
Parallel Calculation of Volcanoes for Cryptographic Uses ∗

Santi Mart́ınez1, Rosana Tomàs2, Concepció Roig1,
Magda Valls1 and Ramiro Moreno2

1Universitat de Lleida 2Universitat de Lleida
Dept. d’Informàtica i Enginyeŕıa Industrial Dept. de Matemàtica

Jaume II, 69 25001 Lleida, Spain Jaume II, 69 25001 Lleida, Spain
{santi, roig, magda}@eps.udl.es {rosana, ramiro}@eps.udl.es

Abstract

Elliptic curve cryptosystems are nowadays widely
used in the design of many security devices. Never-
theless, since not every elliptic curve is useful for
cryptographic purposes, mechanisms for providing good
curves are highly needed. The generation of the volcano
graph of elliptic curves can help to provide such good
curves. However, this procedure turns out to be very ex-
pensive when performed sequentially. Hence, a parallel
application for the calculation of such volcano graphs
is proposed in this paper. In order to obtain high effi-
ciency, a theoretical analysis is provided for obtaining
an accurate granularity and for giving the appropriate
number of tasks to be created. Experimental results
show the benefits obtained in the speedup when exe-
cuting the application in a cluster of workstations with
message-passing for the generation of different volcano
graphs. By the use of simulation, we study the scala-
bility of the implementation and show that a speedup of
more than 80 can be achieved in some cases.

1. Introduction

Nowadays, cryptographic systems are an essential
tool to guarantee security in communications. Indeed,
there are many devices in daily use that need to in-
corporate cryptographic functionalities. Examples of
these devices are contactless cards, smart cards or de-
vices for mobile communications [3, 11]. This type of
devices must send short keys so that their reception
and authentication are fast enough. In addition, the
restrictions of memory space, capacity of computation

∗This work is supported by the project TIC2003-09188 of the
MCyT.

and bandwidth of these devices discourage the use of
long keys. Another problem that appears is the fact
that a huge number of keys are needed, since they have
to be changed frequently to prevent attackers from ob-
taining them and making fraudulent use.

Such problems can be solved using elliptic curves,
one of the peak tendencies within the field of cryptogra-
phy [1, 2, 7]. This is because cryptographic techniques
based on elliptic curves allow the use of smaller keys
(170 bits, instead of 1024 bits in conventional crypto-
graphy) to provide a similar level of security.

However, not every elliptic curve is cryptographi-
cally secure. Thus, it becomes necessary to know which
of them are appropriate for cryptographic uses and
which are not. Therefore, it would be useful to clas-
sify them according to their security and cryptographic
properties. A structure that allows the curves to be
classified in such a way is a graph called volcano [5].

Given an elliptic curve with good cryptographic
characteristics, the construction of the volcano to
which it belongs will give us new curves with the same
security properties. Nevertheless, the construction of
this structure is computationally hard [9], since the
computation of the adjacent nodes of each node in the
volcano is CPU-intensive. This fact has motivated us
to confront the parallelization of the problem.

In this paper we present the parallelization strategy
for the problem of generating volcanoes in a distributed
environment based on the message passing paradigm.
As far as we know, no parallelization of this algorithm
has ever been reported in the literature. An experi-
mentation process has been carried out both in a clus-
ter of workstations in order to evaluate the speedup
of the parallel application that has been implemented,
and also in a simulation environment to evaluate the
scalability. The results show that significant improve-
ments in the speedup are achieved in both approaches,

1-4244-0054-6/06/$20.00 ©2006 IEEE

reaching a speedup of more than 5 in the volcanoes
used in the cluster, and a speedup of more than 80 in
the volcanoes used in the simulation.

An analytical study of the application has also been
carried out to determine the parameters that affect the
granularity of the parallelization and that have crucial
influence in the performance of the execution.

