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Abstract

Reducing power consumption is quickly becoming a
first-class optimization metric for many high-performance
parallel computing platforms. One of the techniques em-
ployed by many prior proposals along this direction is volt-
age scaling and past research used it on different compo-
nents such as networks, CPUs, and memories. In contrast
to most of the existent efforts on voltage scaling that tar-
get a single component (CPU, network or memory com-
ponents), this paper proposes and experimentally evaluates
a voltage/frequency scaling algorithm that considers CPU
and communication links in a mesh network at the same
time. More specifically, it scales voltages/frequencies of
both CPUs in the network and the communication links
among them in a coordinated fashion (instead of one af-
ter another) such that energy savings are maximized with-
out impacting execution time. Our experiments with several
tree-based sparse matrix computations reveal that the pro-
posed integrated voltage scaling approach is very effective
in practice and brings 13% and 17% energy savings over
the pure CPU and pure communication link voltage scal-
ing schemes, respectively. The results also show that our
savings are consistent with the different network sizes and
different sets of voltage/frequency levels.

1. Introduction

Power consumption is becoming a critical issue for high-
end computing platforms due to several factors including
costs, space, reliability, and maintenance. Consequently, re-
cent research efforts from different groups in both academia
and industry have focused on techniques that help us ac-
curately model and reduce power consumption of different
hardware components in a large computing infrastructure.
These studies, details of which are discussed in Section 2,
include CPU power optimizations, memory banking and
low-power operating mode management, network power
minimization, and energy-oriented disk I/O optimizations.

∗This work is supported in part by NSF grants CCF 0444158, CNS

0406340, CCF 0444345, and CCF 0102537.

Voltage and frequency scaling has been identified by
past research as one of the most effective ways of reduc-
ing CPU power [10, 28]. More recently, there have been
proposals [25, 29] that apply voltage/frequency scaling to
network links to save communication power. However, to
our knowledge, none of the prior efforts in the domain of
high-performancecomputing considered using voltage scal-
ing on both CPUs and communication links of a given par-
allel architecture in a coordinated fashion to save power.
The work described in this paper is a step in this direction.
More specifically, focusing on sparse matrix computations
that can be represented as trees, this paper studies the poten-
tial benefits that can be accrued when using CPU and com-
munication link voltage/frequency scaling in a coordinated
fashion. To achieve this, we propose and experimentally
evaluate a voltage/frequency scaling algorithm.

An important characteristic of the proposed algorithm is
that it tunes the CPU and link voltages carefully so that we
can obtain the potential power savings without increasing
the original execution time, i.e., the time taken when no
voltage scaling is employed. The important point is that we
scale the voltages of CPUs and links considering the impact
of doing so on each other; this is radically different from
an alternate approach that applies CPU voltage scaling af-
ter communication link voltage scaling or vice versa. To
test the effectiveness of our approach, we applied it to a set
of tree-based sparse matrix computations running on a two-
dimensional mesh network and compared it two alternate
schemes, one that applies voltage scaling only to CPUs and
the other one that applies voltage scaling to only communi-
cation links. Our experiments reveal that the proposed inte-
grated voltage/frequency scaling approach is very effective
in practice and brings 13% and 17% energy savings over
the pure CPU and pure communication link voltage scaling
schemes. The results also show that our savings are con-
sistent with the different network sizes and different sets of
voltage/frequency levels.

The remainder of this paper is structured as follows. In
the following section, we describe the related work on volt-
age scaling in the context of the interconnection network
and processors. Section 3 explains the tree based compu-
tation model for parallel sparse matrix solvers. Our inte-
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grated link/CPU voltage scaling algorithm is presented in
Section 5. Section 6 presents an experimental evaluation of
the proposed algorithm. We conclude the paper in Section 7
with a summary of our major contributions.

