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Abstract 

 Execution of MPI applications on Clusters and Grid 
deployments suffers from node and network failure that 
motivates the use of fault tolerant MPI implementations. 
Two category techniques have been introduced to make 
these systems fault-tolerant. The first one is checkpoint-
based technique and the other one is called log-based 
recovery protocol. Sender-based pessimistic logging which 
falls in the second category is harnessing from huge 
amount of messages payloads which must be kept in 
volatile memory. In this paper we present a Coordinated 
Checkpoint from Message Payload (CCMP) to reduce the 
aforementioned overhead. The proposed method was 
examined by MPICH-V2, a public domain platform 
implementing pessimistic logging with uncoordinated 
checkpoint. Experimental results demonstrated the 
reduction of run-time for NPB benchmarks in both fault-
free and faulty environments. 

1. Introduction 

Recently, as the technologies of processors and 
networks have rapidly been developed, message passing 
systems consisting of networked computers can provide 
supercomputer like performance parallel and distributed 
computing environments. However, as the systems scale 
up, their failure probability may also be higher.  

Especially, if long running applications are executed on 
the systems, the failure probability becomes significant. 
Thus, the systems require techniques for supporting fault-
tolerance. 

Checkpointing and message logging are well-known 
techniques to build fault-tolerant systems [1]. For 

consistent recovery from a failure, the checkpointing 
technique saves the intermediate states of the application 
into the stable storage that survives the failure, and the 
message logging technique saves the messages each 
process has received into the stable storage. After a failure 
occurs, a process can restore the checkpointed state and 
regenerate the same computational states with the logged 
messages. Employing the message logging with periodic 
checkpointing in distributed systems, the relatively high 
coordination overhead of the methods relying only on 
checkpointing can be overcome. Message logging 
protocols are classified into three categories: pessimistic, 
optimistic and causal. Although pessimistic method results 
in high failure-free overhead compared with other 
approaches because it logs all the messages received before 
it sends a message but pessimistic message logging 
approach [9] simplifies recovery procedure of each process 
in contrast with others. 

All the log-based recovery protocols need to store the 
payloads of the messages exchanged between distributed 
processes for the recovery purposes. The sender-based 
method is a low-overhead approach in which each sender 
saves the payloads of the messages in it's volatile memory. 
But storing these data in the memory may cause a kind of 
congestion and low-performance when using 
uncoordinated checkpoint in message logging techniques.  

In this paper we present a new method to decrease the 
overhead caused by sender-based approach in pessimistic 
logging. Our method performs a coordinated checkpoint 
from the payloads of messages which are stored in volatile 
memory. At the same time the payloads of messages get 
flushed to the stable storage that causes a reduction in the 
execution time. In the rest of this paper, in Section 2, we 
will look at some essential concepts of message logging. 
Next in Section 3, we introduce our method and finally in 
Section 4, we demonstrate the performance improvements 
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of MPI programs in faulty and fault-free environments. 
Finally, in Section 5 we conclude this study. 

2. Background 

The important part of a message logging protocol is to 
keep the payload of the messages somewhere in the system 
to have them available at the recovery time. Storing these 
messages can take place in either receiver or sender side, in 
the volatile memory or stable storage. In this section we 
briefly describe various log-based recovery protocols and 
two important techniques of storing message payloads. 

2.1. Log-Based Rollback-Recovery Protocols 

As opposed to checkpoint-based rollback recovery, log-
based rollback-recovery makes explicit use of the fact that 
a process execution can be modeled as a sequence of 
deterministic state intervals, each starting with the 
execution of a nondeterministic event [4]. Such an event 
can be the receipt of a message from another process or an 
event internal to the process. Sending a message, however, 
is not a nondeterministic event.  

Log-based rollback-recovery assumes that all 
nondeterministic events can be identified and their 
corresponding determinants can be logged to stable storage 
[9]. During failure-free operation, each process logs the 
determinants of all the nondeterministic events that it 
observes onto stable storage. Additionally, each process 
also takes checkpoints to reduce the extent of rollback 
during recovery. After a failure occurs, the failed processes 
recover by using the checkpoints and logged determinants 
to replay the corresponding nondeterministic events 
precisely as they occurred during the pre-failure execution. 
Because execution within each deterministic interval 
depends only on the sequence of nondeterministic events 
that preceded the interval’s beginning, the pre failure 
execution of a failed process can be reconstructed during 
recovery up to the first nondeterministic event whose 
determinant is not logged. 