The rest of the paper is structured as follows. In Sec-
tion 2, we introduce the volcano graph of elliptic curves,
as well as its properties. In Section 3, the paralleliza-
tion strategy that was followed for the generation of
the volcano graphs is presented, along with an analysis
of the application that predicts a theoretical appro-
priate number of tasks to be used. Section 4 presents
the experimentation results that were obtained when
executing the parallel application on a cluster of work-
stations and in a simulation environment. Finally, Sec-
tion 5 outlines the main conclusions.

2. Volcanoes

In this section, the structure of the volcano graph is
introduced along with its main properties [5].

Given a prime number l, an l-volcano is defined as a
graph that contains a unique cycle, called crater, and
such that (l−1) l-ary trees with the same height h hang
from each node of that cycle. The leaves of these trees
are called the floor of the l-volcano, while the rest of
the nodes of every tree configure the volcanoside. Each
node of the l-volcano, except those on the floor, has l+1
edges. The general structure of an l-volcano graph is
sketched in Figure 1.

This volcano graph can be used to represent classes
of elliptic curves on a field Fp, with p prime. An elliptic
curve consists of all the points of the form P = (x, y) ∈
Fp × Fp that satisfy an equation of the type:

y2 = x3 + ax + b, with a, b ∈ Fp

whose discriminant ∆ = −16(27b2 + 4a3) is non null.
Each elliptic curve can be located in a unique node

of its l-volcano. Then, the adjacent nodes of a given
curve correspond to their l-isogeneous curves 1 .

The cryptographic security of an elliptic curve is di-
rectly related to the number of points of the curve,
denoted by the cardinal of the curve. Since isogeneous
curves have the same cardinal, if a given curve fulfils

1An isogeny between two elliptic curves E and E′ is a ratio-
nal morphism I : E → E′ [1]. Then, an l-isogeny is an isogeny
whose kernel is an order l subgroup. Hence, two curves are called
l-isogeneous if there exist an l-isogeny between them. Moreover,
the isogenies between elliptic curves can be classified into hori-
zontal, ascending or descending. This hierarchy can be straight-
forwardly represented through the levels of the volcano graph.

Figure 1. Volcano graph.

the requirements for cryptographic security, the curves
obtained visiting the nodes of its l-volcano will have
the same properties as the original.

The structure of this volcano graph was firstly ana-
lyzed by M. Fouquet [4]. In general, the l-volcano graph
is usually flat, since while the side of the l-volcano has
few levels (i.e., the distance between a crater node and
a floor node is frequently less than 10), the crater has a
high number of nodes. In curves used in cryptographic
applications the crater can have millions of nodes.

Therefore, it would be useful to have an algorithm
that allows us to generate the l-volcano graph in order
to have a set of useful elliptic curves available. How-
ever, the sequential computation of the nodes of the
volcano turns out to be computationally hard [9], due
to the fact that visiting each neighbour node is costly.
Thus, we propose an approach that consists of pro-
viding a parallel algorithm that generates all the ellip-
tic curves of the volcano by overlapping the generation
of the different parts of the volcano graph.

3. Parallel implementation

Given a good (i.e. cryptographically secure) elliptic
curve, the process of generating the nodes of its volcano
graph consists of three main stages:

1. Find a path to the crater: The procedure ascends
from the node where the curve is located (whose
level, or distance to the floor, is not always known)
until reaching the crater of the volcano.

2. Visit all the nodes of the crater.

3. Explore the trees hanging from the crater nodes.

On the one hand, reaching the crater is a computa-
tional simple task because the height of the l-volcanoes
is usually small. On the other hand, the traversing
of the crater and the descending of the trees of its

side can imply a calculation of the order of millions
of nodes and, as a consequence, a high computational
cost. Therefore, parallelization has been carried out to
perform the second and third stages.

It is important to point out that the calculation of
the adjacent nodes from a given node is costly [9], since
obtaining each node implies the calculation of modular
square roots for l = 2 or the resolution of a polynomial
of degree l2−1

2 in the finite field Fp for l > 2.

3.1. Parallel algorithm

The parallel algorithm was developed with the mes-
sage passing interface MPI [8], in its implementation
LAM 7.1. The parallelization strategy is based on the
master-worker mechanism by exploiting a mixed func-
tional and data parallelism approach [10].

