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Abstract
The growing importance of multi-agent applications 

and the need for a higher quality of service in these 
systems justify the increasing interest in fault-tolerant 
multi-agent systems. In this article, we propose an 
original method for providing dependability in multi-
agent systems through replication. Our method is different 
from other works because our research focuses on 
building an automatic, adaptive and predictive replication 
policy where critical agents are replicated to avoid 
failures. This policy is determined by taking into account 
the criticality of the plans of the agents, which contain the 
collective and individual behaviors of the agents in the 
application. The set of replication strategies applied at a 
given moment to an agent is then fine-tuned gradually by 
the replication system so as to reflect the dynamicity of 
the multi-agent system. 

1.Introduction 

The notion of agent (and multi-agent systems) is 
getting increased attention as a very promising approach 
for designing and building future cooperative distributed 
applications (e.g., crisis management systems [1], air 
traffic control, industrial plant automation, e-commerce, 
communication network management…). Reduced to the 
simplest terms, a multi-agent system (MAS) is a 
distributed system consisting of a set of agents where: 
each agent has incomplete information or capabilities for 
solving the problem; there is no global system control; 
data are decentralized; and computation is asynchronous 
[2]. 

Being distributed systems, MASs are susceptible to the 
same faults that any distributed system is susceptible to, 
such as software bugs, system crashes, shortage of 
resources, slow downs or failures in the communication 
links [3]. 

When a fault occurs in an MAS, interactions between 
the agents may cause the fault to spread throughout the 
system in unpredictable ways. This is extremely 
undesirable in critical applications, where the occurrence 
of a fault may cause the loss of lives, delays in the 
manufacturing process of products, or suboptimal 
utilization of a network. 

In order to prevent this problem, many fault tolerance 
approaches have been proposed, most of which are based 
on the concept of redundancy: replication of the critical 
components. But in most cases, replication is decided and 
applied statically, before the application starts. 

However, recent applications, especially those 
designed as multi-agent systems, can be very dynamic 
because of the process of reallocation of tasks, flexible 
organizations, replanification, changes in the roles of the 
agents, etc. Thus it is very difficult to decide at design 
time which software components (which agents) are most 
critical, because this may vary greatly. Replicating every 
agent is not a feasible approach since not only the 
available resources are often limited, but also the 
overhead imposed by the replication could degrade 
performance significantly. 

Consequently, it is necessary to replicate in an 
automatic and dynamic way. This involves the study of 
mechanisms to determine when to replicate the agents, 
which agents are to be replicated, the quantity of replicas 
to be made and where to deploy those replicas. 

In this paper, we will introduce our approach to 
building reliable multi-agent systems. It is based on the 
concept of criticality, a value (evolving in time) 
associated to each agent in order to reflect the effects of 
its failure on the overall system. This value is calculated 
using the plans of the agent, i.e., the actions that the agent 
has planned to execute in the near future. 

A plan-based fault-tolerant mechanism acts as a 
promising preventive method since it takes into account 
the prediction of the future behavior of the agents and 
their influence over the other agents of the society. Note 
that our project already studied other types of information 
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to compute criticality, e.g., based on the notion of role [4]. 
The remainder of this paper is organized as follows. 

Section 2 describes the general architecture of the 
middleware developed for fault-tolerant MAS and the 
general architecture for replication control. Section 3 
explains how the plans of the agents can be used as an 
approach to the problem of reliability in multi-agent 
systems. Section 4 provides an overview of the state of 
the art. Finally, in section 5 we present our conclusions 
and perspectives for future work. 

2.General architecture 

2.1 The DARX Framework 

In our project, the first step was to design and build a 
framework, named DARX (as for Dynamic Agent 
Replication eXtension) to support dynamic replication 
[5]. 

DARX relies on the notion of replication group (RG). 
Every agent of the application is associated to an RG, 
which DARX handles in a way that renders replication 
transparent to the application at runtime. Each RG has 
exactly one ruler, which communicates with the other 
agents. Other RG members, referred to as subjects, are 
kept consistent with their ruler according to the 
replication strategies. Several different strategies, ranging 
from passive to active, may be applied within a 
replication group. The number of subjects inside an RG 
and the replication strategy may be adapted dynamically. 

DARX provides atomic and ordered multi-cast for the 
replication groups’ internal communication. Messages 
between agents, that is communication external to the 
group, are also logged by each replica, and sequences of 
messages can be re-emitted for recovery purposes. 