2. Related Work

Several studies in the past have proposed dynamic volt-
age scaling (DVS) techniques for reducing energy con-
sumption of communication links in the NoC (Network-on-
Chip) based systems and high-end multiprocessor systems
[25, 26, 29]. The main idea behind these approaches is to
scale down the voltage/frequency of communication links
when there is enough communication slack (i.e., the amount
of latency by which communication can be delayed without
affecting overall execution time) observed or predicted. In
order for these DVS techniques to be feasible, Kim et al [19]
proposed serial links that can operate under various link
voltage/frequency levels. Employing links with variable
voltage/frequency, Shang et al [25] presented and evaluated
a history-based DVS scheme for the communication links.
Worm et al [29] proposed an adaptive low-power transmis-
sion technique for on-chip networks, whereas Shin et al [26]
discussed a task mapping technique based on genetic algo-
rithms to utilize voltage scalable links for saving energy in
NoC based systems. Besides DVS techniques for commu-
nication links, several techniques that shut down unused or
underutilized links have proposed. Kim et al [18] proposed
a dynamic link shutdown (DLS) technique for chip-to-chip
networks. Soteriou et al [27] explored the design space for
communication links with turn on/off capability.

In addition to these efforts that target at reducing power
consumption in communication links, there are also studies
that target at reducing power/energy consumption of large
server and cluster systems. These efforts can be broadly
classified into three categories. The first category of the
efforts considered CPU-centric techniques that turn off un-
used CPUs [8] or scale down CPUs that execute non-critical
execution [9, 10]. Voltage scaling on processors [28] has
been extensively studied and several commercial proces-
sors (e.g., Transmeta’s Crusoe [1] and AMD’s Athlon 64
[2]) already provide mechanisms to control the frequency
and voltage of processors. The second category of studies
[3, 18, 5] proposed several techniques that focus on indi-
vidual components of the server based computing systems
such as CPUs and main memory. Lastly, many studies fo-
cused on reducing energy consumption on the disk subsys-
tem, which is a huge energy consumer for large data cen-
ters, by completely spinning down disks [7] or dynamically
adjusting the rotational speed of disks [14].

Lastly, Chen et al [4] recently proposed a CPU voltage
scaling scheme for tree based parallel sparse matrix appli-
cations. Our approach is different from their approach be-
cause we scale down the voltage/frequency of both CPUs
and links at the same time. In the domain of real-time dis-
tributed embedded systems, Luo et al [20] proposed a tech-
nique that simultaneously scales voltages of processors and
communication links. Our approach is also different from
Luo et al’s work in that we focus on exclusively parallel

sparse matrix applications and consider the underlying net-
work topology in selecting proper link voltages (and corre-
sponding frequencies). Consequently, our integrated volt-
age scaling algorithm is entirely different from theirs.

3. Tree-Based Computation Model

In this paper, we concentrate on parallel sparse linear
systems to study the impact of CPU and link voltage scaling
without impacting performance. Such computations typi-
cally dominate the execution time of many large-scale par-
allel applications on multiprocessors and clusters of work-
stations. There are many classes of parallel sparse linear
solvers and important classes include parallel direct solvers
based on sparse factorization [6, 12, 17, 22], iterative
solvers [16, 24], and direct-iterative hybrids through pre-
conditioning [13, 21, 23]. While there is no single method
that is always better than others across the different appli-
cation domains and the underlying parallel execution plat-
forms, they share the same notion that a given sparse ma-
trix can be represented as a graph, which can be partitioned
across processors for parallel execution. This partition-
ing [17] is usually performed using a recursive scheme for
computing vertex or edge separators, and the associated par-
titioning tree (and related trees) can serve as a useful model
for the underlying parallelism and data dependencies.

We focus on tree-based parallel sparse computations that
are representative of parallel sparse solvers when matrix is
symmetric positive definite. Such solvers consist of a ini-
tial symbolic phase followed by a numeric phase. In the
symbolic phase, the matrix for parallel computation is par-
titioned to determine the actual structure of the Cholesky
factor L [15]. The numeric phase, which represents the
dominant cost in total solver time, involves computation of
the sparse factor and solving the problem using the deter-
mined sparse factor. The columns of L can be clustered
into supernodes, each of which contains a set of consec-
utive columns with the same zero/nonzero structure. The
overall numeric phase can be performed in parallel on tree
of supernodes. The tree structure represents the data depen-
dencies, and each tree node denotes a supernode of L and its
corresponding set of dense-matrix operations. The alloca-
tion of processors to subtrees is based on the weights on the
tree to represent the computation costs. While the allocation
procedure can be done in several phases to balance com-
putational load on each processor, inherent irregularities in
the sparse matrix often result in workload imbalance across
processors during parallel sparse matrix computation.