The mechanism implemented in the algorithm con-
sists of obtaining the nodes of the crater and, concur-
rently, generating the tree that hangs from each one
of these nodes. To do that, three different tasks are
defined: (a) Master task (TM) that coordinates the
global operation of the application, (b) Crater tasks
(Ti

C) that obtain the nodes of the crater and, (c) Side
tasks (Tj

S) that generate the nodes of the volcanoside.
The interaction structure of these tasks is shown in

Figure 2. Notice that, in particular, the application
consists of one master task TM , two crater tasks Ti

C

and n side tasks Tj
S . The appropriate number of Tj

S

tasks to be generated depends on the characteristics
of the volcano graph. The “a priori” choice of an ac-
curate number of tasks is crucial to obtain a properly
balanced parallelization, since it is one of the parame-
ters that affects the granularity. An analytic study of
this granularity is provided in the next subsection.

The functionality of each task is described below.

Master task (TM). It finds the first two nodes of the
crater, sends the information to be processed by the
rest of tasks and composes the whole graph from the

Figure 2. Task graph structure.

Initialize parameters ()

send (Crater info, Ti
C)

send (Side info, T
j
S)

while not crater explored

receive (pack nodes, source)

if source == Ti
C

send (crater nodes, T
j
S)

else

Store (nodes)

end if

end while

send (Finalization, Ti
C)

while T
j
S active

receive (pack nodes, T
j
S)

Store (nodes)

end while

send (Finalization, T
j
S)

End

Figure 3. Pseudocode of Master Task (TM).

nodes generated by the different tasks. The pseudocode
of task TM is shown in Figure 3.

It can be seen in the algorithm that task TM sends
the information to the crater and the side tasks so that
they can begin their calculation. Then, it enters an
iteration in which the crater nodes are received and
sent back to the side tasks so that they compute the
tree that hangs from each crater node.

Once the traversing of the crater is finished, the
master task activates the finalization of the Ti

C tasks
and continues until all the calculated nodes of the
volcanoside are gathered, in which case it activates the
finalization of the Tj

S tasks.

Crater task (Ti
C). Given two nodes calculated

by the master task, the traversing of the crater is per-
formed in two directions. Due to this fact, the creation
of only two crater tasks T1

C and T2
C is considered. It

is important to note that the calculation of each node
depends on the previous one, therefore the creation of
more crater tasks would give no benefit.

The pseudocode in Figure 4 shows that each Ti
C

calculates a configurable number of crater nodes every
time and then sends them to the master task. The
length of the package of crater nodes (P Len) is cru-
cial for the performance of the application since it de-
fines one of the factors that affects the granularity: the
minimum amount of work assigned to each side task.

Since the crater is a cycle, the process of traversing
the crater will finish when both tasks T1

C and T2
C are

intersected (i.e., they have calculated a common node).
This situation will be detected by task TM , in which
case it will activate the finalization of the Ti

C tasks.
The main function involved in this task is

receive (Crater info, TM)

while not finalization Ti
C

for n in 1 to P Len
node = Calculate new node

Add (node, pack nodes)

end for

send (pack nodes, TM)

end while

End

Figure 4. Pseudocode of Crater Task (Ti
C).

Calculate new node. This function takes as in-
put the current and previous crater nodes and outputs
the next crater node to be visited. Notice that the
current node has l adjacent non-visited nodes, one of
which is on the crater. Distinguishing the crater node
among the others is not immediate. For such a purpose
the algorithm considers l paths beginning at each of
the adjacent nodes, and visits subsequent volcanoside
nodes until reaching the floor. The length of the path
starting at the crater node will be greater than the
others. Hence, the crater node will be distinguished.

Side task (Tj
S). Each package of nodes of the

crater calculated by a crater task is sent to a side task
Tj

S , that computes the tree that hangs from each node
of the received package. Once all the trees have been
calculated, they are sent to task TM . Figure 5 shows
the pseudocode that corresponds to a Tj

S task.