As shown in Fig. 1, DARX offers several services. 
Failure detection enables to suspect host and process 
failures based on a hierarchy of adaptive failure detectors 
[6]. Naming and localisation provides a means to supply 
agents and their replicas with unique identifiers 
throughout the system, and to retrieve their location 
whenever the application requires it. The replication 
service is used by the adaptive replication control module 
to provide a suitable replication scheme for every agent. 

Figure 1.  DARX framework design. 

DARX is coded in Java 1.4 and uses RMI as a means 
to simplify the coding of network issues. It can be easily 
integrated to any agent platform by means of an 
interfacing component. Current implementation provides 
the integration to DIMA [7] and Madkit [8] multi-agent 
platforms. 

2.2 Adaptive Replication Control Architecture 

The adaptive replication control module, shown in Fig. 
2, was inspired by the architecture proposed by [4]. We 
will associate a monitoring agent to each agent of the 
system and a host monitor to each machine. 

The monitoring agent receives the local plans of the 
monitored agent and is responsible for the calculation and 
update of its criticality. As we will see later in section 4, 
the computation of the criticality of an agent may rely on 
the criticality of other agents (because of possible 
dependence between their tasks). Thus their respective 
monitoring agents need to communicate information. 

Each host monitor contains a piece of the global 
information of the application, such as: 

• The sum of the criticalities of the agents deployed in 
its machine (criticalities are obtained from the monitoring 
agents, as shown by the arrows in Figure 2); 

• The total number of replicas in its machine and the 
number of replicas still available; 

• The reliability of its machine. 



Figure 2.  Architecture for replication control. 

They exchange messages with their local information 
in order to keep their vision about other hosts up to date 
(total number of replicas in the system, sum of the 
criticalities of all the agents, …) and, consequently, to 
make it viable the mechanism of replication chosen. 

2.3 What Information to Use to Compute 

Criticality 

In order to decide the criticality of an agent, we may 
use various kinds of information as inputs. In the project, 
we have already studied the following ones: 

• System-level information: communication load, 
processing time [9]. 

• Semantic-level information: the role taken by an 
agent in an organization (e.g., role of broker, manager…) 
[4]. 

In this paper, we propose using another type of 
semantic-level information, the plans of the agent and 
also dependencies between their tasks. 

3.Our plan-based criticality assessment 

method 

In our model, we consider that each agent of the 
system knows which sequence of actions (plan) must be 
executed in order to accomplish its current goal. Since 
unexpected events may occur in dynamic environments, 
agents usually interleave planning and execution. 
Consequently, their plans are established just for the short 
term. We assume that at each given instant of time the 
agent is executing at most one action. 

An action A is defined by an n-tuple (I, D, J, R, C, P), 
where: 

• I is the identifier of the action; 
• D is its expected duration, an approximate 

normalized value, independent of the machine; 
• J is the set of agents which will jointly perform the 

action (J may be unitary); 
• R is the set of required resources; 

• C is the absolute criticality of the action, a fixed and 
predetermined value; 

• P is the set of antecedent actions, all of which must 
be performed before A. The action A is a child of each 
action in P. 

Using the same approach established by [10], we 
represent the plan of an agent as a directed acyclic 
AND/OR graph where each node represents an action. 
The nodes are connected by AND or OR edges. A node n
which is connected to k nodes (n1, n2, ..., nk) by means of 
AND edges represents an action An after which all the 
actions An1, An2, …, Ank will be executed. However, if a 
node n is connected to k nodes (n1, n2, ..., nk) by means of 
OR edges, it suffices that at least one of the actions An1,
An2, …, Ank be executed after the execution of the action 
An.

In the example of Fig. 3, after performing the action A,
Agent1 needs to have both B and C executed in order to 
accomplish its plan. However, after C, only one of D or E
needs to be performed so that Agent1 accomplishes its 
plan. 

Definition 3.1: An external action is an action 
belonging to the plan of an agent which will be executed 
by others. For example, consider the action C belonging 
to the plan of Agent1 in Fig. 3. Since this action is 
performed by Agent2, it is an external action in the current 
plan of Agent1.

Definition 3.2: A terminal action is an action after 
which no other known action will be performed. In Fig. 3, 
B, D, E, I, J, K, and L are terminal actions. 

3.1 Action Criticality 

So as to calculate the criticality of an action, we 
distinguish its absolute criticality from its relative 
criticality. The absolute criticality (AC) of an action is 
defined without taking into account the current plans of 
the agents. It is given a priori by the system designer and 
can be determined in function of a number of factors: 

• Number of agents capable of performing the action: 
an action that can be done by many agents can be 
considered not too critical, since it is probably easier to 
reschedule it, if it ever fails, than if only a few agents 
were capable of performing it. 