In this paper, we use a weighted tree as the model of
sparse computation. An example weighted tree is given in
Figure 1. We use Ni to represent the nodes in the tree. Each
leaf node, which represents a local computation phase, is
assigned to one processor, pi, as shown in Figure 1. The
nodes, which represent the distributed phase, are assigned
to the processors that also operate to the leaf nodes of their
subtree nodes. For example, N1 is assigned to 4 proces-
sors, from p0 to p3, since N1 makes use of all the proces-
sors in that subtree. The pair of numbers inside a given
node in this figure represents the computation and commu-



Figure 1. An example tree representing paral-

lel sparse computations.

Figure 2. (a) Two-dimensional mesh topology

(4 by 4). (b) A node with a bidirectional net-

work.

nication weights associated with that node, e.g., N1 is as-
signed 50 unit of computation load and 25 unit of commu-
nication load. Similarly, N3 is assigned 90 and 10 units of
computation and communication loads, respectively. In the
tree-based computation model for sparse applications, the
weight on each node is evenly distributed across all the pro-
cessors assigned to that tree node. Based on this weighted
tree notation, we can determine the critical path, which is
represented as thick solid line in Figure 1. In other words,
N0, N1, N3 and N6 constitute the critical path in this ex-
ample tree, which determines the minimum execution time
of the parallel application. The goal of this study is to re-
duce energy consumption of such tree-based matrix compu-
tations by taking advantage of the computation and commu-
nication exhibited by the tree nodes not in the critical path.

4. System Model

We focus on an M ×N two-dimensional mesh based in-
terconnection network as shown in Figure 2(a), though the
analysis described in this work is applicable to other net-
work topologies as well with proper modifications. Each
pair of adjacent nodes in this 2D mesh topology is con-
nected to each other using two uni-directional links. A node
in this architecture typically consists of one or more proces-
sors, some amount of local memory, and a switch that routes
messages through the nodes (Figure 2(b)). We use pi to de-
note the id of the ith node in this mesh network, which can
be written as:

pi = row(i) × M + col(i), (1)
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Figure 3. Left: CPU power model. Right: Link
power model.

where M is the row size of the mesh and row(i) and col(i)
are the row and column positions, respectively, of the ith

node. For example, p5 in Figure 2(a) can be represented
using (1, 2) since the size of this example mesh topology is
4 × 4.

Given the system architecture explained above, an ap-
plication program considered in this study is parallelized
using the message-passing interface, MPI [11]. In this
model, the nodes communicate with each other using ex-
plicit send/receive commands. We propose integrated volt-
age/frequency scaling on CPUs and communication links.
We apply our technique to these two components due to
following reasons. First, both modern CPUs and communi-
cation links support voltage/frequency scaling circuits and
we can make use of these capabilities to reduce power. An-
other reason is that each of these components are known to
be a major contributor to total energy consumption in large
parallel machines [4, 20].

To illustrate the idea behind our approach that scales
both CPU and communication link voltages in a coordi-
nated fashion, let us first take a look at their energy/latency
behavior. The dynamic power consumption, P , can be rep-
resented as:

P = 1/2 · f · N · C · V 2

dd, (2)

where f is clock frequency, N is switching activity, C is
effective capacitance, and Vdd is supply voltage. Therefore,
the power consumption, P , is quadratically proportional to
the supply voltage, Vdd, and frequency, f 1. As shown by
Equation 2, we can obtain quadratic drop in power con-
sumption with a linear reduction in the clock frequency (f )
and the supply voltage (Vdd).

The energy versus clock frequency2 curves for CPU and
communication links are drawn in Figure 3. The CPU curve
is adapted from AMD’s Athlon-64 processor datasheet
[2], whose clock frequency can range from 800MHz to
2400MHz and the corresponding supply voltage can range
from 1.1V to 1.5V 3. The communication link curve on

1Since the clock frequency, f , can be represented in terms of Vdd and

threshold voltage, Vt, as the frequency is reduced, the supply voltage can

be reduced proportionally.
2In case of a serial link, the frequency dictates the bit-rates.
3Since the AMD datasheet states only TDP (Thermal Design Power),

which is 89 W, we estimate the peak power consumption of the CPU for

our study to be approximately 50 W based on our experience.



the other hand is generated using data collected from [19],
which has a supply voltage range of 0.9V to 2.5V . The cor-
responding bit-rate range is from 650Mb/s to 5Gb/s. We can
see from this figure that frequency-power curves are con-
vex, which means that, as voltage and frequency are scaled
down, the additional energy savings gained drop quadrat-
ically. Therefore, it should be beneficial from the energy
perspective to scale voltages/frequencies of both CPU and
link in a balanced (coordinated) manner, instead of scaling
one of them aggressively.

