
Profile-based Optimization of Power Performance
by using Dynamic Voltage Scaling on a PC cluster

Yoshihiko Hotta†, Mitsuhisa Sato†, Hideaki Kimura†,
Satoshi Matsuoka‡, Taisuke Boku†, Daisuke Takahashi†

† Graduate School of Systems & Information Engineering, University of Tsukuba
{hotta,msato,kimura,taisuke,daisuke}@hpcs.cs.tsukuba.ac.jp

‡ Tokyo Institute of Technology {matsu@titec.is.ac.jp}

Abstract
Currently, several of the high performance processors

used in a PC cluster have a DVS (Dynamic Voltage Scal-
ing) architecture that can dynamically scale processor volt-
age and frequency. Adaptive scheduling of the voltage and
frequency enables us to reduce power dissipation without
a performance slowdown during communication and mem-
ory access. In this paper, we propose a method of profiled-
based power-performance optimization by DVS scheduling
in a high-performance PC cluster. We divide the program
execution into several regions and select the best gear for
power efficiency. Selecting the best gear is not straight-
forward since the overhead of DVS transition is not free.
We propose an optimization algorithm to select a gear us-
ing the execution and power profile by taking the transi-
tion overhead into account. We have built and designed
a power-profiling system, PowerWatch. With this system we
examined the effectiveness of our optimization algorithm on
two types of power-scalable clusters (Crusoe and Turion).
According to the results of benchmark tests, we achieved
almost 40% reduction in terms of EDP (energy-delay prod-
uct) without performance impact (less than 5%) compared
to results using the standard clock frequency.

1 Introduction
Recently, there has been tremendous interest in power-

aware computing for mobile embedded systems such as
PDAs and cellular phones. Even in high-end parallel com-
puting systems, it is a very important issue to reduce the
power consumption for cooling and high-density packag-
ing. This is also a serious problem in the servers of data
centers. For example, a Google engineer has warned that
“Performance does not matter. Power is the most impor-
tant matter for managing our systems.” In the past decade,
processor performance has rapidly increased while power
dissipation has increased.

The explosive increase of processor power consumption
has had a big impact on the design of large-scale systems

such as the Earth Simulator. One solution to the prob-
lem of power consumption is found in BlueGene/L [1]. It
utilizes low-power components from commodity technol-
ogy to reduce the power consumption of the entire system.
The processor used in BlueGene/L is an embedded, cus-
tomized PowerPC chip-multiprocessor. High-performance,
low-power clusters such as Green Destiny [10] have been
built with low-power processors with high-density packag-
ing. Using Transmeta Efficeon processors we have been
developing a low-power and high-density cluster called
MegaProto [6] to achieve “mega-scale computing”.

Dynamic voltage scaling (DVS) is recognized as one of
the most effective power-reduction techniques. As a ma-
jor portion of the power of CMOS circuitry scales quadrat-
ically with the supply voltage, lowering the supply voltage
can significantly reduce power dissipation. Modern low-
power processors such Intel Pentium-M and Transmeta Cru-
soe have the DVS mechanism to change the frequency scal-
ing with the voltage, which usually allows longer battery
life in mobile platforms. Even high-performance proces-
sors used for HPC (high-performance computing) PC clus-
ters also have DVS. DVS may be used to reduce the power
consumption by changing the clock frequency-voltage set-
ting without impacting the time-to-solution.