Notice that the proposed parallel implementation
does not fix the number of side tasks Tj

S to be cre-
ated. The number of side tasks must be established
by the programmer depending on the characteristics of
the volcano graph. Again, an accurate tuning of this
parameter would revert on a better efficiency. Thus, in
the next subsection we carry out an analytical study
in order to find, prior the execution for each volcano,
the number of side tasks that provide an appropriate
granularity of computation versus communication that
guarantee a load balanced execution.

receive (Side info, TM)

while not finalization T
j
S

receive (crater nodes, TM)

for each node ∈ crater nodes

Build tree (node)

end for

send (trees, TM)

end while

End

Figure 5. Pseudocode of Side Task (Tj
S).

3.2. Analysis of granularity

In order to obtain better results with the parallel
application we need to appropriately adjust some pa-
rameters that affect the granularity. This granularity
may change depending on the length of the package
that the crater tasks send to the master task and on
the number of side tasks Tj

S being generated.
Because of that, the core of an efficient implemen-

tation heavily lies on finding the appropriate package
length as well as the number of side tasks which must
be established at the beginning of the execution.

Moreover, since l and h are the only parameters
of the volcano which are known a priori, the criteria
to determine the package size and the number of side
tasks should depend only on them.

Package length. A proper length of the package
should be selected attending the number of nodes that
would hang from each crater node. As it is logical,
greater number of hanging nodes would imply taking
shorter packages.

The number of hanging nodes from a crater node
is lh − 1 (see Table 1). The package length has been
selected according to the expected maximum number
of volcanoside nodes for each l value. Previous experi-
mentation suggest that a suitabe amount of nodes to
be generated for each side task should be between 106

and 107. For instance, in l = 5 the expected maximum
number of volcanoside nodes is 390624 · P Len, so ta-
king P Len = 20 the previous thresholds are satisfied.

Nevertheless, implementation issues suggest a mini-
mum and maximum value for P Len. On the one hand
a minimum of 2 nodes is considered, since package of
length 1 need some extra work to discriminate the iso-
genies of the crater. On the other hand a maximum of
200 nodes is established, because if the package length
were larger there would be more overlapping at the in-
tersection of the two crater tasks when computing the
final nodes of the crater.

Table 1. Number of nodes hanging from each
crater node.

h l = 2 l = 3 l = 5 l = 7 l = 11

3 7 26 124 342 1330
4 15 80 624 2400 14640
5 31 242 3124 16806 161050
6 63 728 15624 117648 1771560
7 127 2186 78124 823542 19487170
8 255 6560 390624 5764800 214358880

P Len 200 200 20 2 2

Number of side tasks. The goal is to create a num-
ber of side tasks N Ts in such a way that the work to
be carried out for each crater task and each side task
is load balanced.

The analysis of the computations that must be per-
formed for the generation of volcano graphs allowed
us to derive an analytical expression to calculate be-
forehand the appropriate number of side tasks to be
created, in order to obtain the maximum efficiency in
the execution. The reference computation unit is the
necessary work for the generation of the adjacent nodes
of a given node.

On the one hand, recall that, as commented before,
determining the next node in the crater implies visiting
l paths towards the floor. Hence hl nodes must be
generated at each step. Then, taking into account that
there are two crater tasks, each of them visiting c/2
crater nodes, the total amount of work assigned to each
Ti

C task is hlc/2, where c is the number of crater nodes.
On the other hand, the amount of work performed

by a side task should be evaluated. Firstly, notice that,
visiting the nodes that hang from each crater node
would imply the computation of the adjacent nodes of
lh−1 nodes. Hence, the total work would be lh−1c. So,
a balanced distribution of the computation between the
side tasks, suggests that the amount of computation to
be carried out by each Tj

S is lh−1c/N Ts.
Therefore, trying to equilibrate the amount of work

assigned to the crater and side tasks, we obtain that
the suitable number of side tasks to be created will be:

hlc/2 = lh−1c/N Ts
N Ts = 2lh−2/h.

As can be observed, the N Ts value depends only
on l and h as required, which are two parameters that
are known beforehand.