Log-based rollback-recovery protocols guarantee that 
upon recovery of all failed processes, the system does not 
contain any orphan process, that is, a process whose state 
depends on a nondeterministic event that cannot be 
reproduced during recovery. The way in which a specific 
protocol implements this condition affects the protocol’s 
failure-free performance overhead, latency of output 
commit, and simplicity of recovery and garbage collection, 
as well as its potential for rolling back correct processes. 
There are three flavors of these protocols: 

• Pessimistic log-based rollback-recovery protocols   
guarantee that orphans are never created due to a failure. 
These protocols simplify recovery, garbage collection and 
output commit, at the expense of higher failure-free 
performance overhead. 

• Optimistic log-based rollback-recovery protocols reduce 
the failure-free performance overhead, but allow orphans 
to be created due to failures. The possibility of having 
orphans complicates recovery, garbage collection and 
output commit.  

• Causal log-based rollback-recovery protocols attempt to 
combine the advantages of low performance overhead and 
fast output commit, but they may require complex recovery 
and garbage collection. 

2.2. Receiver-Based Message Logging 

 With Receiver-Based Message Logging (RBML) [5], 
the processes participating in a distributed computation log 
on stable storage the messages that they receive during 
failure-free operation.  

During recovery from a failure, a process restarts from a 
previous checkpoint and replays the messages in the log to 
restore the execution to a state that occurred before the 
failure. As with all message logging protocols, process 
execution must be deterministic in order for message 
replay to restore a process to the same state as before the 
failure. Several techniques exist for recovery, all based on 
computing the maximum recoverable state using the 
checkpoints and message logs available on stable storage 
[2, 8]. 

2.3. Sender-Based Message Logging 

 The Sender-Based Message Logging (SBML) [6] 
protocol keeps the contents of the message in the volatile 
memory of sender. The receiver sends the dependency 
information to stable storage. In recovery time after the 
process born again from its recent checkpoint, it wants 
from reliable media to send it the determinants and 
according to them, it requests the other processes to resend 
the payload of desired messages. 

3. Motivation and Design 

Sender-based logging is considered more efficient than 
receiver-based logging because the copying can take place 
after sending the message over the network [9]. 
Additionally, the system may combine the logging of 
messages with the implementation of the communication 
protocol and share the message log with the transmission 
buffers. This scheme avoids the extra copying of the 
message. Logging at the receiver is more expensive 
because it is in the critical path of the communication 
protocol. 

Although SBML is the best method in storing the 
messages in log-based recovery protocols, it suffers from 
some considerable limitations. Since the payloads are 
stored in the volatile memory, so this method can tolerate 
only one fault at a time [2], because, occurring more than 



one fault would clear the payloads which are needy for 
troubled processes. Another problem with this protocol is 
the amount of space consumed to keep these data in the 
volatile memory. 

In pessimistic sender-based message logging protocol 
the above-mentioned flaws bothers more [7]. In this 
protocol, a crashed process resumes its activity from 
checkpoint file that was taken by an uncoordinated 
checkpoint protocol. In addition to checkpointing the 
context of the running process in an uncoordinated 
checkpoint protocol, the whole message payloads must be 
stored because this information would be useful for other 
crashed processes to recover from failure. But these 
savings have their price, imposing a high overhead to run-
time. Also occurring simultaneous faults in this 
environment may cause too much recovery time. Figure 1 
depicts usage of uncoordinated checkpoint protocol in 
pessimistic sender-based logging. In this figure, each 
checkpoint file contains the entire process information plus 
message payloads. 

Figure 1- SBML with Uncoordinated Checkpoint 

To alleviate these problems in the pessimistic sender-
based protocol, we proposed an extension to sender-based 
message logging in which we use a coordinated checkpoint 
protocol to flush the payloads of all processes to the stable 
storage. In the time interval of two consecutive checkpoints 
the messages are kept in the sender's volatile memory 
based on traditional sender-based method. By this, the 
Coordinated Checkpoint from Message Payloads (CCMP) 
can release the uncoordinated checkpoint server from 
payloads savings which results in run-time reduction. In 
the meantime, flushing payloads to checkpoint files also 
releases a huge amount of volatile memory occupied by 
traditional sender-based message logging. Besides, 
simultaneous faults can be recovered faster, applying the 
CCMP protocol. 

