A Multiple Task Allocation Framework for Biological Sequence
Comparison in a Grid Environment

Azzedine Boukerche!, Marcelo S. Sousa? and
Alba C. M. A. de Melo?

!University of Ottawa

School of Information Tech. and Engineering

800 King Edward Avenue Ottawa, Canada
boukerch@site.uottawa.ca

Abstract

The evolution of DNA sequencing techniques gen-
erated huge sequence repositories and hence the need
for efficient algorithms to compare them. To increase
search speed, heuristic algorithms like BLAST were de-
veloped and are widely used. In order to further re-
duce BLAST execution time, this paper evaluates an
adaptive task allocation framework to perform BLAST
searches in a grid environment against segmented ge-
netic databases segments. Qur results present very good
speedups and also show that no single task allocation
strategy is able to achieve the lowest execution times
for all scenarios. Also, our results show that the pro-
posed adaptive strategy was able to deal with the het-
erogeneous and non-dedicated nature of a grid.

1 Introduction

In the last decades, an extremely high number of
organisms have been sequenced in genome projects.
After determining a protein (or nucleotide) sequence,
one must infer its function. Usually, this is done by
comparing the newly sequenced organisms against se-
quences for which the functionality has already been
established. Many efforts have been made to collect
the annotated sequences and place them in publicly
acessible databases. The problem is that these genetic
databases are huge and, by now, they present an expo-
nential growth rate.

Therefore, biological sequence comparison, also
called sequence alignment, is one of the most important
problems in computational biology, given the number
and diversity of the sequences and the frequency on

1-4244-0054-6/06/$20.00 ©2006 IEEE

*University of Brasilia (UnB)
Dept. of Computer Science
ICC-Norte Subsolo, Brasilia, 70910-900, Brazil
{albamm,marcelo}@cic.unb.br

which it is needed to be solved daily all over the world
[11]. The most important types of sequence alignment
problems are global and local. To solve a global align-
ment problem is to find the similarity between the en-
tire sequences. Local alignment algorithms must find
the similarity between parts of the sequences. In this
article, we will treat mainly local alignments.

Smith and Waterman [14] proposed an algorithm
(SW) which is a variation of the algorithm proposed by
Needleman and Wunsh that finds the best local align-
ment between two genomic sequences. Its time and
space complexity is also O(n?). In genome projects,
the size and the number of sequences to be compared
are constantly increasing, thus an O(n?) solution is still
expensive. For this reason, heuristics were proposed to
reduce the time spent in computation. BLAST [1] is an
example of a widely used heuristics to compute local
alignments.

The popularity of the Internet made possible the
interconnection of millions of powerful machines in a
global scale. Several measures were made which stated
that, most of the time, the majority of these intercon-
nected machines remain idle. This led to the idea of
metacomputing [13], which proposes the creation of a
supercomputer by taking advantage of the idle cycles
of the machines connected to the Internet.

Grid computing is considered to be an evolution of
metacomputing where not only the computing power
of the machines is shared, but also several other types
of resources such as data, softwares and specific hard-
wares [4]. Applications which are developed for grid
environments are very complex since they have to
deal with a great number of heterogeneous and non-
dedicated resources placed on multiple administrative
domains.

Initially, the efforts in grid computing were concen-
trated to develop middlewares which were able to of-
fer a wide area infrastructure to support the online
processing of distributed applications [8]. The Globus
Toolkit [3] is considered to be the “de facto” stan-
dard for grid middleware, offering basic solutions for
problems such as authentication and remote task ex-
ecution, providing the basic infrastructure where real
distributed applications for grid computing can be de-
veloped.

Since grid applications are designed to run in a ge-
ographically distributed environment, they usually do
not have high communication taxes and many of them
follow the master /slave model [12]. In order to schedule
master /slave applications many task allocation policies
were proposed such as Self Scheduling [15] and FAC2
[5]. The choice of the best allocation policy depends on
the application access pattern and on the environment
in which it runs [12].