• Duration of the action: under some circumstances, 
actions which are expected to take too long can be 
considered more critical than short ones. 

• Resources required for the execution of the action: 
the size of the set of required resources can also be used 
to determine the absolute criticality. A large set may lead 
to a more critical action than a small one. 



Figure 3.  Example of plans of two interacting agents. 

• Semantic information: the system designer can use 
semantic information to determine the criticality of the 
action, since, depending on the field of application, some 
actions are more important than others. 

The relative criticality (RC) of an action belonging to 
the plan of an agent is proportional to the criticality of the 
agent when it is executing the action or waiting that some 
other agent executes it. As a consequence, the relative 
criticality of an action may be different for each agent 
whose plan it belongs to. If the action is external, its 
relative criticality depends only on the relative criticality 
of the actions that the agent will execute afterwards. 

If the agent is executing the action (possibly jointly 
with other agents), the relative criticality reflects the 
importance of the action in the multi-agent system. In this 
case, it depends on the absolute criticality of the action 
and on the usefulness of its results to all the agents which 
depend on it to perform their tasks. In other words, in 
order to determine the relative criticality of an action 
executed by an agent, we must estimate the impact of its 
failure to the multi-agent system as a whole. 

The relative criticality is calculated as follows: 
• For an external action, it is equal to the local relative 

criticality (LRC). The LRC is obtained using the AND-
aggregation function if the action is connected to its 
children by means of AND edges or the OR-aggregation 
function if it is connected by OR edges. The parameters 
of these two functions are the relative criticalities of the 
children of the action. We use as an AND-aggregation 
function the sum of its parameters and as OR-aggregation 
function, the mean of its parameters. If the action has only 
one child, its LRC is equal to the relative criticality of its 
child. If the action is terminal (i.e. it has no child), its 
local relative criticality is equal to zero. 

• For a non-external action a, its relative criticality is 
equal to its absolute criticality plus the sum of the local 
relative criticalities of a in each plan to which it belongs. 

Table I shows the relative criticalities of each action in 
the example of Fig. 3 if the corresponding absolute 

criticalities are considered. 
In order to obtain those values for the relative 

criticalities, the method previously described is used. For 
example, the action B belonging to the plan of Agent1 is a 
non-external action. Then its relative criticality is 
calculated by adding its absolute criticality with its local 
relative criticality. Since it is a terminal action, its local 
relative criticality is equal to zero. 

RC(B) = AC(B) + LRC(B, Agent1) = 8 + 0 = 8 
However, we calculate the relative criticality of the 

action C in the plan of Agent1 differently because it is an 
external action (it will be executed by Agent2). In this 
case, the relative criticality is simply equal to the value of 
the local relative criticality. In order to calculate the LRC 
of C in Agent1’s plan, we use the mean aggregation 
function with the relative criticalities of the children of 
action C (namely D and E) as parameters. 

RC(C, Agent1) = LRC(C, Agent1) = 
Mean(RC(D), RC(E)) = Mean(5, 1) = 3 

The problem with this approach is that it does not 
consider the time when the actions will actually start to be 
executed. In fact, using the strategy just described above, 
one terminal action which is located far from the root in 
the agents’ graph (and possibly having a very late start 
time) has an equal impact on the final relative criticality 
of the root as another action with the same absolute 
criticality and nearer to the root. 

Consequently, we also propose another approach to 
calculate the relative criticalities, where we multiply the 
relative criticality of the actions by a factor which 
decreases along time, taking into account the expected 
time that the action will start to be executed. 

Action 
Absolute 
Criticality 

Relative 
Criticality 

A 4 15 

B 8 8

C (Agent1) 4 3 

C (Agent2) 4 13

D 5 5 

E 1 1 

F 6 30 

G 3 7 

H 2 4 

I 2 2 

J 4 4 

K 3 3 

L 1 1 

Table 1.  Calculation of Criticality. 



Figure 4.  Impact of time in the criticality of actions. 

Let t be the estimated starting time of the action and 
RCold its relative criticality calculated using the previous 
approach. Then we calculate the relative criticalities in the 
new approach (RCnew) using the following exponentially 
decreasing function: 

RCnew = RCold / b
t, where b ≥ 1

We intend to study other functions besides the 
exponential one, such as a linear or hyperbolic decay. 

We compute the estimated starting time of the actions 
using a topological sorting in the graph (top-down) 
considering the elapsed times of the antecedents and 
siblings’ actions [11]. 

