
Parallel implementation and performance characterization of
MUSCLE

Xi Deng1, Eric Li2, Jiulong Shan2, Wenguang Chen1

1Tsinghua University 2Intel China Research Center Ltd.
Dept. of Computer Science 9/F, Raycom Infotech Park A, Zhong Guan Cun

Beijing, 100084 China Beijing, 100080 China
dengx03@mails.tsinghua.edu.cn eric.q.li@intel.com

cwg@tsinghua.edu.cn jiulong.shan@intel.com

Abstract

Multiple sequence alignment is a fundamental and
very computationally intensive task in molecular biol-
ogy. MUSCLE, a new algorithm for creating multi-
ple alignments of protein sequences, achieves a high-
est rank in accuracy and the fastest speed compared to
ClustalW as well as T-Coffee, some widely used tools in
multiple sequence alignment. To further accelerate the
computations, we present the parallel implementation
of MUSCLE in this paper. It is decomposed into several
independent modules, which are parallelized with differ-
ent OpenMP paradigms. We also conduct detailed per-
formance characterization on symmetric multiple pro-
cessor systems. The experiments show that MUSCLE
scales well with the increase of processors, and achieves
up to 15.x speedup on 16-way shared memory multiple
processor system.

1. Introduction

Multiple sequence alignment is a fundamental
and challenging problem in computational molecular
biology [1, 3, 11]. It can be used to find conserved
regions in biomolecular sequences, predict the protein
structure, and help constructing phylogenetic tree,
etc. In theory, multiple sequence alignments can be
extended from pairwise sequence alignment, where
each pair of sequences gets a score through pairwise
alignment, and maximizing the sum of all the pairwise
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alignment scores will derive the optimal multiple se-
quence alignments. However, optimizing the multiple
alignment score is a NP-complete problem [10] and
even dynamic programming needs a time and space
complexity O(LN ) for N sequences with length L.
Currently many ongoing multiple sequence alignment
practices involve tens to hundreds of sequences,
which is unimaginable for exhaustive sequence pairing
in a reasonable time scale. To overcome the huge
computational requirements, heuristic strategies like
progressive alignment and iterative alignment are
widely adopted in practice, e.g., CLUSTALW [9],
T-Coffee [2], etc.

MUSCLE [6] is a new multiple sequence alignment
algorithm, it creates alignments with higher accuracy,
as well as much faster speed over its predecessors. To
make the algorithm more efficient, the latest version
of MUSCLE incorporates another sequence aligner
- PROBCONS [4], a co-winner of ISMB2004 Best
Paper together with MUSCLE, to take advantage of
its high alignment accuracy. Though applying a lot
of heuristic alignment techniques, MUSCLE suffers
from the huge computational intensity, for instance,
it takes almost several hours to align 300 sequences
with average length of 300 on a commodity PC. The
availability of large data sets, typically consisting of
thousands of sequences, poses even more challenges
in both of the space and execution time. Therefore,
parallelization of MUSCLE is particularly important
and critical to meet the requirement.

In this paper, we parallelize MUSCLE and char-
acterize its performance on shared memory multiple
processor system. The algorithm is firstly broken
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into several independent modules, to clearly express
the detailed breakdown and discover the parallel
opportunities among these modules. After identifying
the concurrency in the whole application as well
as in each module, we use OpenMP, a widely used
shared memory parallel language, to parallelize the
application. The parallel version of MUSCLE makes
the algorithm more powerful for handling larger data
sets with thousands of sequences, which covers most
size range of current multiple sequence alignments.
Particularly, it is the first time for parallelized multiple
sequence aligner, MUSCLE, to make large protein
data set alignment realizable in a short time scale.

The rest of this paper is organized as follows. Sec-
tion 2 gives an overview of the MUSCLE algorithm.
Section 3 presents the application’s optimization
and parallelization schemes. Section 4 studies the
scalability performance of parallel MUSCLE and
workload characterizations on shared memory system.
Conclusions of the work are presented in Section 5.