In this paper, we evaluate PackageBLAST, an adap-
tive multi-policy framework structured as a grid service
to run BLAST searches in a grid environment com-
posed by segmented databases. PackageBLAST exe-
cutes on Globus 3 [3] and, by now, provides five allo-
cation policies. Also, PackageBLAST incorporates a
generic adaptive mechanism called Package Weighted
Adaptive Self-Scheduling (PSS), to assign weights to
the grid nodes that takes into account current work-
load and heterogeneity.

Our results in a heterogeneous grid environment
composed by 16 machines show that very good
speedups were achieved. When compared with the av-
erage machine, we achieved a speedup of 14.59 with 16
machines, reducing BLAST execution time from 30.88
minutes to 2.11 minutes. Also, we show that, in our
test environment, there is no single task allocation pol-
icy that produces the best execution times for BLAST.

The remainder of this article is organized as follows.
In section 2, we present an overview of BLAST. Sec-
tion 3 describes allocation policies for Master/Slave
applications. Section 4 discusses related work in the
area of distributed BLAST. Section 5 presents Package-
BLAST. Experimental results are discussed in section
6. Finally, section 7 concludes the paper and indicates
future work.

2 BLAST Overview

To compare two sequences, we need to find the best
alignment between them, which is to place one se-
quence above the other making clear the correspon-
dence between similar characters [11]. In an alignment,
spaces can be inserted in arbitrary locations along the

sequences so that they end up with the same size.

Usually, thousands of biological sequences are com-
pared daily against millions of sequences that compose
genetic data banks. Due to the current growth rate,
these databases will soon achieve terabytes. In this sce-
nario, the use of exact methods is prohibitive. For this
reason, faster heuristic methods are proposed which
do not guarantee that the best alignment will be pro-
duced. Usually, these heuristic methods are evaluated
using the concepts of sensitivity and sensibility. Sensi-
tivity is the ability to recognize more distantly related
sequences, i. e., it consists of finding all real align-
ments (true positives). Searches with a high sensitivity
are more likely to discard false positive matches. Se-
lectivity is the ability to narrow the search in order to
retrieve only the true positives. Typically, there is a
tradeoff between sensitivity and sensibility.

2.1 BLAST Algorithm

BLAST [1] is based on a heuristic algorithm which
was designed to run fast while still maintaing high
sensibility. It provides programs for comparing many
combinations of query and database sequence types
by translating sequences on the fly. For instance,
BLASTN and BLASTP compare two sequences of nu-
cleotides and proteins, respectively.

The BLAST algorithm is divided into three well-
defined phases: seeding, extension and evaluation.

In the first phase, BLAST compares a query se-
quence s against all sequences ¢ in a database. BLAST
uses the concept of words which is defined to be a fi-
nite set of letters with length w that appear in a given
sequence. For instance, the sequence TCACGA con-
tains four words with length 3: TCA, CAC, ACG and
CGA. The BLAST algorithm assumes that significant
alignments have words in common.

The location of all shared w-letter words between
sequences s and t is determined by doing exact pattern
matching. Only regions with identical words are used
as seeds for the alignment.

For the cases where significant alignments do not
contain words in common, the concept of neighborhood
is used. The neighbor of a word includes the word itself
and every other word whose score is at least equal to
T, when compared through a substitution matrix.

An appropriate choice of w, T' and the substitution
matrix is an effective way to control the performance
and the sensibility of BLAST.

The seeds obtained in the previous phase must be
extended in order to generate an alignment. This is
done by inspecting the characters near the seed in both
directions and concatenating them to the seed until a

drop off score X is reached. The drop off score defines
how much the score can be reduced, considering the
last maximal value. Having the seed A, the X parame-
ter equal to 4 and a punctuation of +1 for matches and
—1 for mismatches, the following result is obtained:

ATGC GATA CTA

ATTC GATC GAT

1212 3454 321 <-- score

0010 0001 234 <-- drop off score

After that, the algorithm goes back to the best score
(in this case, 5) to obtain the alignment. The align-
ments generated in the extension phase must be evalu-
ated in order to remove the non-significative ones. The
significant alignments, called High Score Segment Pairs
(HSPs) are the ones whose scores are higher or equal
to a threshold S. Also, consistent HSP groups are
generated that include non-overlapped HSPs that are
near the same diagonal. The consistent HSP groups
are compared against a final threshold, known as the
E parameter, and only the alignments that are above
this threshold are considered.