In this paper, we propose a method of profile-based
power-performance optimization by using DVS in a high-
performance PC cluster. In parallel applications, a large
amount of execution time may be spent for communications
to exchange data between nodes in a cluster. When a node
waits for communication from other nodes, we can reduce
the power dissipation by setting a lower clock frequency of
the processor. On the other hand, it is often found that in-
creasing the CPU clock frequency does not always result
in an increase of performance because memory is some-
times the bottleneck in memory-intensive applications. In
this case, lowering the clock frequency can save power dis-
sipation with less performance penalty.
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The DVS of a particular processor defines the possible
combinations of clock frequency and voltage which we call
gear. We divide the program execution into several regions
and choose the best gear to execute each region according to
the profile information on the execution timing and power
of the previous trial run. Choosing the best gear for each re-
gion is not straightforward since the overhead of the transi-
tion from one gear to a different gear is not free. It may take
tens of microseconds to switch from one gear to another so
that the overhead may eliminate the benefits of DVS. Our
proposed algorithm to choose the best gear takes this over-
head of transition into account to optimize the power perfor-
mance. Selecting regions is another important issue. In this
paper, we set the regions manually for the communications
and calculations regions, and used these region settings to
evaluate our proposed method.

LongRun [4], developed by Transmeta, is an interest-
ing facility that automatically controls DVS at the micro-
architecture level. Although it is very useful for a laptop
computer with long battery life, we found that it may fail
to select the best gear for HPC applications [6]. We believe
that exploiting application knowledge by using the execu-
tion profile is more effective in achieving better power per-
formance in high-performance parallel applications.

The metric for measuring power performance is also a
very important and interesting issue. In high-performance
systems, minimizing the execution time is usually a first pri-
ority. Even if the total energy is minimized, the user would
not be satisfied with poor performance. We choose the
energy-delay product (EDP) as a metric to optimize power
performance by taking the execution time into account.

In this paper, we first present the power-performance
characteristics of parallel programs at several voltage and
frequency settings. For our experiments, we built a power-
profile system named PowerWatch using the Hall device,
which allows us to measure the power consumption of each
node at as much as a hundred-microsecond resolution with-
out changing hardware. In [7], we reported the power-
performance characteristics of various processors such as
Crusoe, XScale, and Pentium by using this system. We used
the NAS benchmark suite for evaluation. We also built two
kinds of clusters using low-power processors for the exper-
iment: Turion cluster and Crusoe cluster. Our results shows
our optimization using the profile is promising for an HPC
power-scalable cluster.

The rest of this paper is organized as follows. We list the
related work in the next section. Our method of profiled-
based power-performance optimization is described in Sec-
tion 3. Section 4 represents power measurement system
PowerWatch. Section 5 presents the experiment setup and
results of our method using NAS parallel benchmarks. The
discussions of our method and power-performance effi-
ciency is presented in Section 6. Finally, we present our

concluding remarks and future work in Section 6.

2 Related Work
There has been tremendous interest in power-aware com-

puting in mobile and embedded systems. Many researchers
have tried to reduce energy consumption to enable these
systems to have a long battery life.

Recently, there have been several case studies using DVS
to reduce power and energy consumption even in high-
performance computing.

Freeh [11] presented a profiled-based optimization.
They divide the programs into regions and trial run with
several gear to optimize frequency. For profile information
they using OPM (operations per miss) value to define the
phase. This method is similar to our method. They achieved
9% energy reduction than the closet single-gear solutions.

Rong [5] also presented a profiled-based optimization
using the MPE (Multi-Processing Environment) tool in-
cluded in MPICH. They proposed DVS scheduling for
distributed power-aware HPC clusters. By varying the
scheduling granularity, they achieved high energy saving
(36% without a performance decline). And they also evalu-
ated the EDP to automatically select a distributed DVS that
meets the performance demand. While their approach is
similar to ours, their profiler can focus only on the commu-
nication regions. Our method can be applied to optimize
not only communication regions but also other regions.

Kappiah [9] presented a system called Jitter (Just-In-
Time DVSF). It reduces the clock frequency on nodes which
have been assigned small computations. In such a case,
it has slack time to wait for other nodes which have been
assigned large computation. This saves energy on the
nodes. They focused on iterative programs, which com-
prise the vast majority of scientific programs, since the it-
erations of these programs are stable; consequently, they
were able to estimate future behavior according to past be-
havior. By manually inserting special code for the system,
they achieved an energy reduction of 8% while execution
time was reduced by 2.6%.