2. Algorithm Description

The basic idea of MUSCLE follows the traditional
progressive alignment method, to progressively merge
two multiple sequence alignments into one. The
whole procedure can be described in three steps: (1)
calculate the distances between each pair of sequences;
(2) use neighbor-joining method [7] and the calculated
distances to construct a guide bifurcating tree of
which the leaves represent the real sequences; (3)
combine the alignments for each pair of leaves and
store the result to their father node in the guide
tree. This is a repetitive process, where the internal
nodes’ alignments are merged iteratively into their fa-
ther node until the root node’s alignment is completed.

In practice, MUSCLE uses two-round implemen-
tation of progressive alignment. The first round is a
basic alignment, the result of which will be used in the
second round alignment for refinement. It has three
steps, the first one uses k-mer distance to determine
the fractional identity between two sequences. Here
k-mer stands for a contiguous subsequence of length
k. K-mer distance computation takes a relatively
low computation, with a time complexity O(L). In
the second step, a binary guide tree is constructed
through clustering the given distance matrix, where
the UPGMA method [8] is applied to assign the dis-
tances to a new cluster in building the guide tree. In
the last step, the alignment on each node is scored by

a log-expectation function [6] and the final alignment
maximizes the score with this function. After the
three steps, the alignment results will be used as the
input in the second round computation.

The second round alignment also follows the three
steps of the progressive alignment; however, there is a
noticeable difference in the distance computing step.
Unlike the simple k-mer distance in the first round
alignment, the second round alignment uses a more
complex and hence more accurate scheme to generate
the distance matrix. Since the distance computation
mainly comes from the PROBCONS algorithm, we
name it PROBCONS distance in accordance with
k-mer distance. PROBCONS distance first calculates
posterior probability matrices. Given m sequences,
S = {s(1), . . . , s(m)}. For each pair of sequences
x, y ∈ S and all i ∈ {1, . . . , |x|}, j ∈ {1, . . . , |y|}, com-
pute the matrix Pxy, where equation is the probability
that xi and yj are paired in a∗, the alignment of x
and y is closest to the ”true” biological alignment.
PROBCONS distance uses a pair-HMM model to
simulate the alignment process [4], thereby, these
posterior probability matrices are calculated with a
modification of the Forward and Backward algorithms
for computing posterior probabilities in pair-HMMs as
described in Durbin et al. [5].

In practice, the alignment obtained in the first
round is used to simplify the matrices computation
given the condition that the probability matrices
contain a lot of redundant information. There are a
lot of heuristics to simplify the computation, e.g., the
first letter of sequence X cannot align with the last
letter of sequence Y , and their joint probability is zero.
MUSCLE defines a possible align area for each letter
after the first-round alignment. For every position i
in matrix P , MUSCLE only calculates Pij where j
belongs to the possible align area of i. Figure 1 depicts
the selection process of possible align area for every
position i. Since the align area is much shorter than
the whole sequence length, we can substantially save
the matrices computation time.

After defining the alignment search area, a proba-
bilistic consistency transformation is further applied to
the probability matrices, which incorporates similarity
of x and y to other sequences from S into the x-y
pairwise comparison:

Pxy ← 1
|S|

∑

Z∈S

PxzPzy

To minimize its complexity, PROBCONS distance



Figure 1. The alignment of sequence X and
Y obtained in first round. Assume Mi is the
alignment position in sequence Y for posi-
tion i in sequence X. We define [Mi−k,Mi+k]
as the possible align area for i, where k is a
constant and the typical value is 5.

computation step transforms the matrices into sparse
matrices by discarding very small value and reduces
the time complexity from O(L3) to O(cL) where
c is the average number of non-zero elements per
row. Moreover, it also defines the expected accu-
racy of a pairwise alignment a between x and y to
be the expected number of correctly aligned pairs
of letters, divided by the length of the shorter sequence:

E(a) =
1

min{|x|, |y|}
∑

xi∼yj∈a

P (xi ∼ yj ∈ a∗|x, y)

For each pair of sequences x, y ∈ S, compute the
alignment axy that maximizes expected accuracy by
dynamic programming, and define the distance of
sequence x, y = E(axy). After the distance refinement,
the following steps in the second round progressive
alignment are similar to the first round computation,
constructing a guide bifurcating tree and combining
the alignments for each pair of leaves to update the
guide tree.