3 Task Allocation for Master/Slave
Applications

Given a master/slave application composed by a
master m and S slaves, the task allocation function
allocate(m, s;, N, S) determines how many tasks out
of N must be assigned to a slave s; (equation 1) [12].
In this equation A(N,S) represents a particular allo-
cation policy. The expression WeightFactor(m, s;, S)
was defined by [12] (equation 2) and provides weights
for each slave s;, based on its processing rate per unit
of work.

allocate(m, s;, N, S) = A(N, S) * WeightFactor(m, s;, S) (1)

P xWorkerRate(m, s;)
E:;l WorkerRate(m, s;)

WeightFactor(m, s;, S) (2)

The function Worker Rate(m, s;) considers static in-
formation previously known from computer nodes and
is defined as the work unit completion rate occurring
between master m and worker s;, in units of work per
units of time.

The following paragraphs present some work unit al-
location policies. Each strategy is an instance A(N, S)
of equation 1.

The Fized (Static Scheduling) [12] strategy dis-
tributes all work units uniformly to slaves nodes. This

strategy is appropriate for homogeneous systems with
high communication latencies, whose resources are ded-
icated (equation 3).
N
AN, =< 3)
Self-Scheduling (SS) [15] distributes a single work
unit to each slave node. This procedure continues until
all work units are allocated (equation 4).

A(N, S) = 1, while work units are still left to allocate (4)

In SS, the maximum idle time a set of nodes could
wait for is limited by the processing time of a single
work unit in the slowest node. Nevertheless, SS often
demands a lot of communication.

Trapezoidal Self Scheduling (TSS) [16] allocates
work units in groups with a linearly decreasing size.
This strategy incorporates two variables, steps and 4§,
that represent the number of allocation steps and the
block reduction factor, respectively. Equations 5 and 6
show how these variables are calculated.

steps:’r ANS -‘ (5)

N + 28

N -28
0= 2S5(steps — 1) ©)
The TSS allocation function is presented in equation
7. Tt calculates the length of the st* block using the
difference between the length of the first block and total

reduction from the last s — 1 blocks.

A(s,N,S) = maz (\‘%[(sl)*é]JJ) (7)

Guided Self Scheduling (GSS) allocates work units
in groups whose length decrease exponentially (equa-
tion 8). The main disadvantage is the potential to
allocate large chunks to a slow machine, causing an
imbalance in final processing time.

A(s, N, S) = maz ({%J ,1> 840 (8

Factoring (FAC2) allocates work units in groups or-
ganized by cycles. Each cycle consists of S allocation
sequences (equation 9). In FAC2, half of the remaining
work units are allocated to active nodes in each allo-
cation round (equation 10). Note that the size of the
allocation blocks decrease with an exponential rate of
2. That’s why this strategy is called FAC2.

round(s) = \‘%J +1 (9)

N
A(s,N,S) = maz (\‘WJ ,1) (10)

4 Related Work

In genome projects, hundreds or even thousands of
newly sequenced organisms must be compared against
genetic databases using BLAST. In order to acceler-
ate these searches, distributed versions of BLAST have
been proposed that run in cluster or grid environments.

MpiBLAST [2] is a parallel tool that runs BLAST
in clusters. The algorithm has two phases. First, the
genetic database is segmented and put in a shared stor-
age medium. Next, the queries are evenly distributed
among the cluster nodes. If the node does not have
a database fragment, a local copy is made. When the
slaves finish processing, they send the local reports to
the master. Having received the local reports for a
query sequence, the master merges them to create the
final BLAST report.

