
Plan-Based Replication for Fault-Tolerant Multi-Agent Systems

Alessandro de Luna Almeida1, Samir Aknine, Jean-Pierre Briot, Jacques Malenfant
Université de Paris 6

Laboratoire d’Informatique
Paris, 75015 FR

{Alessandro.Luna-Almeida, Samir.Aknine, Jean-Pierre.Briot, Jacques.Malenfant}@lip6.fr

1 This work was supported in part by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), Brazil.

Abstract
The growing importance of multi-agent applications

and the need for a higher quality of service in these
systems justify the increasing interest in fault-tolerant
multi-agent systems. In this article, we propose an
original method for providing dependability in multi-
agent systems through replication. Our method is different
from other works because our research focuses on
building an automatic, adaptive and predictive replication
policy where critical agents are replicated to avoid
failures. This policy is determined by taking into account
the criticality of the plans of the agents, which contain the
collective and individual behaviors of the agents in the
application. The set of replication strategies applied at a
given moment to an agent is then fine-tuned gradually by
the replication system so as to reflect the dynamicity of
the multi-agent system.

1.Introduction

The notion of agent (and multi-agent systems) is
getting increased attention as a very promising approach
for designing and building future cooperative distributed
applications (e.g., crisis management systems [1], air
traffic control, industrial plant automation, e-commerce,
communication network management…). Reduced to the
simplest terms, a multi-agent system (MAS) is a
distributed system consisting of a set of agents where:
each agent has incomplete information or capabilities for
solving the problem; there is no global system control;
data are decentralized; and computation is asynchronous
[2].

Being distributed systems, MASs are susceptible to the
same faults that any distributed system is susceptible to,
such as software bugs, system crashes, shortage of
resources, slow downs or failures in the communication
links [3].

When a fault occurs in an MAS, interactions between
the agents may cause the fault to spread throughout the
system in unpredictable ways. This is extremely
undesirable in critical applications, where the occurrence
of a fault may cause the loss of lives, delays in the
manufacturing process of products, or suboptimal
utilization of a network.

In order to prevent this problem, many fault tolerance
approaches have been proposed, most of which are based
on the concept of redundancy: replication of the critical
components. But in most cases, replication is decided and
applied statically, before the application starts.

However, recent applications, especially those
designed as multi-agent systems, can be very dynamic
because of the process of reallocation of tasks, flexible
organizations, replanification, changes in the roles of the
agents, etc. Thus it is very difficult to decide at design
time which software components (which agents) are most
critical, because this may vary greatly. Replicating every
agent is not a feasible approach since not only the
available resources are often limited, but also the
overhead imposed by the replication could degrade
performance significantly.

Consequently, it is necessary to replicate in an
automatic and dynamic way. This involves the study of
mechanisms to determine when to replicate the agents,
which agents are to be replicated, the quantity of replicas
to be made and where to deploy those replicas.

In this paper, we will introduce our approach to
building reliable multi-agent systems. It is based on the
concept of criticality, a value (evolving in time)
associated to each agent in order to reflect the effects of
its failure on the overall system. This value is calculated
using the plans of the agent, i.e., the actions that the agent
has planned to execute in the near future.

A plan-based fault-tolerant mechanism acts as a
promising preventive method since it takes into account
the prediction of the future behavior of the agents and
their influence over the other agents of the society. Note
that our project already studied other types of information

1-4244-0054-6/06/$20.00 ©2006 IEEE

to compute criticality, e.g., based on the notion of role [4].
The remainder of this paper is organized as follows.

Section 2 describes the general architecture of the
middleware developed for fault-tolerant MAS and the
general architecture for replication control. Section 3
explains how the plans of the agents can be used as an
approach to the problem of reliability in multi-agent
systems. Section 4 provides an overview of the state of
the art. Finally, in section 5 we present our conclusions
and perspectives for future work.

2.General architecture

2.1 The DARX Framework

In our project, the first step was to design and build a
framework, named DARX (as for Dynamic Agent
Replication eXtension) to support dynamic replication
[5].

DARX relies on the notion of replication group (RG).
Every agent of the application is associated to an RG,
which DARX handles in a way that renders replication
transparent to the application at runtime. Each RG has
exactly one ruler, which communicates with the other
agents. Other RG members, referred to as subjects, are
kept consistent with their ruler according to the
replication strategies. Several different strategies, ranging
from passive to active, may be applied within a
replication group. The number of subjects inside an RG
and the replication strategy may be adapted dynamically.

