choice is made automatically by the system based
on the method return type and presence of checked excep-
tions. Asynchronous calls return future objects [8], which
are proxies that resolve to a final value on a method call
and transparently implement wait-by-necessity. All proxy
classes generated by ProActive are subclasses of the orig-
inals, overriding public methods. This provides polymor-
phism between local and remote objects and obviates the
need for interfaces, but limits the classes that can be used
to create remote objects or used as return types in methods.
Final classes and methods, including arrays, cannot be used
as they cannot be subclassed or overridden. As well, a re-
mote object can only run one method at a time, which can
make some applications difficult to implement efficiently.

Another important feature of Babylon v2.0 is the use of

separate name spaces on servers for clients. This is a crucial
feature in a multi-user environment where several different
clients may be running remote objects on a single server at
the same time. Many existing systems such as ProActive
[2], JavaParty [9] and the initial version of Babylon [12]
do not provide separate class name spaces for clients. In
these systems, servers must be restarted every time a client
changes any of his/her classes and no two clients can ever
use classes with the same name. In addition to supporting
multiple class name spaces, Babylon v2.0 also provides ac-
cess restrictions for remote objects based on context infor-
mation transmitted with remote method invocations.

3 Programming in Babylon v2.0

To demonstrate some of the important features of Baby-
lon v2.0, we briefly describe the implementation of a heat
diffusion application.

The heat diffusion application simulates heat transfer
across a two-dimensional surface over time. In this simu-
lation, the surface is discretized into an M×M 2D array,
T , and the Jacobi iterative method [11] is used to compute
the final temperature distribution of the surface. The array
is initialized to an even temperature distribution and a con-
stant heat source is applied to each edge of the array. Each
iteration simulates heat diffusion across the surface over a
small period of time. At each iteration, i, the value of every
cell in the array is recomputed to be the average value of its
four neighbouring cells using data from iteration i − 1.

In our implementation, N worker objects are used to
compute the temperature of a surface after 100 iterations.
We use a decomposition strategy to partition the original ar-
ray into N blocks each consisting of M

N contiguous rows.
Each block is transmitted over the network to a worker ob-
ject running on a remote Babylon server. Two block edges
must be exchanged between neighbouring worker objects at
each iteration. Once these data points have been exchanged,
each worker can compute the updated temperature for all
the cells in its block for the current iteration.

Selected portions of the heat diffusion code appear in
Figures 1 and 2. Figure 1 creates worker objects, ini-
tializes them, and performs the computation. The code
starts by creating the remote worker objects of type Grid-
DiffuserImpl, one per processor, using the remote-
New() method in line 9. The first argument is the class
of the worker implementation, followed by the class ex-
porting the client interface. The third argument is a user-
defined name that is registered with the Babylon lookup
service so clients can find remote objects. The last ar-
gument is a Java Archive (JAR) file containing the code
and other files needed for the GridDiffuserImpl since
we do not assume that remote servers share a file system.
The archive is sent to the machine on which the new re-



mote object is created. This process can be optimized by
specifying a JAR file as the second argument to the call to
Babylon.initApplication() on line 3. This for-
wards the JAR file to Babylon servers at application startup,
so remoteNew() need not supply the archive. The JAR
file is used as a convenient packaging mechanism; future
versions of Babylon may use the remote class loading ca-
pabilities in Java, and may optimize communication by
caching class information sent to other Babylon servers so
it need not be transmitted multiple times [10].

By default, the Babylon scheduler places the new object
on the first available server, though the user can request a
specific machine. The Babylon scheduler is a distinguished
process that assigns objects to servers and provides a worker
object directory that can be used to look up references to
live worker objects. Details on the scheduler and Babylon
architecture can be found in [20].

The remoteNew() call returns a new dynamic Java
proxy object that can be used to call client methods on the
new remote worker. Method calls made using this proxy are
executed synchronously. The proxy supports the methods
declared in the interface supplied as the second argument.
The behaviour of these proxies is identical to their rmic-
generated equivalents. Later, we will show how we exploit
dynamic proxies to support other Babylon v2.0 features.

Once the worker objects have been created, each must
have a reference to neighbouring workers so they can ex-
change edges in each iteration. These remote references are
set in the setAdjacencies() method (line 15) using a
remote mutator method defined for the diffusion workers.