Parallel BLAST++ [9] uses query packing to group
multiple sequences in order to reduce the number of
database accesses. A master/slave approach is used
that allocates the queries of BLAST++ to the slaves
according to the fized policy (section 3).

GridBlast [7] is a master/slave grid application
based on BLAST that uses Globus 2. It distributes
sequences to be compared (queries) among the grid
nodes using two task allocation policies: First Come
First Served and minmaz. Of those, only the last one
considers the current load and the heterogeneity of the
environment. However, to use minmaz, the total exe-
cution time of each BLAST task in each node must be
known.

Grid Blast Toolkit (GBTK) [10] offers a framework
and a web portal to execute BLAST searches in a
Globus 3 environment. All genetic databases that will
be used by BLAST are statically placed on the grid
nodes (without replication). The BLAST grid service
offered by GBTK is a master/slave application that re-
ceives the sequences to be compared and the name of
the genetic database to be used. It then verifies if the
node that contains the database is available. If so, it
is selected to do the search. If the node is not avail-
able, the less loaded node is chosen and the database
is copied to it.

5 Design of PackageBLAST

As [12], we think that there are no allocation policy
that is able to produce the best results for all scenarios
and that heterogeneity must be taken into consider-
ation. Unlike [12], we think that the non-dedicated
nature of a grid environment must also be considered
when assigning tasks to nodes. This motivated us to
create a framework where many task allocation policies

can be integrated. The size of the work units assigned
is calculated using the current allocation policy and a
weight factor that takes into consideration both het-
erogeneity and current local load. As in MpiBLAST
(section 4), the genetic database is split into smaller
pieces, in order to reduce search time.

5.1 Database Segmentation and Distribu-
tion

Segmentation consists in the division of a database
archive in many portions of smaller size (segments),
that can be processed independently. Segmentation
enables grid nodes to search smaller parts of a se-
quence database, reducing or even eliminating unnec-
essary disk accesses and hence improving BLAST per-
formance.

Just as in MpiBLAST (section 4), we decided to use
database segmentation technique in PackageBLAST
with an NCBI tool called formatdb, which was mod-
ified in order to generate more database segments of
smaller size.

We opted to replicate the segmented genetic
database (in our case, nr, which has around 1.2GB)
in every slave grid node to improve data accesses times
and to provide a potential for fault tolerance. If a grid
node fails, another node could assume the work, since
all database segments are replicated in all grid nodes.

5.2 Task Allocation

‘We propose the use of a framework where many allo-
cation policies can be incorporated. By now, our frame-
work contains five allocation policies: Fized, SS, GSS,
TSS and FAC2, all described in section 3. So, the user
can choose or even create the allocation policy which
is more appropriate to his/her environment.

Besides that, we propose PSS (Package Weighted
Adaptive Self-Scheduling), a new strategy that adapts
the chosen allocation policy to a heterogeneous grid
environment with local workload. Considering the het-
erogeneity and dynamic characteristics of the grid, PSS
is able to modify the length of the work units during
execution, based on average processing time needed to
compare some database segments in each grid node.

The general expression used for work unit alloca-
tion is shown in (11). In this expression, A(N, P) is
the task allocation policy for a system with N work-
load units and P nodes and ®(m, p;, P) represents the
weight calculated by PSS.

allocate(m, p;, N, P) = A(N, P) x ®(m, p;, P) (11)

To distribute database segments to nodes, the mas-
ter analyzes periodic notifications sent by the slaves,

reporting the progress in processing work units. The
expression used is ®(m,p;, P) (12), defined as the
weighted mean from the last notifications sent by
each p; slave node.

i=
T(m,p;,Q)

Y Tmpi)
Zf:l (I‘_(zn,m,ﬂ))

The expression I'(m,p;, Q) (equation 13) specifies
the average computing time of a database segment
in a node p;, considering the last (2 notifications of
TE(m,p;,7), which is the average computation time of
7 work units (database segments) assigned by a master
node m to a slave p;, in units of work per units of time.
The 7 parameter indicates how many work units must
be processed before a notification is sent to the master.