3. Optimization and Parallelization of
MUSCLE

In this section, We describe the strategy of serial
optimization and parallelization of MUSCLE. Before
that, the MUSCLE program is decomposed into mod-
ules and the time distribution of modules is presented.

3.1. Serial MUSCLE Performance

According to previous descriptions in Section 2,
MUSCLE is a two round implementation of progressive
alignment. The second round includes two primary
modules: Probability Matrices Computation (PMC)
and Consistency Transformation (CT). The former
one calculates posterior probability matrices for every
pair of sequences, while the latter one modifies the
probability matrices through consistency transforma-
tion. In the following sections, we will focus on the
first round alignment (FRA) and these two modules.

Figure 2 shows the time distribution of all modules
with different datasets. We can easily observe that
CT is the most time consuming module. With the
increasing size of dataset, the portion of module CT
increases dramatically, while that of module FRA
remains flat and takes only a small percentage. The
algorithmic complexity of PMC and CT are O(N2)
and O(N3), respectively, where N represents the
number of biological sequences. This result matches
well with the time breakdown in Figure 2.

Figure 2. Time breakdown for dataset with
size 50, 100 and 150.

3.2. Serial Optimization

In the real implementation, MUSCLE uses STL
vector extensively as its primary data structure. Par-
ticularly, in module PMC, the distance computation
uses one vector for each node pairs, i.e., a large buffer
is allocated and initialized within each loop. These
frequent new and delete operations severely degrade
the performance and the initialization of the “new
vector” operation is expensive.



Furthermore, STL containers have their own mem-
ory management policies. For vector, when overflow
occurs, it will reallocate a new buffer, copy the existing
data to it and delete the current one. This operation
will cause memory contentions for multi-threaded
applications and lead to worse scalability performance.

In our approach, we replace those vectors with some
large pre-allocated buffers. Therefore, the frequent
new and delete operations can be eliminated and the
memory contentions can also be lessened. At the same
time, by reusing those pre-allocated buffers, we can
significantly improve the cache locality performance,
and benefit a lot from the hardware prefetching
technique in Intel’s Pentium-4 processor.

Table 1 shows the run time comparison between the
PMC module before and after vector replacement. Af-
ter the optimization, we achieve 1.2x to 2x speedup in
the serial and parallel version, respectively. The ben-
efits of reduced memory contentions and better space
locality lead to the higher speedup for the parallel ver-
sion.

module PMC 1 Proc 2 Procs 4 Procs
Original 73.2s 45.0s 37.0s
Optimized 61.1s 34.3s 19.8s

Table 1. Run time of module PMC before and
after optimization

3.3. Parallel Implementation

As aforementioned, most of the running time are
spent on the three modules (FRA, PMC and CT).
Since there are no tight dependencies among these
modules, we can only perform parallelization inside
each module. Therefore, parallelization of MUSCLE
becomes a problem of how to efficiently parallelize
these small modules since the underlying algorithm
does not allow higher level concurrency.

FRA Module FRA performs the first round align-
ment. With the guide tree, MUSCLE aligns sequences
bottom-up, from leaves to root. This implicates a
dependency between a parent node and its children
nodes, that each node can be aligned only if its children
nodes have already been aligned. This dependency
prevents us from fully parallelizing the codes, and gets
very little benefit from parallelization. However, the
alignments can be considered as a queue of tasks. Once
all the alignment tasks of children nodes have been

finished, the alignment task of the corresponding par-
ent node is enabled and can be distributed. The tasks
of all the enabled nodes don’t have any dependencies
with each other and can be executed in parallel. In
implementation, Intel’s workqueuing model [12] is used.