Starting the computation requires each worker object to
start executing the diffuse()method, which causes each
worker to iteratively execute the heat diffusion computa-
tion on its portion of the surface. This code is shown in
the loop starting at line 20 in Figure 1. The diffuse()
method must be called asynchronously to allow each worker
to compute independently, but there must also be a way to
determine when the workers have completed so results can
be gathered. Babylon provides an asynchronous method
invocation mechanism called an asynchronous ticket. An
asynchronous ticket is a special dynamic Java proxy that
can be used to execute a single remote method in a separate
thread. By using dynamic Java proxies, the asynchronous
method call still looks like a normal Java method call, as
shown on line 25. No special syntax or library calls are
needed for asynchronous invocations. The loop on line 20
partitions the surface, creates one ticket for each worker,
and uses that ticket to call the diffuse() method. At the
end of the loop, all workers are executing the computation.
Any additional code that can run asynchronously with this
computation can be placed after the loop.

Synchronization with an asynchronous ticket is accom-
plished using the getResult() method in the Asynch-

Ticket class in Babylon v2.0 (line 32). After being used
as a proxy for making an asynchronous method call, the
ticket becomes a form of future representing the outstand-
ing method results [8]; the getResult() method blocks
until the worker finishes executing the method invoked with
the ticket and returns its results. Any exceptions thrown
during the execution of the method are raised at this point,
and should be caught and handled. The worker results are
combined into the global result.

The code in Figure 2 shows the main execution loop for
each worker in the heat diffusion computation. One im-
portant characteristic of Java RMI is that each method in-
voked on a remote object is executed in a new thread at the
server. This feature is used in the implementation of the ex-
change of remote edges in line 11. This method uses the
synchronous RMI feature in Babylon to request edges from
the data held by adjacent workers. Synchronous RMI in
Babylon is built using Java RMI but with dynamic proxies
rather than the proxies that would normally be generated by
the rmic stub compiler. The need for dynamic proxies will
be explained later in this section.

One difficulty with the exchange of edges stems from the
use of Jacobi iteration in the computation. The values used
to compute the diffusion in iteration i are those obtained
from iteration i−1. A worker requesting remote edges from
an adjacent worker must wait until that worker completes its
current iteration. This synchronization is accomplished us-
ing the thread synchronization facilities in Java. The worker
calls an accessor to retrieve the edge values. This acces-
sor blocks the calling thread until the edges are updated.
Since the method call is synchronous, the remote client is
also blocked. Once the current iteration is complete, these
blocked threads are woken (on line 22 of Figure 2) and re-
turn the edge data, allowing adjacent workers to proceed
with their next iteration.

This application shows many features of Babylon v2.0.
In particular, asynchronous tickets are a novel feature sup-
porting asynchronous method invocations. Asynchronous
tickets permit synchronous and asynchronous RMI to co-
exist in the same program, where both forms of remote invo-
cation are indistinguishable from local method invocations.
The only difference is in the type of dynamic proxy used in
the call. In contrast, many other systems require additional
keywords to distinguish asynchronous calls. The creation of
asynchronous tickets is enabled by the addition of dynamic
proxies in Java; it is possible to create a new proxy object
for an interface at runtime rather than having to generate
proxies statically using stub compilers like rmic. Different
dynamic proxies can handle method invocations differently,
but the use of these proxies still provides the basic RMI ab-
straction of hiding remote calls behind a local object.

Babylon v2.0 explicitly distinguishes between syn-
chronous and asynchronous method calls using these tick-



1 public void startHeatDiffusion() {
2 try {
3 Babylon.initApplication("schedulerHostName", null, null);
4 } catch (Exception e) { /* handle exception */ }
5 GridDiffuser gd[] = new GridDiffuser[nprocs];
6 Grid grid = new Grid(matrix_size, matrix_size);
7 try {
8 for (i = 0; i < nprocs; i++) {
9 gd[i] = (GridDiffuser) Babylon.remoteNew(GridDiffuserImpl.class, GridDiffuser.class,

10 "GridSection" + i, "GridDiffuser.jar");
11 }
12 } catch (Exception e) { /* handle exception */ }
13