5. Integrated CPU and Link Voltage Scaling
Algorithm

We now explain our algorithm for simultaneous volt-
age/frequency scaling for CPUs and communication links in
tree-based parallel sparse computations using the example
given in Figure 1, which is actually extracted from one of
programs we tested in our experiments. The goal of our al-
gorithm is to find an appropriate voltage levels and the cor-
responding frequency levels for CPUs and links that maxi-
mizes energy savings without impacting the overall execu-
tion time. Since our computation model is based on a tree,
we can apply one of algorithms proposed by Chen et al [4]
where only CPU voltage is scaled down to save energy. Our
algorithm starts with same approach as given in that, but it
needs to be applied carefully due to the conflicts between
the different voltage levels chosen for the communication
links. To better explain this, let us consider the communi-
cation patterns exhibited by the example computation tree
shown in Figure 1. Note that, since the leaf nodes in our
tree-based sparse computation model perform only compu-
tation, the communication starts from the nodes just above
the leaf nodes, i.e., level 2 in the tree. One notable charac-
teristic of communicating nodes is that they can be grouped
using a neighborhood concept. We use a CG (Communica-
tion Group) to represent the nodes that participate in com-
munication at any point during execution, and a CG can be
represented as follows:

[plow, phigh], (3)

where plow is the processor whose id is the smallest among
the processors in a given CG, and phigh is the processor
whose id is the largest among the processors. Additionally,
we use size(CG) to capture the number of processors in the
CG. For example, in level 2 of the tree in Figure 1, there
are three CGs (CG3, CG4, and CG5), which can be repre-
sented as [0,1], [2,3], and [4,5], respectively. The size of all
three CGs are 2 in this case. As we can see from this figure,
the size of CGs becomes larger as we move to the lower lev-
els, i.e., towards the root of tree. To see how these CGs are
mapped onto the underlying mesh topology, let us consider
the mapping between one of detected CGs, CG4 in the
level 2 of Figure 1, and the mesh topology, which is illus-
trated in Figure 4. Since we use an X-Y routing algorithm in
communicating among nodes, each CG can be mapped to a
set of rectangularly-connected nodes in the mesh topology.
Therefore, we need to adjust plow and phigh values of each

Figure 4. Map-

ping CG4 to mesh

topology.

Table 1. Example
voltage/power lev-

els.
Voltage Power

1 1

0.8 0.512

0.6 0.216

0.4 0.064

Figure 5. CGs mapped to the mesh topology.

CG using the actual processor-to-mesh topology mapping,
and this can be represented as follows:

p′low = (min(row(∀pi)), min(col(∀pi))),

p′high = (max(row(∀pi)), max(col(∀pi))), (4)

where min() and max() functions give the minimum and
maximum values of the column and row indices, respec-
tively, of all the processors in each CG. Using this equa-
tion, we can obtain CG4 mapped to the underlying mesh
topology. Initially, CG4 can be represented as [2,3]. As
illustrated in Figure 4, CG4 needs additional 4 processors
(p0, p1, p4, and p5) to communicate each other using the
X-Y routing algorithm. Since the row and column index for
p2 and p3 are (0,2) and (1,0) respectively, we can redefine
CG4 as (0,0) and (1,2) using Equation (4) given above. All
other detected CGs are marked using dashed rectangles in
Figure 5 for each level of our example tree.

In the first step of our algorithm, we build a CG-
annotated tree of the given parallel sparse matrix compu-
tation. Recall that, when we are given a tree representation
of parallel sparse matrix computation such as the one in Fig-
ure 1, we already know the particular tree nodes that reside
on the critical path of the tree. After obtaining all CGs,
we then move to determine conflict group, denoted as D in
this paper, to capture whether there is any conflict among
the CG groups that sit in the same level. We say that there
is conflict between nodes CGx and CGi if the following
condition holds true:

(D = CGi∩CGx) �= ∅ ∧ level(CGi) = level (CGx), (5)

where CGx is a CG in the critical path. In Figure 5(b),
CG1 and CG2 are in conflict because three processors,
namely p3, p4, p5, are shared by both CG1 and CG2. Note
that the root node is always in the critical path so that all
the nodes should operate under the maximum available fre-
quency, i.e., maximum voltage level supported by the archi-
tecture (see Figure 5(a)) when they work on the root node.