Run-time solutions of DVS have also been investigated.
Hsu [8] proposed a power-aware DVS run-time system that
automatically adapts a large power reduction with small
performance loss. They use β adaptation, which is schedul-
ing by a β value that can be used to predict the behavior
of the program. And, they proposed a model based on the
MIPS rate.

Our work differs by using fine-grained profile informa-
tion to define the best gear in each region in high perfor-
mance distributed system in terms of power performance.
We propose an algorithm which include transition cost of
DVS to define the gear, and estimate the result as two types
of metric. Additionally it enables us easily to use optimiza-
tion in all kinds of application.



3 Profiled-based DVS Optimization
3.1 Metric of Power Performance

There have been several metrics for high-performance
computing such as FLOPS (floating-point operations per
second). Brooks et. al [3] suggests that the metrics of future
high-performance computing is not only performance, but
also the power delay product (PDP) or energy delay prod-
uct (EDP) as power performance.

We use both metrics for our evaluation. PDP means the
energy for executing an application, obtained by the sum-
mation of the product with time and actual power consump-
tion. PDP is appropriate for the evaluation of low-power
systems, such as a laptop or mobile device in which the bat-
tery life is the main concern for energy efficiency.

However, even if the energy is reduced, we should avoid
a big performance loss in a high-performance system. Since
our target is high-performance and low-power cluster com-
puting, it is not enough to use only PDP, but also EDP.
Our purpose is reducing the amount of power consumption
and improving the power-performance efficiency in a high-
performance computing system without performance loss.
The EDP is a metric suitable for a high-end server class
system. It is weighted by the execution time to take the per-
formance into account in addition to the energy. EDP can
be defined as follows:

EDP = Texectime × Energy (1)
In this metric, a lower EDP value means higher power-

performance efficiency to run a program. In this paper, we
schedule the clock frequency in order to reduce EDP.
3.2 The Power-performance Optimization Algo-

rithm
We divide the program P into several regions, Ri. Each

region is defined by instrumenting the program at appro-
priate locations. Then, we measure the execution time and
the power consumption for each region at each gear by our
profiling tool in trial runs. Figure 1 shows the flow of our
optimization.

1. trial runs for generating profile

It starts by instrumenting the program at an appropriate
location to define the regions. The instrumented code
is then executed, generating the profile of the power
and execution time for each region.

2. Evaluate PDP or EDP

Once the profiling is finished running at each gear, we
obtain the value of EDP or PDP of each region in var-
ious gears.

3. Select of the optimized frequency

Then, we determine the best clock frequency Fi (Fi

means the gear of using actual run in Ri )for each re-
gion by using the optimization algorithm described in
the previous section.
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Figure 1. Flow of optimization
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Figure 2. Regions and overhead of a Program

4. Applying scheduling of frequency

Finally, we apply the obtained set of clock frequencies
in actual runs. The DVS system calls are called at the
beginning of each region if the gear must be changed.

The optimization problem is to determine a set of clock
frequencies, fi, to minimize the estimated EDP E(P ) for
the program P that is divided into n regions, Ri, i = 0 · ·n:

E(P ) =
n∑

i=0

E((Ri, fi) + Etrans(Ri, fi))

Here, we describe our algorithm as an EDP. E(Ri, fi) is the
summation of the value of EDP when executing the region
Ri at the clock frequency fi. The value of fi must be one
of the clock frequencies given by each possible gear of the
processor. Etrans(Ri, fi) represents the summation of the
transition overhead in terms of the EDP to change a gear
to the clock frequency fi. This overhead depends on the
clock frequencies of the adjacent regions of Ri. Figure 2
shows the program execution flow in each region. If the ad-
jacent regions have the same clock frequency, this overhead
becomes zero because the gear does not change. Actually,
Etrans is the estimated EDP calculated by the product of
the transition time and the power consumption during the
transition. Note that, if we want to minimize the energy,
that is, PDP, we can use the PDP value for E(Ri, fi) and
Etrans(Ri, fi).