14 // Provide references to adjacent grid workers for edge exchange.
15 setAdjacencies(gd, nprocs);
16

17 // Start diffusing... first prepare space for the asynchronous tickets.
18 GridDiffuser gd_asynch[] = new GridDiffuser[nprocs];
19

20 for (i = 0; i < nprocs; i++) {
21 grid_section[i] = grid.getMyRows(i, nprocs);
22

23 // Calling diffuse() asynchronously on each worker object.
24 gd_asynch[i] = (GridDiffuser) AsynchTicket.newTicket(gd[i]);
25 gd_asynch[i].diffuse(grid_section[i], 0, iterations);
26 }
27

28 // Now retrieve the results from each worker.
29 float sub_result[][][] = new float[nprocs][][];
30 for (i = 0; i < nprocs; i++) {
31 try {
32 sub_result[i] = (float[][])AsynchTicket.getResult(gd_asynch[i]);
33 } catch (RemoteExecException t) { /* handle exception */ }
34 }
35 }

Figure 1. Babylon v2.0 Grid Diffusion Example - Starting the Computation.

1 public void diffuse(float[][] partition, int endIteration) {
2 float[][] temp;
3 float[][] srcGrid = initLocalGrid(partition);
4 float[][] targetGrid = new float[srcGrid.length][srcGrid[0].length];
5 int current_Iteration = 0;
6 while (current_iteration < end_iteration) {
7

8 // Make sure we have the updated values for the remote edges
9 // before we compute the diffusion for this iteration.

10 // Block until other worker completes last iteration if necessary.
11 getRemoteEdgesFromAdjacentWorkers(srcGrid);
12

13 // Compute the temperature diffusion for this iteration.
14 diffuse(targetGrid, srcGrid);
15

16 // We’re done. Swap the source and target grid.
17 float[][] temp = srcGrid;
18 srcGrid = targetGrid;
19 targetGrid = temp;
20

21 // Update the local edge array and the iteration. Wake any waiting threads.
22 setLocalEdges(++current_iteration);
23 }
24 }

Figure 2. Babylon v2.0 Grid Diffusion Example - Main Worker Code.



1 gd[i] = (GridDiffuser)
2 Babylon.export(new GridDiffuserImpl(),
3 GridDiffuser.class,
4 "GridDiffuser.jar");

Figure 3. Exporting Local Objects.

ets. This feature provides the user with control over how
methods are invoked, rather than using implicit rules like
ProActive. Further, it provides control over synchronization
with asynchronous methods. Specifically, ProActive asyn-
chronously executes methods with a return type of void
(unless they throw a checked exception), but these methods
produce no future and so synchronization is not possible.
For methods with side effects on the state of a remote object,
these semantics may not be desired. Although additional
code is needed, Babylon v2.0 allows this synchronization.

The remote object creation and method invocation facil-
ities in Babylon v2.0 are a significant improvement over
those in Babylon v1.0 and Java RMI. Babylon v1.0 uses
strings for class names, method names and object types,
preventing compile-time checks for class existence, and the
number and types of parameters used in remote method in-
vocations. Java RMI cannot create remote objects directly.
Instead the object servers must be created with factory ob-
jects (already running on the remote host), which must then
be used to create new remote objects. Since Java 1.2, it
is possible to create Activatable objects, which permit
remote objects to be started on demand. However, creating
such objects requires the application developer take several
additional steps including the creation of a setup program to
create information about the activatable object and register
it with the RMI registry.

In addition to offering remote object creation, Baby-
lon v2.0 offers a second method for creating remote ob-
jects called exporting. Exporting takes a local object and
uses it to create and initialize a new remote object that is
moved to an available server. Figure 3 shows an example
of exporting. This is the object creation code from line 9
in Figure 1, rewritten to export a locally-created instance
of GridDiffuserImpl. The export() method takes
three parameters: the local object to be exported, an inter-
face implemented by the class of that object (used to con-
struct a dynamic Java proxy for the new remote object),
and the JAR file containing the required class files. Like
remoteNew(), the JAR file can instead be specified in the
call to Babylon.initApplication() and removed
from calls to export().