VS main (node) {
build CG (node);
voltage scale (node);

}

build CG (node) {
if (node is leaf) {

node.plow = node.phigh = node.processor;
CG = [node.plow, node.phigh];

}
else {

node.plow = ( min (row(∀pi ∈ CG)), min(col(∀ pi ∈ CG)) );
node.phigh = ( max (row(∀pi ∈ CG)), max(col(∀ pi ∈ CG)) );
CG = [node.plow, node.phigh];
build CG (node.left);
build CG (node.right);

}
}

voltage scale (node) {
if (node is leaf) {

// assign the lowest link power level
node.link level = MIN LINK LEVEL; return;

}
else { // node is not leaf, i.e., node has children

// determine critical node
if (node.left.total t < node.right.total t ) {

scale node = node.left; critical node = node.right;
}
else {

scale node = node.right; critical node = node.left;
}
D = CGi ∩ CGx; // CGx is the CG in critical path
// select the slowest level for both CPU and link simultaneously.
while ( (curr cpu level < MIN CPU LEVEL) &&

(curr link level < MIN LINK LEVEL) &&
(node.time < node.total t)) {

curr cpu level- -;
∀pi /∈ D curr link level- -;

}
// communication is dominant → reduce CPU voltage further
if (scale node.orig tot comm t > scale node.orig tot comp t) {

while ((curr cpu level < MIN CPU LEVEL) &&
(node.time < node.total t)) {
curr cpu level- -;

}
else { // computation is dominant → reduce link voltage further

while ((curr link level < MIN LINK LEVEL) &&
(node.time < node.total t)) {
curr link level- -;

}
}
node.cpu level = curr cpu level;
node.link level = curr link level;
// recalculate total time based on newly determined voltage
// levels and update node with the scaled voltage/frequency
voltage scale (node.left);
voltage scale (node.right);

}
}

Figure 6. Integrated CPU/link volt-
age/frequency scaling algorithm.

For level 1, we are able to reduce the voltage levels of pro-
cessors that belong to CG2, which is not in the critical path,
and do not belong to the set of conflicting processors in
CG2. In our example, we can reduce the voltage levels of
processors p6, p7, and p8. It should be mentioned that the
slack in a given node must be large enough to scale both
CPU and link voltages. Once we assign determined volt-
age levels, we then recalculate the slack at each node in the
tree. Our algorithm continues this way until all the nodes
of the tree are processed. Note that, at the leaf nodes, we
scale down all link voltage to the lowest levels because no
communication is involved at leaf nodes.

The algorithm given in Figure 6 follows the approach
explained above. Basically, our algorithm scales down a
subtree, which is not in the critical path, as a whole. The

algorithm starts by generating the CG-annotated tree by
invoking the build CG function, followed by calling the
voltage scale function. This function is invoked recur-
sively,starting from the root node. If the node currently
being processed is a leaf, our algorithm assigns the lowest
voltage levels to all the communication links in the mesh.
If the input node has a child node and one of its subtrees
has slack, we scale down both CPU and link voltages at
the same time until the point where the scaled execution
time becomes very close to the original execution time. Af-
ter scaling voltages simultaneously, if the remaining slack
is large enough to scale down either CPU or link voltages,
we further apply voltage scaling on that node. The deci-
sion on whether to scale down CPU voltage or link voltage
is made based on their contribution to the total execution
time of that node. More specifically, if the total computa-
tion time is longer than the total communication time, we
scale down the link voltage because scaling down the com-
ponent whose contribution is larger tends to consume the
observed slack more quickly. So, it is better to scale the
link voltage from the energy perspective while utilizing the
slack efficiently. On the other hand, in the case where com-
munication is dominant time consumer for the node being
processed, we scale down the CPU voltage. Our algorithm
continues in this fashion until all the nodes of the tree are
processed.

Figure 7 shows how our approach works in practice. For
illustrative purposes, we use the normalized voltage and
power numbers for both the CPU and link, which are given
in Table 1. The initial voltage/power numbers are 1/1, as
shown inside each node in Figure 7. In the first phase, we
scale down the right subtree because the left subtree is in
the critical path. Therefore, we scale the both link and
CPU voltage of all nodes in the right subtree to one level
lower, 0.8 in this example. Note that, the link voltage of
all leaf nodes are set to the lowest levels because this does
not increase execution time. In the subsequent phase, our
approach scales down the voltage/frequency of the subtree
whose root is N4 (Figure 7(b)). Lastly, the subtree rooted at
N5 can be scaled down further by using the slack present in
that subtree (Figure 7(c)).