The experimentation will confirm the suitability of
this number of tasks obtained analytically.

4. Experimentation results

In this section we conducted an experimentation
process, aimed at evaluating the speedup that was
achieved when executing the parallel application of
generation of volcanoes. This has been performed in
two different environments: (a) Message-passing plat-
form with the implemented application for the specific
case of l = 2 and, (b) Simulation environment using
the modelled parallel application of calculation of vol-
canoes with greater values of l, in order to study the
scalability of the proposed approach.

In the next subsection, we show the experimentation
results that were obtained with both approaches.

4.1. Message passing platform

The system used for the executions was a cluster
with 16 nodes, where each node consisted of a 3 GHz
Pentium IV processor with 2 GB of RAM memory. The
interconnection network was a Gigabit Ethernet.

The parallel application was implemented to gene-
rate 2-volcanoes with different heights. Table 2 sum-
marizes the characteristics of the volcanoes that were
generated with the following parameters:

• Volcano height (h). Number of edges from the
crater to the floor.

• Number of nodes of the crater (N Cr).

• Total number of nodes of the volcanoside, in-
cluding the floor (N Sd).

• Sequential time (S T ime), that corresponds to the
obtained time, in minutes, when executing the ap-
plication on a single processor.

In order to evaluate the accurate number of side
tasks, different executions were done for each volcano
varying the number of side tasks Tj

S . The total num-
ber of tasks that the application had in each case cor-
responded to the number of side tasks plus three, since
there was a master task and two crater tasks. Each
execution was done assigning one task per processor.

In this case, it was chosen to use a crater package
length of two hundred nodes (as was shown on Table 1)
to provide the application with a suitable granularity
to be executed in a cluster.

Figure 6 shows the evolution of the speedup based
on the number of side tasks that were created for each
of the tested volcanoes, and the efficiency obtained.

Firstly, it can be observed that, in general, until
a certain threshold in the number of processors, the
speedup increases, and then it stabilizes. The sta-
bilization point depends on the characteristics of the
volcano, so that a greater height and a longer crater,
favour the obtaining of greater speedup.

Table 2. Description of the tested volcanoes.

Volcano name h N Cr N Sd S T ime

V three 3 27104 189728 7.489 m
V four 4 11121 166815 5.209 m
V five 5 13164 408084 9.516 m
V six 6 5457 343791 5.748 m
V seven 7 41052 5213604 60.370 m
V eight 8 788 200940 1.601 m

Figure 6. Speedup and efficiency for l = 2.

The volcano that presents higher speedup is
V seven, since it has considerable height and crater
length. It is followed by volcanoes V six to V three in
strict order of height. Nevertheless, height is not the
only determining factor of the maximum speedup; as
a counterexample we have V eight, which in spite of
being the one with the greatest height, it provides the
poorest speedup due to its unusual small crater.

We can also observe that the efficiency peak appears
close to the stabilization point of the speedup and that,
as the height of the volcano increases, the efficiency
graph smooths its slope. Thus, while in the case of
V three and V four the peak is perfectly defined and
there is a considerable slope near the efficiency peak, in
cases V six, V seven and V eight there are smoother
slopes. This is due to the fact that when the stabi-
lization point is reached at a higher number of tasks,
which happens when the height is greater, adding or
supressing a task has less influence in the efficiency.

In V eight we can appreciate a poor efficiency, due
to the fact that a too small crater (not much bigger
than the crater package size) is more vulnerable to
the overlapping problem previously commented in Sec-
tion 3.2. Nevertheless, the length of the crater is not
a factor that we can know a priori. Thus, the suitable
choice of the number of side tasks should be based on
the height of each volcano as we proposed in the ana-
lytical study of previous section.

The number of side tasks, N Ts, that provided ex-
perimentally the best results of speedup and efficiency
for each h value, was compared with the analytical
value of N Ts that was obtained before. Both values
are shown, for each height, in Table 3.