The only requirement for exporting a local object is that
its class must implement a Java interface that declares client
methods and the Serializable interface. In contrast,
to create remote objects using Java RMI a worker inter-
face must extend the Remote interface, and the worker

class usually extends the UnicastRemoteObject class
or must call its exportObject() method for all new ob-
jects. In Babylon v2.0 neither of these requirements are
necessary to export a local object or create a new remote
object because both use dynamic Java proxies.

Exporting a local object creates a dynamic proxy based
on the interface implemented by the class, which serves as
the RMI stub. Babylon v2.0 must use dynamic proxies (as
opposed to rmic-generated proxy stubs) for two reasons.
First, the rmic compiler cannot generate correct stubs for
worker object classes since these classes do not adhere to
the Java RMI conventions. Second, the stub compiler can-
not know which classes will be exported in advance and
would have to generate stubs for every class, which is not
feasible. In particular, it is possible to export objects from
classes in the standard Java class library, so the set of stubs
that may be needed is simply too large. Remote object cre-
ation uses dynamic proxies for the same reasons.

4 Additional Babylon Features

We now briefly describe some of the interesting features
of Babylon v2.0 that were not used in the example program.

4.1 Remote Class Loading and Name
Spaces

Unlike most programming languages, Java provides a
very flexible class loading mechanism that only finds and
loads classes when they are accessed [14]. Normally, the
virtual machine looks for class data in the form of “class
files” that reside in the file system. However, developers can
customize how the virtual machine finds and loads classes
by implementing their own custom class loaders.

Babylon v2.0 uses custom class loaders to load worker
object classes over the network. The class files for a worker
object must be placed in a JAR file whose location is speci-
fied as an argument to the Babylon.remoteNew() or
Babylon.export() methods when the client creates
the remote worker object. The JAR file is transmitted to
the target server along with the remote object creation re-
quest. As a result, Babylon v2.0 servers do not need local
file system access to the class files of the worker object and
clients can run their worker objects on remote servers with-
out requiring login access to the server machine.

Babylon v2.0 servers create a new instance of a custom
class loader for each client. Each class loader manages its
own name space. Providing separate name spaces for each
client solves many of the class loading issues experienced
by systems such as ProActive, JavaParty and Babylon v1.0.
Some of the advantages of Babylon v2.0 class loading are:

• Different clients can safely use identical names for
their classes without causing naming conflicts.



• To load and use the new class definitions, clients can
change the classes and simply restart their application.

• When a client application finishes, the class loader and
classes loaded by the client can be garbage collected.

• Clients no longer share a single class name space and,
consequently, no longer have access to each other’s
classes (unless permissions are set to permit sharing).

4.2 Object Migration

Another key feature of Babylon v2.0 is the ability to
freely move remote objects from one Babylon server to an-
other. Object mobility can be used to support dynamic load
balancing (i.e., move a remote object from a heavily loaded
server to a lightly loaded server), fault-tolerance (i.e., move
a remote object from a faulty server to a stable server) or to
exploit server locality (i.e., move a remote object to a server
with lower communication latency).

Worker object migration takes a snapshot of a worker ob-
ject’s data state, known as a checkpoint, and transmits this
checkpoint to a new Babylon v2.0 server. Consequently,
only objects that are serializable can be migrated.

Babylon v2.0 stores the most current worker object loca-
tion information in a worker object registry in the Babylon
scheduler. In addition, location forwarding is used [6]. For-
warding information for a mobile object is stored at each
of the object’s former locations, essentially creating a chain
leading from the object’s original location to its current lo-
cation. Stale worker references are updated transparently
using this information. The combination of these two mech-
anisms ensures calls to a migrated object cannot be lost.

Three types of migration are supported by Babylon v2.0.
Idle migration takes an idle worker object (one that is not
executing any methods) and moves it to a new server. If
a worker object is actively executing one or more meth-
ods, either delayed or safe-point migration can be used.
Delayed migration prevents new method invocations from
starting while allowing in-progress methods to finish exe-
cuting. Once all the in-progress methods finish executing
the object becomes idle and migration can occur.