PMC and CT Module PMC and CT, which corre-
spond to distance computing steps in the second round
alignment, are the most computation intensive parts.
Through detailed program profiling, we find that most
of the operations are conducted over each pair of se-
quences, and the pseudo-code is listed below:

for(i = 0; i < seqnum; + + i)
for(j = i + 1; j < seqnum; + + j)

DoAction();

The best way to parallelize these two modules is to
assign every processor with the same amount of com-
putations on node pairs. However, the two layer loop
prevents us from doing that directly. Since the size of
inner loop depends on the outer iteration variable and
leads to different amount of works, the simple “parallel
for” directive will incur severe load imbalance even we
use dynamic scheduling policy. Alternatively, we also
employ the Intel workqueuing model to parallelize this
module, where the taskq and task directive are served
to dynamically dispatch the node pair computations to
the corresponding processors.

4. Experiment Results and Analysis

The performance measurement of parallel MUSCLE
is conducted on a 16-way Intel Xeon shared-memory
multiprocessor system. It has 16 x86 processors
running at 3.0GHz, 4 levels of cache with each 4MB
L4 cache shared amongst 4 CPUs. The sizes of the L1,
L2 and L3 caches are 8K, 512K and 4MB respectively.
As for the interconnect, the system uses two 4x4
crossbars. We use Intel 8.0 C++ OpenMP compiler
tool chain to generate the executables with options
-O3 -ipo -openmp, to enable the high levels of compiler
optimizations.

The experimental protein sequences data are part
of UniProt/Swiss-Prot [15] and are downloaded from
EMBL-EBI [13]. Three typical datasets are chosen,
which contain 50, 100 and 150 sequences respectively
with average length about 330.

To characterize the parallel performance and un-
derstand the scalability limiting factors, we investigate
the application in different aspects, from the high
level general parallel overheads, e.g., synchronizations



penalties, load imbalance, and sequential sections, to
the detailed memory hierarchy behavior, including
cache miss rates and FSB (Front Side Bus) bandwidth.

4.1. Application Profiling

To study MUSCLE’s scalability on systems with
multiple processors, we profile some general archi-
tecture independent metrics with Intel Vtune thread
profiler [14]. As shown in table 2. MUSCLE displays
very low imbalance, barrier, locks and synchronization,
and is very promising to scale up on system with
more processors. However, on system with more than
32 processors, sequential execution time’s ratio may
adversely impact the scaling performance, according
to Amdahl’s Law. On the other hand, with the
increase of the data set, the influence of the sequential
execution time will drop down and ease this problem.

4.2. Performance characterization

In this section, the performance characterization
data collected by Intel Vtune Performance Analyzer
[14] are presented. Since different modules have differ-
ent characteristics, we will examine the performance
of these modules separately. Dataset 100 is chosen for
the characterization.

Cache Miss

Figure 3 shows the local cache miss rates for
the whole cache hierarchy on the 16-way system.
Compared to module CT, module PMC has higher
L2 and L3 cache miss rates. The higher cache miss
rate mainly comes from the incontinuous data access
pattern in PMC. Typically, the penalty of L3 cache
miss costs several hundreds of cycles to fetch the
data from the main memory. The last level cache
misses directly affect the overall performance, not only
in the serial performance but also shows a negative
scalability penalty on multi-processor system since
all the processors may only share a single bus in the
commodity SMP system.