3.1. The CCMP protocol 

In this protocol, each running process sends the whole 
messages stored in volatile memory between two 
consecutive checkpoints to the stable storage and flushes 
the memory too. Checkpointing from payloads is triggered 
by a checkpoint request from a scheduler.  This scheduler 
sends the request to all processes in the same time intervals 

to perform the coordinated checkpoint. Figure 2 
demonstrates the CCMP protocol in which the Message 
Payload Checkpoint (MPC) files contain the messages 
stored in the processes’ Volatile Memory (VM). These 
checkpoint files are gathered by a checkpoint server which 
is supposed to be run on reliable media. 

Figure 2- CCMP Protocol Description 

Now, if a crash occurs, the crashed node tries to recover 
by its last checkpoint file and then requests the dependency 
information from the stable storage. According to the 
dependency information, other processes would provide 
the crashed node with the desired messages as it can be 
seen in Figure 3. In this phase all other processes would 
resend the needy messages from their volatile memory, if 
exists, or from their MPC files if the messages got flushed 
to the checkpoint server. To avoid garbage messages to be 
fetched from MPC files, we must specify the latest 
complete uncoordinated checkpoint from the process 
context. It means when a process finishes an uncoordinated 
checkpoint, it notifies all other processes. So other 
processes will know which MPC files are needed. 

Figure 3- Re-execution Phase in CCMP  

4. Performance Evaluation 

To test our proposed method (CCMP) some standard 
benchmarks were run on a cluster platform containing 32 
processors under Linux 2.4.29 and using MPICH-V2 tool 
from LRI [10]. Each node is equipped with a Pentium III 
processor and 256 MB RAM, including 20 GB hard disk. 



The cluster has been used in dedicated mode to ensure a 
fair comparison between different implementations.  

4.1. Overview of the MPICH-V2 Architecture 

MPICH-V2 implements the pessimistic sender-based 
protocol on top of MPICH 1.2.5, using a dispatcher, a 
checkpoint scheduler, some event loggers, checkpoint 
servers, computing nodes and their communication 
daemons. Figure 4 presents a typical setup of a running 
MPICH-V2 system, where the dispatcher, the event logger 
and the checkpoint scheduler seat on the same computer.  

The sender based pessimistic message logging protocol 
of MPICH-V2 assumes that the logging of messages is 
split in two parts. One part uses a sender based logging 
method storing the messages payload on a non reliable 
media. The other part (the event logger) is used to store 
dependency information associated to these messages and 
must be run on a reliable system. 

Figure 4- MPICH-V2 Architecture [10] 

Each process increments a local logical clock when it 
sends or receives a message. The message payload logging 
system is integrated into the communication daemon 
located on the computing node. Every time a message is 
sent to a computing node, it is stored locally in a list for 
further usages (sender based). Moreover the value of the 
sender logical clock is stored with the message copy. 

The event logger is a repository executed on a reliable 
component of the system. It stores and delivers dependency 
information about messages exchanged by the computing 
nodes. The dependency information is composed of four 
fields associated to every received message: (sender’s 
identity; sender’s logical clock at emission; receiver’s 
logical clock at delivery; number of probes since last 
delivery). 

This information is collected during receptions of 
messages and sent synchronously to the event logger. 
However, this information must be sent and acknowledged 
by the event logger before the node can modify the state of 
another MPI process by performing a send action. In order 
to implement this, the communication daemon does not 

send messages before the event logger has acknowledged 
the reception of the preceding reception events. 

We have modified the MPICH-V2 tool by adding one 
checkpoint server and one checkpoint scheduler to perform 
the coordinated checkpoint from message payloads. As it 
can be seen in Figure 5, these two processes communicate 
with the communication daemon. It should be noted that all 
the message payloads of two consecutive checkpoints are 
stored on the communication daemon. 