DARX provides atomic and ordered multi-cast for the
replication groups’ internal communication. Messages
between agents, that is communication external to the
group, are also logged by each replica, and sequences of
messages can be re-emitted for recovery purposes.

As shown in Fig. 1, DARX offers several services.
Failure detection enables to suspect host and process
failures based on a hierarchy of adaptive failure detectors
[6]. Naming and localisation provides a means to supply
agents and their replicas with unique identifiers
throughout the system, and to retrieve their location
whenever the application requires it. The replication
service is used by the adaptive replication control module
to provide a suitable replication scheme for every agent.

Figure 1. DARX framework design.

DARX is coded in Java 1.4 and uses RMI as a means
to simplify the coding of network issues. It can be easily
integrated to any agent platform by means of an
interfacing component. Current implementation provides
the integration to DIMA [7] and Madkit [8] multi-agent
platforms.

2.2 Adaptive Replication Control Architecture

The adaptive replication control module, shown in Fig.
2, was inspired by the architecture proposed by [4]. We
will associate a monitoring agent to each agent of the
system and a host monitor to each machine.

The monitoring agent receives the local plans of the
monitored agent and is responsible for the calculation and
update of its criticality. As we will see later in section 4,
the computation of the criticality of an agent may rely on
the criticality of other agents (because of possible
dependence between their tasks). Thus their respective
monitoring agents need to communicate information.

Each host monitor contains a piece of the global
information of the application, such as:

• The sum of the criticalities of the agents deployed in
its machine (criticalities are obtained from the monitoring
agents, as shown by the arrows in Figure 2);

• The total number of replicas in its machine and the
number of replicas still available;

• The reliability of its machine.

Figure 2. Architecture for replication control.

They exchange messages with their local information
in order to keep their vision about other hosts up to date
(total number of replicas in the system, sum of the
criticalities of all the agents, …) and, consequently, to
make it viable the mechanism of replication chosen.

2.3 What Information to Use to Compute

Criticality

In order to decide the criticality of an agent, we may
use various kinds of information as inputs. In the project,
we have already studied the following ones:

• System-level information: communication load,
processing time [9].

• Semantic-level information: the role taken by an
agent in an organization (e.g., role of broker, manager…)
[4].

In this paper, we propose using another type of
semantic-level information, the plans of the agent and
also dependencies between their tasks.

3.Our plan-based criticality assessment

method

In our model, we consider that each agent of the
system knows which sequence of actions (plan) must be
executed in order to accomplish its current goal. Since
unexpected events may occur in dynamic environments,
agents usually interleave planning and execution.
Consequently, their plans are established just for the short
term. We assume that at each given instant of time the
agent is executing at most one action.

An action A is defined by an n-tuple (I, D, J, R, C, P),
where:

• I is the identifier of the action;
• D is its expected duration, an approximate

normalized value, independent of the machine;
• J is the set of agents which will jointly perform the

action (J may be unitary);
• R is the set of required resources;

• C is the absolute criticality of the action, a fixed and
predetermined value;

• P is the set of antecedent actions, all of which must
be performed before A. The action A is a child of each
action in P.

Using the same approach established by [10], we
represent the plan of an agent as a directed acyclic
AND/OR graph where each node represents an action.
The nodes are connected by AND or OR edges. A node n
which is connected to k nodes (n1, n2, ..., nk) by means of
AND edges represents an action An after which all the
actions An1, An2, …, Ank will be executed. However, if a
node n is connected to k nodes (n1, n2, ..., nk) by means of
OR edges, it suffices that at least one of the actions An1,
An2, …, Ank be executed after the execution of the action
An.

In the example of Fig. 3, after performing the action A,
Agent1 needs to have both B and C executed in order to
accomplish its plan. However, after C, only one of D or E
needs to be performed so that Agent1 accomplishes its
plan.

Definition 3.1: An external action is an action
belonging to the plan of an agent which will be executed
by others. For example, consider the action C belonging
to the plan of Agent1 in Fig. 3. Since this action is
performed by Agent2, it is an external action in the current
plan of Agent1.

Definition 3.2: A terminal action is an action after
which no other known action will be performed. In Fig. 3,
B, D, E, I, J, K, and L are terminal actions.