6. Empirical Evaluation

6.1. Experimental Setup

To evaluate our approach, we implemented a simulation
platform shown in Figure 8. We first obtain trace data,
which indicate the computation weight involved at each
level of the tree, the CGs detected, and the communica-
tion patterns, from parallel sparse matrix solver. This trace
data is then fed to the energy simulator along with the CPU
and link power models. Based on the given voltage scaling
mode, which will be explained shortly, the energy simulator
generates energy and performance statistics.

To obtain the energy consumption of CPUs and network
links, we use an energy model similar to that described in
the literature [2, 19]. The default simulation parameters
used in our experiments are given in Table 2. By default,



(a) 1st phase. (b) 2nd phase. (c) 3rd phase.

Figure 7. Example application of our approach. The dashed circle is the subtree nodes being scaled

in the corresponding phase.

Figure 8. Our simulation platform.

we have 5 voltage levels for both CPU and link. We fur-
ther increase the number of voltage levels later in this paper
to see the trends in energy savings with varying number of
voltage levels.

The parallel sparse matrix solvers experimented in this
study are given in the first seven rows of Table 3. In addi-
tion to these practical solvers, we also experimented with 5
model sparse matrices, which are given in the last 5 rows
of Table 3, to study the sensitivity of our approach to the
increased problem size. The number of computing nodes
(i.e., processors) and the size of mesh network used in each
solver are given in the second and third columns of Table 3,
respectively. The fourth and fifth columns of the table show
the number of messages communicated among processors
during computation and the total data volume of the com-
municated messages, respectively. Note that, the numbers
given in these two columns are the average weight per pro-
cessor. So, the total weight is dependent on the number
of processors involved in each tree node. The last column
is the contribution of the communication time to the total
execution time. We can see from this table that the com-
munication time (correspondingly communication volume
and the number of messages) increases when more proces-
sors are involved in parallel execution. Since we use square
mesh networks, our energy simulator takes into account the
energy consumption of the CPUs and links that are actually
used.

To evaluate the effectiveness of our approach, we con-
ducted experiments with the following three schemes:

• CPU-VS: This scheme scales down only CPU volt-
ages, using the algorithm proposed by Chen et al [4].
It simply takes advantage of available computation
slacks.

Table 2. Default simulation parameters.
Parameter Value

CPU clock frequency range 800MHz ∼ 2400MHz

Number of voltage/frequency levels 5

Supply voltage range 1.1 ∼ 1.5V
Default clock frequency 2400 MHz

Frequency transition latency 1 ms

Link frequency range 130MHz ∼ 1GHz

Number of voltage/frequency levels 5

Number of multiplexing stage 5

Bitrates per link 650Mb/s ∼ 5Gb/s

Link supply voltage range 0.9 ∼ 2.5V
Active link energy consumption 10.2 pJ/bit

Idle link energy consumption 8.5 pJ/cycle

Link frequency transition latency 10µs (100 link cycles)

• LINK-VS: This scheme uses the same algorithm pro-
posed by Chen et al [4] except that it is applied to scale
down only link voltages based on the communication
slacks available. The selection of link voltage level is
made based on the algorithm explained in Section 5.

• CPU-LINK-VS: This scheme, which is the main con-
tribution of this work, scales both CPU and link volt-
ages using the algorithm given in Figure 6. If there
is enough slack, this scheme tries to scale down both
CPU and link simultaneously. When a voltage level
chosen for one CG is not the same as those of the other
CGs that share processors for communication, CPU-
LINK-VS chooses the largest voltage level among the
voltage levels of all the CGs, in an attempt to minimize
potential performance overheads.