At the moment of the computation of T, if there is
not enough notifications of TE, the calculation is done
with total k notifications already received.

min(Q,k
Y TE(m, i,

min(, k)

ZP I(m,p;,Q)
o (Bt

®(m,p;, P) = (12)

F(mypi7 Q) =

(13)

5.3 PackageBLAST’s General Architec-
ture

PackageBLAST was designed as a grid service over
Globus 3, based on Web Services and Java (figure 1).

Master

Generate
Allocation lennn Work Units
O— Strategies
Receive BLAST H
searches Generate Distribute
reports Work Units

Reports l)<}

Figure 1. PackageBLAST architecture.

The module Allocation Strategies contains imple-
mentations for the pre-defined allocation policies -
Fized, SS, GSS, TSS and FAC?2 (section 3) - and also
makes possible the creation of new allocation strate-
gies.

The module Generate Work Units is the core of the
PSS mechanism. It calculates the weight of each slave
node and decides how many work units will be assigned
to a particular slave node, according to the current
allocation policy.

Distribute Work Units is the module that is respon-
sible by the communication between the master and
slaves nodes. Finally, the module Generate Reports ob-
tains the intermediary outputs sent by the slave nodes
through file transfer and merges them into a single
BLAST output report.

In general, the following execution flow is executed.
The master node starts execution and waits for slave
connections. To start processing, a minimum number
of slaves must register into the master node, by calling
a master grid service. After receiving connections from
the slaves, the master uses the Globus 3 notification
mechanism to inform them about their initial segments
to compare. The slaves process 7 database segments
and notify the master, which uses this information to
compute the next allocation block size based on the
selected allocation strategy and the weight provided
by PSS. Then, the master sends a XML message to
the slave informing its new segments to process. This
flow continues until all segments are processed.

6 Experimental Results

PackageBLAST was evaluated in a 16-node hetero-
geneous grid testbed, composed by two laboratories
(LABPOS and LAICO), interconnected by the Uni-
versity of Brasilia network at 100Mbps. Eleven desk-
tops were used (P01-11) in LABPOS and four desktops
(L01-04) and a notebook (NB) were used in LAICO. All
grid nodes were Linux machines with Globus Toolkit
3.2.1, NCBI BLAST 2.2.10 and Java Virtual Machine
1.4.2. Hardware features of each group of machines are
given in table 1.

[Node Names [CPU [Memory | HD
NB AMD64 3.2GHz 512 MB 80 GB
L01, L02, L03 AMD 1.7GHz | 256 MB | 30 GB
L04 PII 350MHz 160 MB 6 GB
P01, P02, P03, P04, P05,
P06, P07, P08, P09, P10 AMD 1GHz 256 MB | 20 GB
P11 AMD 900 MHz 128 MB 20 GB

Table 1. Characteristics of the grid testbed.

For the tests, we created heterogeneous grid config-
urations composed by 2, 4, 8 and 16 computing nodes.
The machines that composed each grid configuration
are listed in table 2.

In our tests, we used the genetic database nr, which
has a size of 1.2GB, and was obtained from the NCBI

Grid configuration | Machines
2 nodes NB, L04
4 nodes NB, L01, P01, L04
8 nodes NB, L01, L02, L03, P01, P02, P11, L04
16 nodes NB, L01, L02, L03, P01, P02, P03, P04,
P05, P06, P07, P08, P09, P10, P11, L04

Table 2. Grid Configurations

site. The query sequence used was the one called tak-
ifugu rubripes alpha globin gene cluster, obtained from
the internet. This sequence is composed by nucleotides
and has a size of 36KB. We also used a subset of this
sequence in our tests, containing 10KB.