3.1 Action Criticality

So as to calculate the criticality of an action, we
distinguish its absolute criticality from its relative
criticality. The absolute criticality (AC) of an action is
defined without taking into account the current plans of
the agents. It is given a priori by the system designer and
can be determined in function of a number of factors:

• Number of agents capable of performing the action:
an action that can be done by many agents can be
considered not too critical, since it is probably easier to
reschedule it, if it ever fails, than if only a few agents
were capable of performing it.

• Duration of the action: under some circumstances,
actions which are expected to take too long can be
considered more critical than short ones.

• Resources required for the execution of the action:
the size of the set of required resources can also be used
to determine the absolute criticality. A large set may lead
to a more critical action than a small one.

Figure 3. Example of plans of two interacting agents.

• Semantic information: the system designer can use
semantic information to determine the criticality of the
action, since, depending on the field of application, some
actions are more important than others.

The relative criticality (RC) of an action belonging to
the plan of an agent is proportional to the criticality of the
agent when it is executing the action or waiting that some
other agent executes it. As a consequence, the relative
criticality of an action may be different for each agent
whose plan it belongs to. If the action is external, its
relative criticality depends only on the relative criticality
of the actions that the agent will execute afterwards.

If the agent is executing the action (possibly jointly
with other agents), the relative criticality reflects the
importance of the action in the multi-agent system. In this
case, it depends on the absolute criticality of the action
and on the usefulness of its results to all the agents which
depend on it to perform their tasks. In other words, in
order to determine the relative criticality of an action
executed by an agent, we must estimate the impact of its
failure to the multi-agent system as a whole.

The relative criticality is calculated as follows:
• For an external action, it is equal to the local relative

criticality (LRC). The LRC is obtained using the AND-
aggregation function if the action is connected to its
children by means of AND edges or the OR-aggregation
function if it is connected by OR edges. The parameters
of these two functions are the relative criticalities of the
children of the action. We use as an AND-aggregation
function the sum of its parameters and as OR-aggregation
function, the mean of its parameters. If the action has only
one child, its LRC is equal to the relative criticality of its
child. If the action is terminal (i.e. it has no child), its
local relative criticality is equal to zero.

• For a non-external action a, its relative criticality is
equal to its absolute criticality plus the sum of the local
relative criticalities of a in each plan to which it belongs.

Table I shows the relative criticalities of each action in
the example of Fig. 3 if the corresponding absolute

criticalities are considered.
In order to obtain those values for the relative

criticalities, the method previously described is used. For
example, the action B belonging to the plan of Agent1 is a
non-external action. Then its relative criticality is
calculated by adding its absolute criticality with its local
relative criticality. Since it is a terminal action, its local
relative criticality is equal to zero.

RC(B) = AC(B) + LRC(B, Agent1) = 8 + 0 = 8
However, we calculate the relative criticality of the

action C in the plan of Agent1 differently because it is an
external action (it will be executed by Agent2). In this
case, the relative criticality is simply equal to the value of
the local relative criticality. In order to calculate the LRC
of C in Agent1’s plan, we use the mean aggregation
function with the relative criticalities of the children of
action C (namely D and E) as parameters.

RC(C, Agent1) = LRC(C, Agent1) =
Mean(RC(D), RC(E)) = Mean(5, 1) = 3

The problem with this approach is that it does not
consider the time when the actions will actually start to be
executed. In fact, using the strategy just described above,
one terminal action which is located far from the root in
the agents’ graph (and possibly having a very late start
time) has an equal impact on the final relative criticality
of the root as another action with the same absolute
criticality and nearer to the root.

Consequently, we also propose another approach to
calculate the relative criticalities, where we multiply the
relative criticality of the actions by a factor which
decreases along time, taking into account the expected
time that the action will start to be executed.

Action
Absolute
Criticality

Relative
Criticality

A 4 15

B 8 8

C (Agent1) 4 3

C (Agent2) 4 13

D 5 5

E 1 1

F 6 30

G 3 7

H 2 4

I 2 2

J 4 4

K 3 3

L 1 1

Table 1. Calculation of Criticality.

Figure 4. Impact of time in the criticality of actions.

Let t be the estimated starting time of the action and
RCold its relative criticality calculated using the previous
approach. Then we calculate the relative criticalities in the
new approach (RCnew) using the following exponentially
decreasing function:

RCnew = RCold / b
t, where b ≥ 1

We intend to study other functions besides the
exponential one, such as a linear or hyperbolic decay.