Our strategy to optimize E(P ) is to determine the clock
frequency from the region having the largest E(Ri, fi), be-
cause the region is expected to give the largest contribution
to the reduction of EDP in the total EDP. The algorithm de-
cides the set of clock frequency Fi to give the minimum
estimated E(P ). Our algorithm optimizes the E(P ) in the
following steps:
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Table 1. Voltage and frequency of Crusoe
gear Clock Voltage FSB TDP

1 300MHz 0.90V 100MHz 3W
2 533MHz 1.10V 133MHz 4W
3 667MHz 1.20V 133MHZ 5W
4 800MHz 1.25V 133MHz 7W
5 933MHz 1.35V 133MHz 9W

Table 2. Voltage and frequency of Turion
gear Clock Voltage TDP

1 800MHz 0.90V 9W
2 1000MHz 1.00V –
3 1200MHz 1.05V –
4 1400MHz 1.10V –
5 1600MHz 1.15V –
6 1800MHz 1.20 25W

• Step 1: Initialize the clock frequency Fi for each re-
gion Ri as “not defined.” The value Fi indicates the
clock frequency at which region Ri is to be executed.

• Step 2: Obtain E(Ri, fi) for each Ri and fi of each
gear from the execution profiles of the trial runs.

• Step 3: Choose the region Ri which has the largest
EDP, E(Ri, fmax), with Fi “not defined.” If all Fi are
already defined, then stop.

• Step 4: Calculate the E(P ) for each gear of fi when
Ri is executed at the clock frequency fi. For calcu-
lating E(P ), if the clock frequency of a region is not
defined yet, the EDP value and the overhead for the
region can be counted as zero. If the clock frequency
of the adjacent regions to Ri is already defined and
is different from the selected clock frequency for Ri,
we must add the overhead for changing the gear to
E(P ). Finally, choose the best fi as Fi, which min-
imizes E(P ), and mark the region as “defined.”

• Repeat from Step 3 until all Fi are defined.

It is important to determine how and where to define the re-
gions. When using our algorithm, we can insert profile code
at arbitrary locations. For instance, we might insert pro-
file code at each function or each loop, even at each state-
ment. Our algorithm may remove unnecessary changes of
gear by taking the overhead of the transition into account.
We should, however, avoid too fine-grained instrumentation
because it may cause large overhead of profiling and also
perturbation of the execution time, resulting in inaccurate
profile information. Currently, we insert the profile code

manually. Our strategy of instrumentation is to focus on the
communication in parallel programs. When a node waits for
communication from other nodes, we can reduce the power
dissipation by setting the clock frequency of the processor
to be low. We define computation parts and communication
parts as different regions. Another possible region may be
memory-intensive regions, since the memory-intensive part
may be executed at a lower clock frequency with less per-
formance loss.

4 PowerWatch: A Power Profile System
We designed and built the power profile system, Pow-

erWatch, to measure and collect the power information of
each node in a cluster. Figure 3 illustrates our system. The
system includes the following three components:

Power-monitoring system: Power-monitoring system
using the Hall device. This enables us to measure the elec-
tric current at several points in a few micro-seconds of reso-
lution without any modification of the target hardware. The
current system can monitor the electric current of 48 power-
supply lines so that we can measure the power consumption
of all 8 nodes at the same time. Several runtime APIs for an
application program are provided to obtain the power profile
of each node. A GUI power real-time monitoring system is
also provided.

Tlog execution profile tool: “Tlog” stands for “timing
log”. A set of library functions are provided to define events
and generate event log records with a timestamp as the ex-
ecution profile in an MPI parallel program. The regions in
the program are defined by inserting the tlog function call
at a specified location. The visualization tool “tlogview” is
also provided to view the execution profile.
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DVS control runtime library: we have instrumented
several library functions to control DVS.