If the object is not doing any computation at the time of
the migration call the object is immediately migrated. If the
object is actively computing at the time of the call the mi-
gration will be delayed until the method being invoked has
completed. Finally, safe-point migration uses a checkpoint-
ing and rollback protocol to perform migration at program-
mer specified safe migration points. Safe-point migration
is only supported for worker objects running in safe mode.
Firstly, safe mode enforces single threaded execution for a
worker object and forces concurrent method invocation re-
quests to be executed sequentially in the order of their ar-
rival. Secondly, a checkpoint of the worker object state is
created prior to the start of each method invocation. This en-

sures that the worker object always has a recent checkpoint
which can be used if safe-point migration is requested.

Worker objects that require the ability to be immedi-
ately migrated using safe-point migration must include calls
to Babylon.setMigrationPoint() in their worker
object code at points where safe-point migration can safely
be performed. Normally, Babylon.setMigration-
Point() does nothing and simply returns. However, if
safe-point migration is pending, this method will throw
a babylon.core.BabylonThreadDeath object as
an exception. Unless caught by the worker object code,
this exception will propagate up to the server. When the
server catches the exception, it knows that the worker
thread has been stopped and that the worker object can
safely be migrated. A worker object can also catch the
BabylonThreadDeath exception if it needs to perform
any cleanup tasks before migration occurs, provided the ex-
ception is rethrown when cleanup tasks complete. Another
approach would be to allow a cleanup object to be provided
in the call to setMigrationPoint(), which could pro-
vide a method to perform the required cleanup if migration
is pending. This would eliminate the possibility of incor-
rectly handling the BabylonThreadDeath exception.

This approach provides a 100% Java compatible and
thread safe mechanism for stopping worker threads and
gives workers an opportunity to perform cleanup recovery
tasks to defend against the checkpoint consistency problem
[5] before migration occurs. For instance, a worker could
catch the BabylonThreadDeath exception after setting
a safe migration point and use the handler to close I/O con-
nections or undo an operation that affects an external com-
ponent. The drawback is that the source code of the worker
object must be available so that calls to setMigration-
Point() can be added at safe migration points.

4.3 Remote I/O

Babylon v2.0 includes a mechanism for performing I/O
operations with worker objects using server-side callbacks.
This technique works by creating an I/O server inside the
client which can be remotely referenced and used by a
worker object using RMI. Babylon v2.0 provides wrapper
classes for many standard Java I/O classes. These wrapper
classes are essentially RMI servers with interfaces that more
or less match their standard Java I/O counterparts. A worker
object that needs to perform console, file or socket I/O can
obtain a remote reference to the appropriate wrapper object
and use it instead of the normal Java I/O class.

5 System Evaluation

In this section, we examine the performance of parallel
matrix multiplication and heat diffusion benchmarks. The



experiments were run on a cluster of 8 dual CPU (500 MHz
Pentium III) PCs running Red Hat Linux 7.1 connected via a
100 Mbps switch. Each of these machines contains 256 MB
of RAM and is running the J2SE platform, version 1.3.1 02.
Babylon v2.0 also works on newer JVMs since it does not
require additional tools or extensions to the language or run-
time. Babylon v2.0 only requires JVM support for dynamic
proxies, which is standard starting from version 1.3.

Matrix multiplication is often used as a test application
for distributed systems because it can be implemented us-
ing the master-worker design pattern. In other words, a ma-
trix multiplication problem can be divided into sub prob-
lems that can be solved independently by worker objects.
The participating workers do not need to communicate with
each other to synchronize or share data. A distributed ver-
sion of the matrix multiplication benchmark is used to eval-
uate the performance of a typical master-worker computa-
tion using Babylon v2.0. The sequential baseline is a sim-
ple, standalone matrix multiplication application (without
RMI or domain partitioning) that uses the same core matrix
multiplication algorithm as the distributed implementation.

The heat diffusion benchmark was used to evaluate the
performance of a communication-intensive Babylon v2.0
application that could not have been efficiently realized us-
ing the master-worker computation model. As a result, it
could not have been easily written or executed using many
existing distributed systems (e.g., Babylon v1.0, Charlotte,
Javelin, and Ninflet) since they do not support the more gen-
eral programming model required for this type of applica-
tion. A ProActive version would suffer from the limitation
that only one method can be running in a remote object at a
given time. This means the edges cannot be exchanged as
shown in Figure 2, since the remote accessor method cannot
execute as long as the diffuse() method runs. Instead,
each iteration of the diffusion must be a separate remote
method call, making the code awkward and increasing com-
munication costs. The sequential baseline is a simple, stan-
dalone diffusion application (without RMI or domain parti-
tioning) that uses the Jacobi iterative algorithm to compute
the final temperature distribution across the surface.