We compute the estimated starting time of the actions
using a topological sorting in the graph (top-down)
considering the elapsed times of the antecedents and
siblings’ actions [11].

In the example of Fig. 4, if we consider that the
duration of all the actions is equal to three units of time,
and the amortizing base b is equal to e, the following
relative criticalities would be obtained:

Action Relative Criticality

A
RC(A) = (AC(A) + LRC(A, Agent))/eta =
(AC(A) + RC(B))/eta =
(1 + e-3 + e-9)/e0 = 1 + e-3 + e-9

B
RC(B) = (AC(B) + LRC(B, Agent))/etb =
(AC(B) + RC(C))/etb =
(1+ e-6)/e3 = e-3 + e-9

C RC(C) = AC(C)/etc = 1/e6 = e-6

D RC(D) = AC(D)/etd = 3/e0 = 3

Table 2. Calculation of Criticality considering time.

Using this new mechanism for calculating the relative
criticalities, the action A in Plan1 is less critical than the
action D in Plan2, as desired.

3.2 Agent Criticality

The criticality of an agent can be calculated based on
the criticalities of the actions which belong to its plan. An
agent who executes important actions should be
considered critical.

In a given time t, the criticality of the agent will be
given by the relative criticality of the current root of its

plans’ graph.
Since multi-agent systems are often dynamic and non-

determinist, it is not possible to know in advance the
complete plan of the agent. Actually, during the execution
of multi-agent plans, one or more agents might determine
that the context has changed so much that the agents’
partial plan should be modified. For example, this can be
due to: lack of resources, dynamicity of the agent society
(agents can enter or leave the society), impossibility of
other agents to accomplish its engagements, etc.

Consequently, the initial criticality of the agents in the
instant t = 0 is quite precise, but it needs to be updated
along time. The question is when and how to update those
criticalities. We propose two main types of strategies to
revise the criticality: time-driven strategies and event-
driven strategies.

Time-driven strategies are based on local clocks
associated to each agent. Whenever the clock alarms, the
criticality of the corresponding agent is re-evaluated. The
interval of time between two consecutive alarms can be
fixed or variable. Using an initial approach, at each fixed

interval ∆t, the clock will sound the alarm and the

criticality will be updated. The value of ∆t could be

variable so as to reflect the dynamicity of the system. If
this is the case, the length of the interval is initially set to
a predefined value. It is reduced if a substantial
modification in the criticality has been noticed in the last
interval of time or, inversely, it would be increased if
almost no change has been observed in the criticality.

Event-driven strategies are based on critical events that
might change the criticality in a substantial way.
Whenever one of these events is detected, the criticality is
updated. There are two main types of events: those which
depend on the application (completion of an action,
changes in the plan of the agent, …) and those related to
failures (failure of an agent or a machine).

3.3 Agent Replication Mechanism

In [4], an agent replication mechanism has been
proposed to decide which agents to replicate and how
many copies to make. In this previous work, an agent
Agenti is replicated according to:

• ci: his criticality;
• C: the sum of criticality of all agents in the system;
• min: the minimum number of replicas that an agent

must have (introduced by the designer);
• max: the quantity of replicas available to the system.
The number of replicas ni of the agent Agenti can be

determined as follows:

ni = rounded(min + (ci × max / C))

In other words, it is directly proportional to the number
of available resources and inversely proportional to the
sum of criticality of all agents in the system. It is
important to notice that the value max is equal to the

number of replicas available after allocating the min
replicas to each agent of the system. If QR is the quantity
of replicas available in the whole system in a given instant
of time and QA is the quantity of agents in the system,

max = QR – (QA × min)

At each interval of time ∆t, for each agent, the value of
ni is calculated and used to update its number of replicas.
If the agent possesses more replicas than it is allowed, it is
obligated to free the corresponding exceeding quantity.
Conversely, if the agent holds fewer replicas than it
should, it chooses randomly n replicas, where n is the
difference between the current value of ni and its previous
value.

One problem with this technique of calculating the
number of replicas that should be given to each agent is
that it does not take into consideration the future failure
probability of the replica. In fact, it is better to have only
one replica which will have in the future an almost zero
probability of failure (since it will be deployed in a very
robust machine) than having many replicas which are not
reliable. Additionally, it does not address the problem of
where deploy efficiently the replica.