5 Experiment
5.1 Low-power Clusters

We examined the effectiveness of our algorithm on two
types of power-scalable clusters (clusters using Crusoe and
Turion). There are many processors which support DVS,
such as Pentium-M, ARM, and Intel’s XScale. We chose
Turion because it supports dual-issue floating-point calcu-
lations, SSE2, SSE3, and 64-bit instructions that are useful
for HPC applications. Crusoe is the first IA-32 compatible
processor with a DVS facility called LongRun. LongRun
changes frequency and voltage automatically according to
the CPU status.

The processor in the Turion cluster is Turion MT-32 (1.8
GHz with 64-KB L1 cache, 1-MB L2 cache, TDP is 24 W)
with 1-GB DDR memory. The number of nodes is eight.
These nodes are connected by Gigabit Ethernet (Dell Pow-
erConnect 2724, Intel Gigabit Ethernet Card).

The processor in the Crusoe cluster is Crusoe TM-5800
(933-MHz with 64-KB L1 cache, 512-KB L2 cache, TDP
is 9 W) with 256-MB SDR memory. The number of nodes
is four. The network interface of the Crusoe cluster is a Fast
Ethernet, a good balance between the processor and net-
work. The Linux 2.6.11 kernel was installed on both clus-
ters. All of the benchmarks were compiled with gcc ver-
sion 3.4.11 with the LAM MPI 7.1.1 library. We measured
the overhead of the DVS function in Turion cluster, and we
have found it is nearly 30 µ seconds. In the case of Turion
we can set the overhead time of DVS while Crusoe can not.
Thus, in the optimization of our algorithm, the overhead of
the DVS transition is set to 50 µ seconds (the minimum in-
terval time to set MSR) in each processor according to our
earlier measurement. Table 1 and Table 2 show the voltage

and frequency settings we used in Crusoe and Turion.1 In all
measurements, CPUfreq interface provided by Linux does
not run. The reason is that it changes gear to the announced
setting when we set the gear we assumed.

5.2 Benchmark and Power-performance Charac-
teristics

We used NPB (NAS Parallel Benchmarks) version 3.1
for evaluation. We measured the characteristics of IS, FT,
MG, and CG. All measurements measured multiple times
and we show the best results for evaluation. Communica-
tion has a big impact in reducing the energy or EDP.

First of all, we measured these benchmarks on the clus-
ters at each gear to understand the power performance char-
acteristics of the clusters. Because of the page limitation,
we only show the result of IS, CG and FT.

Turion cluster: Figure 4 shows energy and performance
normalized to the standard frequency at each gear. At the
low gear, we can reduce the energy in some benchmarks.
The performance of IS and FT does not have a large dif-
ference between different gears while CG goes down by a
lower gear.

Crusoe cluster: Figure 5 shows the energy and perfor-
mance characteristics of each benchmark in various gears.
We found the ratio of energy reduction, and it is lower
than in LongRun which indicated by “LR”. At a gear of
300 MHz, the performance of all benchmarks rapidly goes
down. The reason is not only the declining clock frequency,
but also the FSB clock frequency goes down from 133 MHz
to 100 MHz. The performance of CG is not good using Lon-
gRun.

5.3 Strategy of Defining Regions
The most important strategy of defining regions is to

focus on the communication region. In parallel applica-
1AMD does not announce some details of Turion’s frequency and volt-

age, so we assumed the settings of these voltages.
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tions, communication takes a large amount of execution
time; therefore, by using a lower gear, wasted energy can
be greatly reduced. So, we instrument the communica-
tion region (such as MPI Alltoall), and we especially focus
on Alltoall communication. We define most of the com-
munication function in the main iteration as a region. By
this strategy we define the region of the program as fol-
lows: MPI Allreduce, MPI Alltoall, MPI Alltoallv in IS,
MPI Allreduce in FT, MPI Irecv, MPI Send, MPI Wait in
CG and MG. Particularly, IS and FT includes Alltoall com-
munication, which spends a large amount of time in gen-
eral, so that by using a lower gear we expect to reduce en-
ergy without performance impact. CG and MG includes
MPI Wait to wait in the idle state, so that we can reduce
energy with a lower gear.