6.1 PackageBLAST Evaluation

In order to investigate the performance gains of
PackageBLAST, we executed BLASTX in 2, 4, 8 and
16 grid nodes. Each BLAST search compared the
10KB DNA sequence against the nr genetic database
segmented in 167 parts of 5 million characters each.
Five allocation strategies were employed in the tests.

To calculate the absolute speedups, the BLAST se-
quential version was executed with the nr unsegmented
database in machines with distinct hardware configu-
rations. The total execution times obtained with the
serial execution on each machine were used to compute
speedups. Execution times for allocation strategies are
presented in table 3.

Allocation
Strategy 2 nodes | 4 nodes | 8 nodes | 16 nodes
FIXED 2037 999 491 252
SS 1112 514 246 134
TSS 1296 570 259 143
GSS 1115 535 250 127
FAC2 1187 514 266 142

Table 3. Execution times (in seconds) for
BLASTX execution in grid environment.

Figure 2 shows a plot of packageBLAST speedup,
considering the best execution time for a given number
of nodes. As can be seen in this figure, PackageBLAST
achieved very good speedups. Considering the worst
(L04), average (P01) and best (NB) node in the grid,
the speedups obtained were superlinear, close to lin-
ear and sublinear, respectively. However, the speedup
obtained in the NB case (11.28) for 16 machines, is a
very good one, considering the differences in hardware
among the machines.

In table 3, it can also be noticed that there is no
allocation strategy that always reaches the best execu-
tion time. For instance, the best execution times for

Figure 2. Absolute speedups for 2, 4, 8 and
16 nodes

8 and 16 nodes were obtained with the SS and GSS
strategies, respectively.

To evaluate the PSS strategy, we executed Pack-
ageBLAST with the same BLAST search with 16 grid
nodes, introducing local workload in nodes L01, L02,
P01 and P02. The load was started simultaneously 30
seconds after the beginning of the BLAST search and
consisted of the execution of the formatdb application
over the nr database. Three scenarios were simulated:
1) with the PSS strategy, but without workload (PSS)
; 2) with the PSS strategy and workload (PSS 2x), to
use grid environment knowledge obtained in the pre-
ceding iteration; and 3) Execution without PSS and
with workload (without PSS). Data gathered in our
experiments are presented in table 4.

Allocation | (1)with | (2)PSS | (3)without
Strategy PSS ‘ 2x ‘ PS ‘ Gain ‘
Fixed 316 184 393 113.59%
SS 186 177 179 1.13%
TSS 160 162 171 5.56%
GSS 149 159 339 113.21%
FAC2 156 165 153 -7.27%

Table 4. PSS strategy evaluation in 16 nodes
with local workload.

As expected, the allocation strategies that assign a
large amount of work to the nodes (fized and GSS)
obtained great benefit from using PSS (113.59% and
113.21%, respectively). This is due to the fact that
a slow node can easily become a bottleneck in these
strategies. For instance, when using the fized strategy
without PSS (table 4), 10 segments are assigned to each
node. In our testbed, the slowest machine (L04) clearly
became a bottleneck. In the second time PSS executes
(table 4), the weight assigned to L04 was 0.59 and that
made it process 5 segments instead of 10. Since GSS
assigns at the beginning of the computation a great

amount of work to the nodes, a great benefit can also
be obtained from PSS.

Among the remaining strategies, 7SS was the one
that obtained the best benefit from PSS (a reduction
of 5.56% in its total execution time). SS obtained a
very small benefit from using PSS (1.13%) and FAC2
experimented an augmentation in its execution time
when using PSS.

We repeated this test in a configuration with 8 ma-
chines, and the results obtained are shown in table 5.
In this case, the load was introduced in nodes L0O1 and
PO1.

Allocation | (1)with | (2)PSS | (3)without
Strategy PSS 2x PSS Gain
Fixed 487 376 480 27.66%
SS 293 307 179 -4.56%
TSS 278 292 329 12.67%
GSS 275 289 331 14.54%
FAC2 281 288 298 3.47%

Table 5. PSS strategy evaluation in 8 nodes
with local workload.