It can be observed that the analytical value is quite
accurate for heights varying from 3 to 6. For greater

heights, the number of side tasks to be generated in-
creases significantly. Thus, there are factors that in-
fluence more the execution as, contentions in commu-
nication, context switches, etc. that are not taken into
account in the analytical expression. Due to that, as it
could be expected in these cases the analytical value of
N Ts starts to differ more with the appropriate value
of N Ts obtained experimentally.

4.2. Simulation environment

The computation of the adjacent nodes in the
generation of volcano graphs, implies the calculation
of modular square roots for l = 2 or the resolution of
a polynomial of degree l2−1

2 in the finite field Fp for
l > 2. Due to this fact, different values of l need dif-
ferent implementations of the application.

Before investing such huge efforts for the future im-
plementations, it would be worth to study the scala-
bility of the application when the l value increases.
Thus, we carried out an experimentation based on si-
mulation that we present below.

The execution of each application was carried out
with the simulation framework ESPPADA [6], that
works with message passing applications. The appli-
cations to be simulated were modelled based on the
knowledge of periods of computation time of tasks and

Table 3. Analytic and experimental values of
N Ts for l = 2.

h=3 h=4 h=5 h=6 h=7 h=8
Analytic 1.33 2 3.2 5.33 9.14 16
Experimental 2 2 3 4 6 5

communication volumes to be transferred among tasks,
which can be obtained from the implementation of the
real 2-volcano application adapted to the case of vol-
canoes with different l values. The underlying system
was modelled in ESPPADA by defining a set of homo-
geneous nodes with the same characteristics of those
used in the real cluster of the previous subsection.

The volcanoes tested had an l value of 3, 5, 7 and
11, and a height h of 3, 4, 5, 6 and 7. It has to be
remarked that when the l value increases, the height
of the volcanoes becomes lower. Thus, for each l value
we have only tested heights that could be reasonably
expected. The package size to be transferred between
the crater tasks and the side tasks was established, in
each case, based on the study shown in Subsection 3.2.

The speedup results obtained from the simulation
are shown in Figure 7. Each graphic corresponds to a
different l value, and reflects the speedup behaviour for
each different h value of the volcanoes.

It can be seen in Figure 7 that when l is equal to 3,
for the heights 3, 4, 5, 6 and 7 the speedup stabilizes at
2, 4, 9, 24 and 65 side tasks respectively, therefore the
stabilization point is greater when the height is higher.
Remember that a similar phenomenon of stabilization
was also observed in the case of 2-volcanoes, so this is
consistent with the experimental results obtained.

For l = 5, the height 3 stabilizes at 3 side tasks,
heights 4 and 5 stabilize at 12 and 45 side tasks respec-
tively, and height 6 stabilizes at 200 side tasks.

For l = 7, the stabilization for height 3 was reached
at 4 side tasks, for height 4 it was reached at 24 side
tasks, and for height 5 it was reached at 135 side tasks.
This is not surprising, because not only a large height,
but also a large l provides the volcano with a large side,
that gives better parallelization results.

For l = 11, the stabilization phenomenon is also
observable for height 3, which stabilizes at 7 side tasks,
and height 4, which stabilizes at 55 side tasks.

Another fact that can be derived from the graphics is
that for larger heights and higher l values, the speedup
tends to the number of side tasks (number of processors
minus three), until some point where it stabilizes. This
is due to the fact that in these cases, the volcanoside
is so big that the crater tasks have a negligible amount
of work when compared to the side tasks.

The evolution of the speedup obtained in this simu-
lation process is coherent with the results for the case
of l = 2 that were shown in Subsection 4.1. The analy-
tical values of N Ts are close to the stabilization points
obtained for lower heights or l values, as can be seen in
Table 4. For greater heights or l values, the volcanoside
packages become larger, so the communication and sys-
tem overloads result in lower speedups, that translate

into lower stabilization points. The experimental value
of N Ts is always lower than the analytical one, be-
cause the analysis does not take into account the over-
loads mentioned before.

5. Conclusions

The construction of volcano graphs of elliptic curves
would agilize the generation of keys with safe crypto-
graphic properties, because two curves in the same vol-
cano provide equivalent levels of security.