The speedup results for the matrix multiplication and
heat diffusion benchmarks are summarized in Figure 4. The
straight dotted line represents perfect speedup and measured
speedups are relative to a sequential implementation.

The speedups obtained for the 2048×2048 matrix multi-
plication experiments are quite good until 16 worker objects
are used. With a 2048 × 2048 matrix, the granularity of the
computation is large enough to produce significant speed-
ups with four or eight workers. For instance, using four
workers we were able to achieve a speedup of 3.8 and with
eight workers, a speedup of 7.1. However, as the number of
workers increases, so does the cost of distributing the ma-
trix data to the workers. This overhead becomes especially

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  2  4  6  8  10  12  14  16

Sp
ee

du
p

Number of Worker Objects

Matrix Multiplication (2048x2048)
Heat Diffusion (4096x4096)

Perfect Speedup

Figure 4. System Evaluation Results

evident in configurations that use 16 workers. The largest
speedup we were able to obtain with 16 workers was 11.5.

To determine why the speedup is not better for 16 worker
objects, we conducted a detailed analysis of data distribu-
tion costs incurred by the multiplication of two 2048×2048
matrices. The communication costs of distributing the ma-
trix data to the worker objects increases proportionally with
N . This is primarily because the entire matrix B must be
transmitted to each worker object participating in the com-
putation. For example, if 16 workers are participating in
the computation, the master program will need to send all
of matrix B and a portion of matrix A a total of 16 times
at the start of the computation so that each worker has the
required data. For large matrices, this data transmission can
have a considerable impact on the resulting speedup.

The total amount of network traffic generated with N
worker objects for a b byte matrix (b = 16.0 MB for a
2048×2048 matrix) is (A+B +C)×N , where A = b/N ,
B = b and C = b/N . In the case of 16 worker objects 288
MB of data is transmitted. The process of distributing this
large amount of data from the master to the workers causes
the algorithm efficiency to drop significantly for configura-
tions using 16 workers. Because the transmission of these
matrices is done sequentially, the speedups obtained can be
explained using Amdahl’s law [1]. In this case an upper
bound on the speedup is 12.3 which is quite close to the ac-
tual speedup of 11.5. A more detailed analysis can be found
in [20].

Although the speedup values obtained in the heat diffu-
sion benchmark are smaller than those obtained in the ma-
trix multiplication benchmark, the results are still promis-
ing and indicate that speedup can be achieved despite the
communication-intensive nature of the problem. In fact,
similar experiments in [16], [15] and [19] yield speedups



in the range of 2.5 to 4.9 on eight processors and 3.5 to
6.5 on 16 processors. Speedups obtained using Babylon
v2.0 are as high as 5.0 using 8 worker objects and 6.5 using
16 worker objects. This suggests that Babylon v2.0 can be
just as effective at running communication-intensive appli-
cations as other systems.

By analyzing the heat diffusion experiments based on the
amount of data communicated, the time required to sequen-
tially transmit that data (in this case some communication
occurs in parallel and we only count the sequential portion
of the communication), and the sequential execution time,
we are again able to obtain a bound on the speedup using
Amdahl’s law. In this case the bound is 7.3 which again is
not much higher than the actual speedup of 6.5. A more
detailed analysis can be found in [20].

6 Conclusions

Babylon v2.0 incorporates features like remote object
migration, remote object access restrictions, separate name
spaces for clients, and dynamic class loading while pro-
viding an easy-to-use interface that works seamlessly with
existing Java code. Worker objects created using Babylon
v2.0 can be accessed transparently using dynamic proxy
objects. Babylon v2.0 also introduces an asynchronous
method invocation technique based on proxy objects called
asynchronous tickets. The result is a powerful system that
gives developers the necessary tools and services for build-
ing powerful cluster computing applications.