Other strategies also focus on the memory access re-
gion and large computation region. We assume that a pro-
cessor does not need a higher gear in the case of off-chip
memory access. By using a lower gear when a processor
needs off-chip memory access, we can reduce energy with a
small performance impact. With this strategy we also define
the regions of the programs as follows: rank() in IS, fft(),
evolve(), checksum() in FT, conj grad() in CG, mg3P(),
resid() in MG. In the case of frequent off-chip memory ac-
cess, we expect that using a lower gear can reduce more
energy.

Turion cluster: Figure 6 shows energy of each region
normalized to the standard highest gear. We only illustrate
the regions which execute for a long time. The energy of IS
and FT becomes smaller in some region at a lower gear. The
communication region can reduce energy by using a lower
gear.

Crusoe cluster: Figure 7 shows energy of each region
normalized to the standard highest gear. In the case of com-

munication, a lower frequency can reduce energy dramati-
cally (over 40%) However, LongRun can adjust to a better
gear to reduce the energy.

5.4 Results of Optimization
Turion cluster: Table 3 shows the set of clock frequen-

cies of each major region estimated by our algorithm, as
indicated with Figure 6 (from the left, MG: resid() as re-
gion1, mg3P() as region2, mpi send as region3). We op-
timized for two values, energy-aware optimization (This
means E(P) is energy), and EDP-aware optimization (This
means E(P) is EDP). In the case of energy-aware optimiza-
tion, we found that some regions, particularly most com-
munication regions, select a lower gear. In the case of EDP-
aware optimization, CG and MG does not need to change
the clock frequency.

Figure 8 shows the estimated result and measured result
of applying our optimization normalized to estimated result
(left: Energy-aware, Right: EDP-aware). Our estimated re-
sult is almost the same as the measured result. In the case
of the energy-aware optimization, the difference between
the estimated and measured result is small. However, CG’s
execution time becomes large. We presume this is a pertur-
bation caused by the DVS overhead. In the case of EDP-
aware optimization, the difference between the estimated
and measured result is small (CG and MG does not change
gears, so these are the same).

Figure 10(left) shows the optimization result of PDP,
EDP and the performance normalized with the standard
highest frequency. All benchmarks can reduce the energy
and EDP using our method; in particular, IS and FT are
about 20%. While energy-aware optimization may cause
large performance loss, the performance impact of EDP-
aware optimization is not very large (within a few percent-
age points of the decline with EDP-aware optimization).
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Figure 9. The difference between the estimated and measured result on the Crusoe cluster

Table 3. Selected Frequency of Turion
region1 region2 region3

IS PDP 1800 1000 800
EDP 1800 1000 1000

FT PDP 1400 1400 1000
EDP 1800 1800 1000

CG PDP 1000 1600 1400
EDP 1800 1800 1800

MG PDP 1400 1400 1400
EDP 1800 1800 1800

Table 4. Selected Frequency of Crusoe
region1 region2 region3

IS PDP 933 533 300
EDP 933 533 300

FT PDP 533 800 533
EDP 800 533 300

CG PDP 533 533 800
EDP 800 800 800

MG PDP 667 533 533
EDP 800 800 800

EDP-ware optimization also reduces both energy and EDP
effectively.

Crusoe cluster: Table 4 shows the estimated set of clock
frequencies of major regions indicated by Figure 7. In
the case of energy-aware optimization, some regions use a
lower gear, as in the Turion cluster. In the case of EDP-
aware optimization, CG and MG do not need to change the
clock frequency in major regions and in IS, we obtain the
same results as in the energy-aware optimization result.