Figure 5- Implementation of CCMP Protocol in 
MPICH-V2 

4.2. Fault-free Execution 

In order to examine the performance of CCMP protocol 
on a wide set of well established and optimized MPI 
programs, NAS Parallel Benchmark ([3]) NPB 2.3 was 
used. In this regard, we ran each benchmark in two 
different environments. First environment was the sender-
based pessimistic logging with uncoordinated checkpoint 
(which MPICH-V2 implements it) and the second 
environment was CCMP protocol in pessimistic message 
logging with uncoordinated checkpoint. 

The results of our benchmarking are illustrated in  
Figure 6. As it can be seen, this figure reveals that the run-
time of CCMP method for small benchmarks (i.e., IS, CG, 
MG, and EP) is more than the traditional sender-based 
method. But for large benchmarks the CCMP protocol can 
obtain better result to reduce the execution time and this is 
due to activation of uncoordinated checkpoint. Therefore, 
applying CCMP protocol, on the contrary of traditional 
sender-based method, we are not required to save the 
messages along with process context. This means that we 
have a big saving in the run-time, and the improvement is 
something between 5% and 10%.   



SP, Class A

720

730

740

750

760

770

780

790

Four Processors

T
im

e
(s

e
c
)

IS, Class A

20

21

22

23

24

25

26

27

Four Processors

T
im

e
(s

e
c
)

MG, Class A

16

16.5

17

17.5

18

18.5

19

Four Processors

T
im

e
(s

e
c
)

EP, Class A

75.05

75.1

75.15

75.2

75.25

75.3

75.35

75.4

75.45

Four Processors

T
im

e
(s

e
c
)

CG, Class A

0

5

10

15

20

25

Four Processors

T
im

e
(s

e
c

)

BT, Class A

880

900

920

940

960

980

1000

Four Processors

T
im

e
(s

e
c
)

LU, Class A

0

200

400

600

800

1000

1200

Four Processors

T
im

e
(s

e
c
)

IS, Class B

93

93.5

94

94.5

95

95.5

96

96.5

Eight Processors

T
im

e
(s

e
c
)

EP, Class B

150.6

150.605

150.61

150.615

150.62

150.625

150.63

150.635

Eight Processors

T
im

e
(s

e
c
)

MG, Class B

0

20

40

60

80

100

Eight Processors

T
im

e
(s

e
c
)

LU, Class B

1195

1200

1205

1210

1215

1220

1225

1230

Eight Processors

T
im

e
(s

e
c
) SBML with uncoordinated ckp

SBML with CCMP

Figure 6- NPB Benchmark Results 

4.3. Faulty Execution 

The next evaluation is measuring the performance 
degradation of the BT and SP benchmarks when fault 
occurs during the execution. Figure 7 presents the 
execution time of BT and SP for the class A dataset size 
using 4 computing nodes. The test is done for the both 
situation, the CCMP and the traditional sender-based 
methods. We simulate faults by sending a termination 
signal to a randomly selected MPI process. The execution 
resumes immediately from the checkpoint file provided by 
the uncoordinated checkpoint server. If no checkpoint file 
is available, the MPI process restarts the execution from 
the beginning. In the traditional sender-based environment 
each crashed process must fetch its checkpointed messages 
payloads from the uncoordinated checkpoint server after 
it’s born from the last checkpoint and other processes 
resend their previous messages from the volatile memory. 
But in the CCMP method the crashed process only requests 

the others to resend the messages saved in the MPC files or 
volatile memory (if exists). It should be noted that on the 
contrary of previous method we do not need to fetch any 
messages to the volatile memory. 

However, as illustrated in the Figure 7, the average time 
of recovery is much better in our approach and can recover 
the crashed process faster. 

5. Conclusions 

We proposed a coordinated checkpoint method from 
message payloads for the pessimistic logging. In our 
method we tried to take coordinated checkpoint from the 
stored messages payloads in the volatile memory and flush 
them to stable storage. 

The experimental results of NAS benchmarks on the 
MPICH-V2 platform showed that CCMP protocol can 
reduce the run-time in contrast with sender-based 
pessimistic logging in fault-free and faulty modes. This 



improvement is due to the time consumption of the 
uncoordinated checkpoint in traditional sender-based 
method to save the messages payloads along with the 
context of the process. 

Consistency between uncoordinated and coordinated 
checkpointing and applying different policies to each 
scheduler can be considered as a future work for this 
project. 
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