Hence, we will propose another mechanism of replica
allocation, which considers the probability of crash in the
machines. In this new mechanism, we define the value of
the replica rk (denoted by vk), as the probability that its
machine will not crash. A value of one will be attributed
to a completely reliable resource, whereas an unreliable
one shall have a near zero value. Those values are
calculated and updated dynamically by DARX.

The probability of failure of a given set of replicas R =
{r1, r2, … , rn}, is given by:

P (Failure (R) = 1) = (1-v1) × (1-v2) × … × (1-vn)

Let S be the sum of the values of all the replicas in the
system. Then, an agent Agenti is allowed to be replicated
using a total value of replicas (ti) proportional to the
percentage of its criticality (ci) with respect to the sum of
agents’ criticalities (C), as given by the equation:

ti = ci × S / C

The system of replication will then allocate to the agent
the set of replicas R = {r1, r2, … , rn}, such that v1 + v2 +

… + vn ≤ ti and its probability of failure is minimal among
all the possible sets of replicas.

One can apply the same possible strategies used as the
agent criticality update policy (time-driven or event-
driven) to decide when to re-calculate the values of ti. For

instance, one can use a variable window of time ∆t for
each agent Agenti. If the quantity of replicas (whose total
value does not exceed ti) that the agent Agenti can acquire

does not change significantly, the window of time ∆t can
be increased, otherwise it is decremented. Another
possibility is to recalculate the value of ti whenever the
value of ci is updated.

4.Related Work

Several approaches have addressed the multi-faceted
problem of fault tolerance. In fact, many toolkits include
replication facilities to build reliable applications.
However, most of them are not quite suitable for
implementing large-scale, adaptive replication
mechanisms.

Hägg [12] proposes an approach to the problem in
which sentinel agents monitor inter-agent communication,
build models of other agents and take corrective actions.
Since the sentinels analyze the entire communication
going on in the system to detect state inconsistencies, it
would be far too expensive in terms of computation and
communication to take total control of possible fault
situations and global consistency. Additionally, sentinels
are themselves points of failures.

Decker et al [13] describe different levels of
adaptation, but concentrates only on execution adaptation
where agent cloning is used in load balancing. Fault
tolerance aspects are not addressed. Furthermore, they do
not propose mechanisms such as merging of two agents or
self-extinction of underutilized agents to control agent
proliferation.

Kumar et al [15] propose a fault tolerant architecture of
brokers and AgentScape middleware offers a replication
service to achieve fault tolerance [15]. However, in both
cases, agent failure is not completely dealt with, since
only some agents (brokers) or part of them can be
replicated.

Fedoruk and Deters [3] also use replication to improve
fault tolerance. Their work implements the passive
strategy (hot-standby) of replication in a transparent way
using proxies. All messages going to and from a replicate
group are funnelled through the replicate group message
proxy. Kraus et al [16] define the problem of fault
tolerance as a deployment problem and propose a
probabilistic approach to deploy the agents in a multi-
agent application. The main problem of these two works
is that replication is applied statically before the
application starts. This is not desirable in the case of
dynamic and adaptive multi-agent applications because
the criticality of agents may evolve dynamically during
the course of computation.

There are some software infrastructures for adaptive
fault tolerance [17]–[19] where existing strategies can be
dynamically changed. Nevertheless, such a change must
have been devised by the application developer before
runtime or the modifications must be specified and
applied in a non-automatic way during the execution of
the system.

5.Conclusion

In recent years, research on multi-agent systems has

addressed the problem of agent reliability since they must
often run without any interruption. To make these systems
reliable, we proposed an original predictive method to
evaluate dynamically the criticality of agents. Our
approach takes profit of the specificities of multi-agent
applications and analyses the agents’ plans to determine
their importance to the system. The agent criticality is
then used to replicate agents in order to maximize their
dependability based on available resources.

To validate the proposed approach, we are using the
combination of the DARX framework and the DIMA
multi-agent platform in order to develop our plan-based
replication strategy. In this integration, an agent is
implemented as a DIMA agent and uses DARX in order
to acquire replication capabilities.

The implementation phase is very advanced (we have
already implemented the algorithms to determine the
agent’s criticality and we are finishing the new agent
replication mechanism). We are going to start very soon
the experimentation phase using two different real-world
applications (the personal meeting assistants and the
patrolling agents [20]) so that we can compare our new
approach to the previously developed ones.