The creation of volcanoes is an expensive computa-
tional task, since they can have several million nodes
and the calculations of the adjacent nodes of a given
node are CPU-intensive. For that reason, we propose a
parallel approach for the construction of the volcano by
exploiting a mixed, functional and data, parallelism.

From an applied point of view, determining the cor-
rect number of tasks is crucial for obtaining the best
results. Since configuring the number of tasks must be
done a priori, a theoretical analysis of the application
was done to find an expression for this value.

Experimental results are presented for the described
parallelization for the construction of 2-volcano graphs
with different heights and number of nodes. The results
have been extended for the general case of l-volcanoes
by simulation. These results confirm the study about
the correct number of tasks as a good approach.

The empirical analysis shows that for a fixed l,
height is the most influential factor in the maximum
speedup. This is because one more level of height im-
plies that the volcano has l times the number of nodes
for craters of equal length.

A speedup of more than 5 is reached in the cons-
truction of 2-volcanoes. The results obtained in the
simulation show that significant improvements in the
speedup can be reached for l-volcanoes with greater l,

Table 4. Analytic and experimental N Ts.

l=3 h=3 h=4 h=5 h=6 h=7
Analytic 2 4.5 10.8 27 69.4
Experimental 2 4 9 24 65

l=5 h=3 h=4 h=5 h=6
Analytic 3.33 12.5 50 208.3
Experimental 3 12 45 200

l=7 h=3 h=4 h=5
Analytic 4.66 24.5 137.2
Experimental 4 24 135

l=11 h=3 h=4
Analytic 7.33 60.5
Experimental 7 55

Figure 7. Speedup for l = 3, l = 5, l = 7 and l = 11.

obtaining speedups of more than 80. This confirms the
feasibility of implementing them in the future.

References

[1] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves
in Cryptography. Cambridge University Press, London
Math. Soc., LNS 265, 2000.

[2] Certicom. The elliptic curve cryptosystem for smart
cards. http://www.comms.scitech.susx.ac.uk/fft/
crypto/ECC SC.pdf, Certicom White Paper, The
seventh in a series of ECC white papers, 1998.

[3] M. W. David and K. Sakurai. Security issues for
contactless smart cards. Public Key Cryptography:
First International Workshop on Practice and Theory
in Public Key Cryptography, PKC’98, Pacifico Yoko-
hama, Japan, LNCS 1431, 1998.

[4] M. Fouquet. Anneau d’endomorphismes et cardinalité
des courbes elliptiques: aspects algorithmiques. PhD
Thesis, 2001.

[5] M. Fouquet and F. Morain. Isogeny volcanoes and the
SEA algorithm. Springer 2002, Proc. ANTS-V, LNCS
2369:276–291, 2002.

[6] F. Guirado, A. Ripoll, C. Roig, and E. Luque. Perfor-
mance prediction using an application oriented map-
ping tool. Proc. Euromicro Conf. on Parallel, Dis-
tributed and Network-based Processing, pages 184–191,
2004.

[7] J. K. Liu, V. K. Wei, C. Siu, R. L. Chan, and T. Choi.
Multi-application smart card with elliptic curve cryp-
tosystem certificate. EUROCON’2001, International
Conference on Trends in Communications, 2:381–384.

[8] Message Passing Interface Forum. MPI: A message-
passing interface standard. Journal of Supercomputer
Applications, 8(3/4), 1994.

[9] J. Miret, R. Moreno, D. Sadornil, J. Tena, and
M. Valls. An algorithm to compute volcanoes of 2-
isogenies of elliptic curves over finite fields. Applied
Mathematics and Computation, (in press), 2005.

[10] J. Subhlok and G. Vondram. Optimal use of mixed
task and data parallelism for pipelined computa-
tions. Journal of Parallel and Distributed Computing,
60:297–319, 2000.

[11] N. T. Trask and M. V. Meyerstein. Smart cards in elec-
tronic commerce. BT Technology Journal, Springer
Science, 17(3):57–66, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