In the example of Fig. 4, if we consider that the 
duration of all the actions is equal to three units of time, 
and the amortizing base b is equal to e, the following 
relative criticalities would be obtained: 

Action Relative Criticality 

A
RC(A) = (AC(A) + LRC(A, Agent))/eta = 
(AC(A) + RC(B))/eta = 
(1 + e-3 + e-9)/e0 = 1 + e-3 + e-9

B
RC(B) = (AC(B) + LRC(B, Agent))/etb = 
(AC(B) + RC(C))/etb = 
(1+ e-6)/e3 = e-3 + e-9 

C RC(C) = AC(C)/etc = 1/e6 = e-6

D RC(D) = AC(D)/etd = 3/e0 = 3 

Table 2.  Calculation of Criticality considering time. 

Using this new mechanism for calculating the relative 
criticalities, the action A in Plan1 is less critical than the 
action D in Plan2, as desired. 

3.2 Agent Criticality 

The criticality of an agent can be calculated based on 
the criticalities of the actions which belong to its plan. An 
agent who executes important actions should be 
considered critical. 

In a given time t, the criticality of the agent will be 
given by the relative criticality of the current root of its 

plans’ graph. 
Since multi-agent systems are often dynamic and non-

determinist, it is not possible to know in advance the 
complete plan of the agent. Actually, during the execution 
of multi-agent plans, one or more agents might determine 
that the context has changed so much that the agents’ 
partial plan should be modified. For example, this can be 
due to: lack of resources, dynamicity of the agent society 
(agents can enter or leave the society), impossibility of 
other agents to accomplish its engagements, etc. 

Consequently, the initial criticality of the agents in the 
instant t = 0 is quite precise, but it needs to be updated 
along time. The question is when and how to update those 
criticalities. We propose two main types of strategies to 
revise the criticality: time-driven strategies and event-
driven strategies.

Time-driven strategies are based on local clocks 
associated to each agent. Whenever the clock alarms, the 
criticality of the corresponding agent is re-evaluated. The 
interval of time between two consecutive alarms can be 
fixed or variable. Using an initial approach, at each fixed 

interval ∆t, the clock will sound the alarm and the 

criticality will be updated. The value of ∆t could be 

variable so as to reflect the dynamicity of the system. If 
this is the case, the length of the interval is initially set to 
a predefined value. It is reduced if a substantial 
modification in the criticality has been noticed in the last 
interval of time or, inversely, it would be increased if 
almost no change has been observed in the criticality. 

Event-driven strategies are based on critical events that 
might change the criticality in a substantial way. 
Whenever one of these events is detected, the criticality is 
updated. There are two main types of events: those which 
depend on the application (completion of an action, 
changes in the plan of the agent, …) and those related to 
failures (failure of an agent or a machine). 

3.3 Agent Replication Mechanism 

In [4], an agent replication mechanism has been 
proposed to decide which agents to replicate and how 
many copies to make. In this previous work, an agent 
Agenti is replicated according to: 

• ci: his criticality; 
• C: the sum of criticality of all agents in the system; 
• min: the minimum number of replicas that an agent 

must have (introduced by the designer); 
• max: the quantity of replicas available to the system. 
The number of replicas ni of the agent Agenti can be 

determined as follows: 

ni = rounded(min + (ci × max / C))

In other words, it is directly proportional to the number 
of available resources and inversely proportional to the 
sum of criticality of all agents in the system. It is 
important to notice that the value max is equal to the 



number of replicas available after allocating the min
replicas to each agent of the system. If QR is the quantity 
of replicas available in the whole system in a given instant 
of time and QA is the quantity of agents in the system, 

max = QR – (QA × min)

At each interval of time ∆t, for each agent, the value of 
ni is calculated and used to update its number of replicas. 
If the agent possesses more replicas than it is allowed, it is 
obligated to free the corresponding exceeding quantity. 
Conversely, if the agent holds fewer replicas than it 
should, it chooses randomly n replicas, where n is the 
difference between the current value of ni and its previous 
value. 

One problem with this technique of calculating the 
number of replicas that should be given to each agent is 
that it does not take into consideration the future failure 
probability of the replica. In fact, it is better to have only 
one replica which will have in the future an almost zero 
probability of failure (since it will be deployed in a very 
robust machine) than having many replicas which are not 
reliable. Additionally, it does not address the problem of 
where deploy efficiently the replica. 