In table 5, the best performance gain was also ob-
tained by the use of PSS with the fized strategy. The
use of PSS with GSS and TSS also obtained consid-
erable gains (14.53% and 12.67%, respectively). As in
the preceeding case, FAC2 and SS obtained small ben-
efit from PSS. However, the behavior observed for these
two policies was the opposite of the previous case since,
for 8 nodes, it was SS that experimented an augmen-
tation on the execution time.

We varied the PSS parameters 7 (number of
database segments processed between two notifica-
tions) and © (number of notifications used to compute
PSS) (section 3) to evaluate the PSS behavior in the
following scenario in a four-node grid. In this exper-
iment, a three-minute local workload (formatdb) was
introduced in node P01 when the last task of the first
TSS allocation starts. The goal here was to evaluate
the impact of medium-lived local tasks in PSS. Figure
3 presents the gains obtained. In this figure, ”PSS”
represents the first execution of PSS, where the local
load was introduced and ”PSS 2x” represents the sec-
ond execution of PSS. In scenario 1, ”PSS 2x” does not
contain local workload (short-lived task) while scenario
2 contains it (long-lived task).

In this scenario, the local load finishes its execu-
tion before the BLAST search ends. On the average,
intermediate values for 7 and Q (2,2) led to better per-
formance gains.

In PackageBLAST, the number of allocation mes-
sages exchanged by the master and a slave depends on
the allocation policy and on the weight assigned to a

s & PSS

=] PSS2x

3 e 0%

10K % %o 5%

= R et R %)

2 oo T B oo i

5 (X K3 193 %9

5 0% %2 5] [

SN k3 ves bt o8
£ loge IS e
oo b0 o b
& 5 ho% b
%) K %) %
=1,0=1 1=3,0=1 1=2,0=2 1=3,0=3 1=5,Q=4

Figure 3. Percentual gain obtained by PSS
varying 7 and (2 parameters.

node. Table 6 presents the total number of allocation
messages sent by the master node in the four-node grid
(table 2) using TSS (section 3). The same variation of
7 and () presented in figure 3 was analyzed here. The
percentual gain in execution time obtained with PSS
and with PSS2x are also presented.

Parameters Gain Gain Msgs Msgs Msgs

PSS PSS2x | without PSS PSS2x
PSS

T=1,0=1 6.92% 10.21% 17 14 27

T=3,Q=1 6.10% 11.03% 17 13 22

T=2,Q=2 8.92% 9.54% 17 15 17

T=3,Q=3 3.63% 10.02% 17 13 18

T=5Q=4 | 10.17% | 10.38% 17 14 19

Table 6. Percentual gains in execution time
and the total number of allocation messages

For all cases, in the first execution of PSS, the num-
ber of messages decreases, when compared to the exe-
cution without PSS (table 6). However, in the second
execution of PSS, the number of messages is increased
for all variations of parameters. Nevertheless, this
augmentation leads to better execution times (Gain
PSS2x). This indicates that PSS is assigning more seg-
ments of smaller size to the grid nodes. As can be seen
in table 3, SS presents very good execution times in
our environment so, despite the increase in the number
of messages exchanged, PSS decides to reduce the size
of the allocation blocks.

4-node | 4-node | 8-node | 8-node

strategy 10KB 10KB 36KB 36KB
SS 514 2446 246 1319
TSS 547 2425 259 1328
GSS 515 2406 245 1329

Table 7. Execution time (seconds) obtained
with 10KB and 36KB sequences

In order to evaluate the impact of the query se-
quence size on our mechanism, we used sequences of
10KB and 36KB in a four-node and eight-node grid
with PSS and the SS, TSS and GSS strategies (table
7). In this test, we can see that the best execution times
were obtained with GSS and SS, in our eight-node grid,
with 10KB and 36KB query sequences, respectively.
Also, we observed a great augmentation on the execu-
tion time. For a sequence 3.6 times larger, the average
execution time augmented 5.3 times, in the eight-node
grid. This occurs due to BLAST characteristics and a
similar result has been reported in [6].