6.2. Results

Figure 9 gives the normalized energy savings with the
three different schemes described in Section 6.1. All bars of
a given solver are normalized with respect to the execution
when no voltage/frequency scaling is applied. We can see
from this figure that the energy savings obtained from both
CPU-VS and LINK-VS are significant. Specifically, the av-
erage energy savings by CPU-VS and LINK-VS are 27%
and 23%, respectively. This shows that scaling down either
CPU or link voltage can be very effective in reducing total
energy consumption. On the other hand, the CPU-LINK-
VS scheme, which scales down CPU and link in a coordi-



Table 3. Set of parallel sparse solvers.
Solver Number of Mesh Number of Communication Percentage of

Name Processors Dimensions Messages Volume (MB) Communication Time

bmw7st1 64 8×8 24,337 406.41 50.7%

bcsstk31 28 6×6 4,645 18.36 31.3%

bcsstk35 17 5×5 6,999 43.13 22.3%

crystk02 11 4×4 2,227 7.05 9.8%

finan512 28 6×6 7,364 39.59 44.7%

nasasrb 22 5×5 2,997 10.13 6.1%

tube1 7 3×3 2,557 12.16 8.7%

205x205 3 2×2 291 0.29 0.2%

256x256 7 3×3 648 0.82 3.8%

320x320 15 4×4 1,294 2.1 22.6%

400x400 31 6×6 2,318 4.5 38.1%

500x500 63 8×8 3,172 7.1 39.1%
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Figure 9. Normalized energy consumptions

with the different schemes.

nated fashion, achieves 40% energy saving on average. This
result clearly shows that it is better to scale voltages of both
CPUs and links in an integrated manner rather than scaling
only one of them aggressively, due to the diminishing en-
ergy saving rates, already demonstrated earlier by Figure 3.
Note that, since all three schemes try to scale down the volt-
ages/frequencies of the tree nodes that are not in the critical
path, no schemes incurs any observable performance degra-
dation.

In our next set of experiments, we perform a sensitivity
analysis to see how the energy savings achieved by our ap-
proach are affected with the increase in the number of volt-
age/frequency levels supported by the underlying architec-
tures, and the number of processors. To study the effective-
ness of our approach with finer voltage levels in CPU and
links, we experiment with 5 (our default value), 9, 17, and
33 voltage levels. The intermediate voltage levels are ob-
tained by curve fitting based on the initial voltage/frequency
points. All other simulation parameters are fixed as in Ta-
ble 2. The normalized energy savings for all seven solvers
used in our experiment under the different number of volt-
age levels are given in Figure 10. As one can observe from
these graphs, the energy savings obtained saturate as we
increase the number of voltage/frequency levels. This is
an anticipated result since finer granular voltage levels give
more opportunity to scale down voltage levels, even when

we have small slacks. However, we also see that energy
savings start to saturate when the number of voltage levels
reaches 17 or so. This shows that our scheme makes use
of slacks in the tree successfully with reasonable number of
voltage/frequency levels.

In the next set of experiments, we vary the number
of processors and, correspondingly, the size of our two-
dimensional mesh topology. We used the model solver in
this experiment with five different processor sizes: 3, 7, 15,
31, and 63. The model solvers are generated by increasing
the problem size with the increased number of processors.
Recall that we do not consider the energy consumption of
the unused CPU nodes and the communication links con-
nected to them. The normalized energy consumption with
various processor sizes are given in Figure 11. We can see
from this figure that, as we increase the number of pro-
cessors, the energy savings achieved by all three schemes
decrease. The reason why the energy savings achieved by
CPU-VS decrease is that, as the number of processors in-
creases, overall execution time is dominated by commu-
nication, thereby decreasing the opportunities for scaling
down the CPU voltages. Similarly, the energy savings
achieved by LINK-VS also decrease due to the increased
network contention brought by the larger number of proces-
sors, and network topology prevents the possibility to scale
down the link voltages. Lastly, the energy savings obtained
through the CPU-LINK-VS also decreases but this scheme
gives the best energy savings for the all fives cases tested.

7. Conclusions

The main contribution of this paper is an algorithm that
scales voltages/frequencies of CPUs and communication
links in a mesh-based parallel system in a coordinated (in-
tegrated) fashion such that energy savings are maximized
and performance is not affected. To test our algorithm, we
implemented it and applied it to a set of tree-based sparse
computations. The experimental results collected are very
promising and show that integrated CPU/communication
link voltage scaling can generate much better results than
the CPU voltage scaling alone and the link voltage scaling
alone. Our results also show that the energy savings are con-
sistent with the different problem sizes and different sets of
voltage/frequency levels.
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Figure 10. Normalized energy consumptions

with the different schemes as the number of
voltage/frequency levels vary.
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