To further study the influence of high L3 cache miss
rate, we analyze the program’s performance on another
4-way Intel Xeon system with a smaller 2MB L3 cache
and no combined L4 cache. Figure 4 shows the cache
miss rates on the 4-way system. The L1 and L2 cache
misses are almost the same for these two systems.
The noticeable difference comes from the L3 cache

Figure 3. Cache miss rate on 16-way system.

miss rate, where L3 cache misses nearly doubles on
the 4-way system. The extreme high L3 cache misses
incur tremendous memory traffics and conflicts on the
shared bus, and eventually results in high memory
access latencies and poor scalability performance for
module PMC on the 4-way system. However, on the
16-way system, there are totally 4 clusters of proces-
sors, and 4 processors share a large 32M combined L4
cache. The dedicated architecture provides 4x band-
width and effectively reduces the cost of L3 cache miss.

Figure 4. Cache miss rate on 4-way system.

Bandwidth Usage and Memory Latency

Figure 5 shows the bus bandwidth utilization rate
with different processor number on the two SMP
systems. Generally speaking, memory bandwidth is
a key factor which may limit the speedup on multi
processors, especially for the shared-bus SMP system.
On the 16-way system, the memory bandwidth goes
up steadily to 4 processors, and keeps almost constant
from 4 to 16 processors. As a result, the bandwidth
requirement is far from saturation (3.2GB/s× 4) even
with 16 processors. Similarly, in Figure 6, the memory
latency on 16-way system remains flat with different
processors. In another aspect, it also confirms that



Procs. Number Parallel Sequential Imbalance Barrier Lock Sync
2 98.8% 1.2% 0.003% 0 0 0
4 98.4% 1.6% 0.02% 0 0 0
8 96.8% 3.1% 0.1% 0 0 0
16 94.6% 5.1% 0.3% 0 0 0

Table 2. Statistics of thread profiles

the bandwidth is not saturated on the 16-way system.

Figure 5. Memory bandwidth usage

Figure 6. Memory latency

For module PMC on 4-way system, the memory
bandwidth curve diverges on 4 processors. The 56%
bandwidth utilization rate almost reaches the peak
bandwidth which the Pentium-4 system could provide.
The extensive memory accesses and bus contentions
in turn increase the memory load latency, which is
another important indicator of memory wall effect.
In Figure 6, module PMC’s memory load latency in-
creases sharply from 600 cycles on single-processor to
900 cycles on 4-way system, which directly leads to the
poor scalability performance of module PMC on 4-way

system.

4.3. Scalability Performance

Figure 7 depicts the overall speedups on 16-way
system. We measure the speedup for all three datasets
as well as three modules of dataset 100. For the
smaller data set, e.g., dataset 50, the speedup curve
goes up linearly on 2, 4, and 8 processors, but starts
to deteriorate when all the 16 processors are used.
The showdown on more processors indicates that the
granularity of the work assigned to each processor
decreases. With the increase of data set, we get much
better speedup curves.

Figure 7. Scalability performance on 16-way
system



Sprinkling into the modules, we find FRA, the small-
est module, does not scales at all when more than 4 pro-
cessors are used, the reason of which can be attributed
to the strong data dependency among the tree struc-
ture and the overhead of OMP task queue directives.
Nevertheless, it has very little impact on the whole
scaling performance on the 16-way system due to its
relatively small time percentage. Both Module PMC
and CT have abundant parallelism in distributing the
tasks among all the processors, and thereby, have fairly
good speedup on Unisys 16-way system.

5. Conclusion

MUSCLE is one of the best aligner for multiple se-
quence alignment, keeping both high accuracy and fast
speed. In this paper, we described our implementation
of the first parallel version of MUSCLE and studied its
performance on shared memory system. The experi-
mental results show that our parallel implementation
scales pretty well on 16-way system (15.2x speedup on
dataset 100). By comparing with the performance of a
4-way system, we conclude that large L3 cache as well
as combined L4 cache can sharply reduce the last level
cache miss rate, which is the bottleneck of MUSCLE,
and thus do help to improve the scalability performance
of MUSCLE.
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