7 Conclusion

In this article, we evaluated PackageBLAST, an
adaptive multi-policy grid service to execute mas-
ter/slave BLAST searches in a grid environment.

The results collected by running PackageBLAST
with five allocation policies in a 16-machine grid
testbed were very good. In order to compare a 10KB
real DNA sequence against the nr genetic database, we
were able to reduce execution time from 30.88 min to
2.11 min. Also, we showed that, in our testbed, there is
no allocation policy that always achieves the best per-
formance and that makes evident the importance of
providing multiple policies. Moreover, we showed that
the introduction of PSS in a grid environment with lo-
cal workload led to very good performance gains for
some policies (mainly fized, GSS and TSS).

As future work, we intend to run PackageBLAST
in a geographically dispersed grid testbed in order to
evaluate the impact of high network latencies in the
allocation policies and in PSS. In addition to that, we
intend to implement and evaluate the module Gener-
ate Reports, which is responsible to merge the results
obtained by the slave nodes. We also plan to integrate
a fault tolerance mechanism to Package BLAST.

References

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman. A basic local alignment search tool.

Journal of Molecular Biology, 215:403-410, 1990.
[2] A. Darling, L. Carey, and W. Feng. The design, imple-

mentation, and evaluation of mpiblast. Cluster World
Conference and Ezpo in conjunction with the 4th In-
ternational Conference on Linuz Clusters: The HPC

Revolution 2008, June 2003.
[3] I Foster and C. Kesselman. Globus: A metacomputing

infrastructure toolkit. International Journal of Super-

computer Applications, 11(2):115-128, 1997.
[4] I. Foster and C. Kesselman. The Grid: Blueprint of a

Future Computing Infrastructure. Morgan-Kauffman,
1999.

[6] S. F. Hummel, E. Schonberg, and L. E. Flynn. Fac-
toring: A method for scheduling parallel loops. Com-

munications of the ACM, 35(8):90-101, Aug. 1992.
[6] I. Korf, M. Yandell, and J. Bedell. BLAST - An Essen-

tial Guide to the Basic Local Alignment Search Tool.

OReilly Associates, June 2003.
[7] A.Krishnan. Gridblast: High throughput blast on the

grid. Symposium on Biocomputing, January 2003.
[8] J. Nabrzyski, J. Schopf, and J. Weglarz. Grid Resource

Management: State of the Art and Future Trends.

Kluwer Academic Publishers, 2003.
[9] D. Peng., W. Yan, and Z. Lei. Parallelization of

blast++. Technical report, Singapore-MIT Alliance,

2004.
[10] M. K. Satish and R. R. Joshi. Gbtk: A toolkit for

grid implementation of blast. In proceedings of the
High Performance Computing and Grid in Asia Pacific
Region, Seventh International Conference on (HPCA-
sia’04), pages 378-382, January 2004.

[11] J. C. Setubal and J. Meidanis. Introduction to Com-
putational Molecular Biology. Brooks/Cole Publishing
Company, 1997.

[12] G. Shao. Adaptive Scheduling of Master/Worker Ap-
plications on Distributed Computational Resources.
PhD thesis, University of California at San Diego,
2001.

[13] L. Smarr and C. L. Cattlet. Metacomputing. Commu-

nications of the ACM, 35(6):44-52, June 1992.
[14] T. Smith and M. Waterman. Identification of common

molecular subsequences. J. Mol. Biol., 147:195-197,

1981.
[15] P. Tang and P. C. Yew. Processor self-scheduling for

multiple nested parallel loops. In Int. Conf. on Parallel

Processing (ICPP), pages 528-535, 1986.
[16] T. H. Tzen and L. M. Ni. Trapezoidal self-scheduling:

A practical scheme for parallel compilers. IEEE Trans-
actions on Parallel and Distributed Systems, 4(1):87—
98, Jan. 1993.