Acknowledgment

The authors would like to thank the members of the
fault-tolerant multi-agent systems project for the fruitful
discussions.

References

[1] H. Boukachour, C. Duvallet, A. Cardon, “Multiagent
systems to prevent technological risks,” in Proc. of
International Conference on Artificial and Computational
Intelligence for Decision Control and Automation in
Engineering and Industrial Application (ACIDCA'2000),
Monastir, Tunisie, March 2000.

[2] K. Sycara, “Multiagent systems,” AAAI AI Magazine, vol.
19, no. 2, pp. 79-92, 1998.

[3] A. Fedoruk, R. Deters, “Improving fault-tolerance by
replicating agents,” In Proc. AAMAS-02, pp. 737-744,
Bologna, Italy, 2002.

[4] Z. Guessoum, J.-P. Briot, O. Marin, A. Hamel, P. Sens,
“Dynamic and adaptive replication for large-scale reliable
multi-agent systems,” In Software Engineering for Large-
Scale Multi-Agent Systems (SELMAS), LNCS 2603, pp.
182-198, April 2003.

[5] O. Marin, P. Sens, J.-P. Briot, Z. Guessoum, “Towards
adaptive fault-tolerance for distributed multi-agent
systems,” In Proc. of ERSADS'2001, pp. 195-201,
Bertinoro, Italy, 2001.

[6] M. Bertier, O. Marin and P. Sens. “Performance Analysis
of a Hierarchical Failure Detector,” In Proc. of the
International Conference on Dependable Systems and
Networks, San Francisco, CA, USA, 2003.

[7] Z. Guessoum, J.-P. Briot, “From active objects to
autonomous agents,” Special Series of Actors and Agents,
IEEE Concurrency, vol. 7, no. 3, pp. 68-76, 1999.

[8] MadKit Web Site. Available: http://www.madkit.org/
[9] Z. Guessoum, J.-P. Briot, N. Faci. “Towards fault-tolerant

massively multiagent systems,” In Toru Ishida, Les Gasser
and Hideyuki Nakashima editors, Massively Multi-Agent
Systems, Lecture Notes in Computer Science, Springer
Verlag, to be published.

[10] B. Horling et al., “The TAEMS White Paper,” January
1999.

[11] Hillier and Lieberman, Introduction to Operations
Research. Third Edition. Holden-Day Inc, pp. 246-259.

[12] S. Hägg, “A sentinel approach to fault handling in multi-
agent systems,” In Proc. of the Second Australian
Workshop on Distributed AI, Cairns, Australia, August 27,
1996.

[13] K. S. Decker, K. Sycara, “Intelligent adaptive information
agents,” Journal of Intelligent Information Systems, vol. 9,
pp. 239 - 260, 1997.

[14] S. Kumar, P.R. Cohen, H.J Levesque, “The adaptive agent
architecture: achieving fault-tolerance using persistent
broker teams,” In Proc. Fourth International Conference
on Multi-Agent Systems (ICMAS 2000), Boston, MA, USA,
July 7-12, 2000.

[15] F.M.T. Brazier, M. van Steen, N.J.E. Wijngaards,
“Distributed shared agent representations,” Multi-Agent-
Systems and Applications II, Lecture Notes in Computer
Science, vol. 2322, pp. 213-220.

[16] S. Kraus, V.S. Subrahmanian, N. Cihan, “Probabilistically
survivable MASs,” In Proc. of Eighteenth International
Joint Conference on Artificial Intelligence (IJCAI-03), pp.
789-795, 2003.

[17] Z. Kalbarczyk, S. Bagchi, K. Whisnant, R.K. Iyer,.
“Chameleon: a software infrastructure for adaptive fault
tolerance,” IEEE Transactions on Parallel and Distributed
Systems, pp. 560-579, 1999.

[18] M. Cuckuern et al, “AQuA: an adaptive architecture that
provides dependable distributed objects,” In Proc. of the
17th IEEE Symposium on Reliable Distributed Systems
(SRDS'98), pp. 245-253, West Lafayette, Indiana, October
20-23, 1998.

[19] F. Favarim, F. Siqueira, J. S. Fraga, “Adaptive fault-
tolerant CORBA components,” In Middleware Workshops
2003, pp. 144-148.

[20] A. L. Almeida et al, “Recent advances on multi-agent
patrolling,” In Proc. SBIA 2004, pp. 474-483.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