Hence, we will propose another mechanism of replica 
allocation, which considers the probability of crash in the 
machines. In this new mechanism, we define the value of 
the replica rk (denoted by vk), as the probability that its 
machine will not crash. A value of one will be attributed 
to a completely reliable resource, whereas an unreliable 
one shall have a near zero value. Those values are 
calculated and updated dynamically by DARX. 

The probability of failure of a given set of replicas R = 
{r1, r2, … , rn}, is given by: 

P (Failure (R) = 1) = (1-v1) × (1-v2) × … × (1-vn)

Let S be the sum of the values of all the replicas in the 
system. Then, an agent Agenti is allowed to be replicated 
using a total value of replicas (ti) proportional to the 
percentage of its criticality (ci) with respect to the sum of 
agents’ criticalities (C), as given by the equation: 

ti = ci × S / C 

The system of replication will then allocate to the agent 
the set of replicas R = {r1, r2, … , rn}, such that v1 + v2 + 

… + vn ≤ ti and its probability of failure is minimal among 
all the possible sets of replicas. 

One can apply the same possible strategies used as the 
agent criticality update policy (time-driven or event-
driven) to decide when to re-calculate the values of ti. For 

instance, one can use a variable window of time ∆t for 
each agent Agenti. If the quantity of replicas (whose total 
value does not exceed ti) that the agent Agenti can acquire 

does not change significantly, the window of time ∆t can 
be increased, otherwise it is decremented. Another 
possibility is to recalculate the value of ti whenever the 
value of ci is updated. 

4.Related Work 

Several approaches have addressed the multi-faceted 
problem of fault tolerance. In fact, many toolkits include 
replication facilities to build reliable applications. 
However, most of them are not quite suitable for 
implementing large-scale, adaptive replication 
mechanisms. 

Hägg [12] proposes an approach to the problem in 
which sentinel agents monitor inter-agent communication, 
build models of other agents and take corrective actions. 
Since the sentinels analyze the entire communication 
going on in the system to detect state inconsistencies, it 
would be far too expensive in terms of computation and 
communication to take total control of possible fault 
situations and global consistency. Additionally, sentinels 
are themselves points of failures. 

Decker et al [13] describe different levels of 
adaptation, but concentrates only on execution adaptation 
where agent cloning is used in load balancing. Fault 
tolerance aspects are not addressed. Furthermore, they do 
not propose mechanisms such as merging of two agents or 
self-extinction of underutilized agents to control agent 
proliferation. 

Kumar et al [15] propose a fault tolerant architecture of 
brokers and AgentScape middleware offers a replication 
service to achieve fault tolerance [15]. However, in both 
cases, agent failure is not completely dealt with, since 
only some agents (brokers) or part of them can be 
replicated. 

Fedoruk and Deters [3] also use replication to improve 
fault tolerance. Their work implements the passive 
strategy (hot-standby) of replication in a transparent way 
using proxies. All messages going to and from a replicate 
group are funnelled through the replicate group message 
proxy. Kraus et al [16] define the problem of fault 
tolerance as a deployment problem and propose a 
probabilistic approach to deploy the agents in a multi-
agent application. The main problem of these two works 
is that replication is applied statically before the 
application starts. This is not desirable in the case of 
dynamic and adaptive multi-agent applications because 
the criticality of agents may evolve dynamically during 
the course of computation. 

There are some software infrastructures for adaptive 
fault tolerance [17]–[19] where existing strategies can be 
dynamically changed. Nevertheless, such a change must 
have been devised by the application developer before 
runtime or the modifications must be specified and 
applied in a non-automatic way during the execution of 
the system. 

5.Conclusion 

In recent years, research on multi-agent systems has 



addressed the problem of agent reliability since they must 
often run without any interruption. To make these systems 
reliable, we proposed an original predictive method to 
evaluate dynamically the criticality of agents. Our 
approach takes profit of the specificities of multi-agent 
applications and analyses the agents’ plans to determine 
their importance to the system. The agent criticality is 
then used to replicate agents in order to maximize their 
dependability based on available resources. 

To validate the proposed approach, we are using the 
combination of the DARX framework and the DIMA 
multi-agent platform in order to develop our plan-based 
replication strategy. In this integration, an agent is 
implemented as a DIMA agent and uses DARX in order 
to acquire replication capabilities. 

The implementation phase is very advanced (we have 
already implemented the algorithms to determine the 
agent’s criticality and we are finishing the new agent 
replication mechanism). We are going to start very soon 
the experimentation phase using two different real-world 
applications (the personal meeting assistants and the 
patrolling agents [20]) so that we can compare our new 
approach to the previously developed ones. 
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