Performance evaluation results are also promising and
indicate that applications can use Babylon v2.0 to distribute
objects over multiple hosts to execute efficiently in parallel.
Experiments show that reasonable speedups can be obtained
for simple master-worker applications (e.g., matrix multi-
plication) and for more complicated and communication-
intensive applications (e.g., heat diffusion). Our experi-
ments demonstrate that Babylon v2.0 can be used to effec-
tively build and run clustered computing applications.

Acknowledgments

We gratefully acknowledge Morgan Stanley Dean Wit-
ter, the Ontario Research and Development Challenge Fund,
and the National Sciences and Engineering Research Coun-
cil of Canada for financial support for portions of this
project. This paper has also benefited from the comments
and suggestions of the anonymous reviewers.

References

[1] G. Amdahl. Validity of the single processor approach to
achieving large-scale computing capabilities. Proc. AFIPS
1967 Joint Computer Conference, 30:483–485, 1967.

[2] I. Attali et al. A step toward automatic distribution of Java
programs. In 4th Intl. Conf. on Formal Methods for Open
Object-Based Distributed Systems, pages 141-161, 2000.

[3] A. Baratloo et al.Charlotte: Metacomputing on the Web. Fu-
ture Generation Computer Systems, 15(5):559–570, 1999.

[4] T. Brecht et al.ParaWeb: Towards world-wide supercomput-
ing. In Proc. 7th ACM SIGOPS European Workshop, pages
181–188, 1996.

[5] O. P. Damani and V. K. Garg. How to recover efficiently and
asynchronously when optimism fails. In IEEE Intl Conf. on
Distributed Computing Systems, pages 108–115, 1996.

[6] R. J. Fowler. Decentralized Object Finding Using Forward-
ing Addresses. PhD thesis, University of Washington, Seat-
tle, Washington, December 1985. (Department of Computer
Science Technical Report TR85-12-1).

[7] J. Gosling et al. The Java Language Specification, Second
Edition. Addison Wesley, 2000.

[8] R. Halstead. Multilisp: A language for concurrent sym-
bolic computation. ACM Transactions on Programming
Languages and Systems, 7(4):501–538, 1985.

[9] B. Haumacher and M. Philippsen. Exploiting object locality
in JavaParty, a distributed computing environment for work-
station clusters. In Proc. 9th Workshop on Compilers for
Parallel Computers, pages 83–94, June 2001.

[10] F. Huet et al.A high performance java middleware with a real
application. In Proc. Supercomputing Conference, 2004.

[11] F. P. Incropera and D. P. DeWitt. Introduction to Heat Trans-
fer, Fourth Edition. John Wiley and Sons, Inc., August 2001.

[12] M. Izatt. Babylon: A Java-based distributed object environ-
ment. Master’s thesis, York University, Toronto, July 2000.

[13] M. Izatt et al. Ajents: Towards an environment for paral-
lel, distributed and mobile Java applications. Concurrency:
Practice and Experience, 12(8):667–685, 2000.

[14] T. Lindholm and F. Yellin. The Java Virtual Machine Speci-
fication, Second Edition. Addison Wesley, 1999.

[15] S. MacDonald et al.From patterns to frameworks to parallel
programs. Parallel Computing, 28(12):1663–1683, 2002.

[16] S. Markus et al. Performance evaluation of MPI implemen-
tations using the parallel ELLPACK PSE. In The Second
MPI Developer’s Conference, pages 162–169, 1996.

[17] M. O. Neary et al.Javelin 2.0: Java-based parallel computing
on the Internet. In 6th Intl. European Parallel Computing
Conf., volume 1900 of LNCS, pages 1231–1238, 2000.

[18] H. Takagi et al.Ninflet: A migratable parallel objects frame-
work using Java. In 1998 Workshop on Java for High-
Performance Network Computing, pages 151–159, 1998.

[19] K. Tan et al. Using generative design patterns to generate
parallel code for a distributed memory environment. In Proc.
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 203–215, June 2003.

[20] W. van Heiningen. Babylon v2.0: Support for distributed
parallel and mobile Java applications. Master’s thesis, Uni-
versity of Waterloo, Waterloo, Ontario, August 2003.

[21] W. M. Yu and A. Cox. Java/DSM: A platform for heteroge-
neous computing. Concurrency: Practice and Experience,
9(11):1213–1224, November 1997.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