Figure 9 shows the estimated result and measured result
of applying our optimization normalized to estimated re-
sult (energy-aware and EDP-aware). In the case of energy-
aware optimization, our estimated result is almost the same
as the measured result, but the execution time of CG is dif-
ferent from the measured result. In the case of EDP-aware
optimization, our estimated result is almost the same with-
out the FT execution time. But, EDP is not much different
from the estimate.

Figure 10(right) shows the optimization result of both
optimizations normalized with a standard frequency. We

can obtain a better benefit in the Crusoe cluster rather than
in the Turion cluster. That is because the Crusoe cluster
uses Fast Ethernet. It takes the ratio of the communication
region to be large in the execution of a program. Another
reason is the ratio of power consumption of the processor
in the system. As a result, in all the benchmarks, we can
reduce the energy by about 20% (IS is about 40%) The
energy-aware optimization incurs performance loss. In the
case of CG, when using LongRun, EDP rapidly increases
with EDP-aware optimization. This indicates that the per-
formance of the CG benchmark is not good with LongRun.
We have already described this problem in [6]. In the case
of high frequently communication such as CG, the inter-
mittent computation periods is too short to gear up to the
maximum level, that is, performance becomes worse.

6 Discussion
We applied our algorithm to two types of values. Al-

though energy-aware optimization has the benefits of en-
ergy reduction, the performance impact may become large;
therefore, it may not be suitable for HPC power-aware com-
puting. On the other hand, EDP-aware optimization has the
benefit of EDP reduction without much performance impact
(only a few percentage points). In this result, our algorithm
can almost estimate the actual measured result. In most of
the cases, our algorithm estimates a lower value than that of
an actual run.

In terms of power consumption, Turion’s power is quite
lower than that of Opteron or Athlon. Opteron and Athlon
also have DVS called PowerNow!, but the voltage is more
than 0.3 V higher than that of Turion. For example, TDP of
the Opteron146 processor consumes 89W, while at the low-
est gear it consumes only 28 W (Turion MT-32 consumes
24 W maximum, and 7.7 W minimum) [2]. We are inter-
ested in the effectiveness of our profiled-based optimization
on high performance processor such as Opteron.
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Figure 10. PDP, EDP and the performance of our method normalized with a standard frequency

And, the network interface has a big impact in power-
aware computing. In this paper, the network switch’s power
consumption and energy were not included in our evalua-
tion. The reason is that a network switch constantly dissi-
pates power consumption. And the number of nodes of our
cluster is only 8, but a network switch has 24 ports. Also,
network power would make evaluation unfair in the case of
an 8-node cluster. This is a trade-off between performance
and energy and cost.

Finally, we are interested in optimizing and estimating
power in a large-scale system. Recently, HPC systems have
become large with thousands of processors. It is difficult
to measure the energy of each node. The problem of our
optimization needs exhaustive information (all regions run
at all gears). Currently, we are working on estimating the
power-performance characteristics of a large-scale cluster
from the result of a small cluster. This work will help us to
optimize the energy dissipation of a large-scale system.

7. Concluding Remarks and Future Work
In this paper we proposed a profile-based power-

performance optimization by using DVS in an HPC cluster.
We divided the program execution into several regions and
determined the best gear to execute each region according
to the power and execution profile information from a trial
run. For our evaluation, we designed and built the environ-
ment, PowerWatch.

Our proposed algorithm of selecting the best gear in each
region takes the overhead of the DVS transition into ac-
count to achieve high power performance. We examined
two types of power-scalable clusters. Our algorithm in-
creased the power performance in both clusters, especially
in the case of the Crusoe cluster (about 40%).

In this study, we instrumented the code manually. As our
future work, we will develop a system which instruments
the code to the program automatically. We instrumented the
program at the function level. It could successfully reduce
energy and EDP. However, we can reduce the energy and
EDP more effectively to analyze the application behavior
(memory access. cache miss, etc.). Next, we will evaluate
other applications, such as a server system benchmark or
database application, which really needs low energy dissi-
pation for managing cost or fault reliability.
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