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Abstract

A new class of parallel normalized preconditioned
conjugate gradient type methods in conjunction with
normalized approximate inverses algorithms, based on
normalized approximate factorization procedures, for
solving sparse linear systems of irregular structure, which
are derived from the finite element method of a two
dimensional boundary value problem, is introduced.
Parallel normalized explicit preconditioned conjugate
gradient - type methods for distributed memory systems
based on the block — row distribution (for the vectors and
the explicit approximate inverse), using Message Passing
Interface (MPI) communication library, is also presented
with theoretical estimates on speedups and efficiency, in
order to examine the parallel behavior of these methods
using normalized explicit approximate inverses as the
suitable preconditioner. Collective communications have
been utilized at the synchronization points and non —
blocking communications have been used, where the
exchanging of messages can be overlapped with
computations, where applicable. Application of the
methods on a two dimensional boundary value problem is
discussed and numerical results are given, concerning the
parallel performance in terms of speedups and efficiency.

1. Introduction

Many engineering and scientific problems are described
by sparse linear systems of algebraic equations derived
from the Finite Element (FE) discretization of partial
differential equations. Hence sparse matrix computations,
which have inherent parallelism, are therefore of central
importance in scientific and engineering computing and
furthermore the need for high performance computing,
which is about 70% of supercomputing time, has had some
effect on the design of modern computer systems.
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An important achievement over the last decades is the
appearance and use of preconditioned iterative methods,
for solving a linear system Au=s, [2, 4, 9, 10, 11, 17, 18,
21, 22]. The preconditioned form of the linear system is
MAu=Ms, where M is a suitable preconditioner, satisfying
the following conditions: (i) MA should have a “clustered”
spectrum, (ii)) M can be efficiently computed in parallel
and (iii) finally “M X vector” should be fast to compute in
parallel, [9, 11, 12, 17].

Many researchers have tried to provide preconditioned
iterative methods, based on splitting techniques,
factorization techniques (based on modifications of
Gaussian Elimination), level-scheduling or wavefront
approach, polynomial preconditioners, red-black ordering
and factorized sparse approximate inverses, which were
either difficult to implement on parallel systems or of
limited potential and success [21]. Further many
researchers have proposed and discussed parallel issues of
conjugate gradient methods [2, 6, 7, 8, 9, 10, 21, 22].
Additionally sparse approximate inverses by minimizing
the Frobenious norm of the error have been presented and
can be implemented on parallel systems [17, 21]. In recent
years explicit preconditioned methods, based on
approximate inverse matrix algorithms, have been used for
solving efficiently sparse linear systems, [11]. The
effectiveness of the explicit approximate inverse
preconditioning method is related to the fact that the
derived classes of approximate inverses exhibit a similar
“fuzzy” structure as the coefficient matrix and are close
approximants to the coefficient matrix, [11, 13].

The  cost-effectiveness  of  parallel  explicit
preconditioned iterative schemata over parallel direct
solution methods for solving large sparse linear systems is
now commonly accepted. It is known that adaptive
approximate factorization and approximate inverse matrix
algorithms are in general tediously complicated. However
as the demand for solving boundary value problems
grows, the need to use efficient sparse finite element (FE)
linear equations solvers based on approximate



factorization procedures and approximate inverse
algorithms becomes one of great importance, [11].

The main motive for the derivation of the approximate
inverse matrix algorithms is that they can be efficiently
used in conjunction with explicit preconditioned conjugate
gradient — type schemes. The computationally dominant
part of operations involved in these methods (i.e.
approximate inverse X vector) can be efficiently
parallelized on multiprocessor and multicomputer systems,
since the approximate inverse matrix has been computed
explicitly avoiding the usage of forward-backward
substitution, which can not parallelize well, [21]. For the
parallelization of the conjugate gradient - type methods on
multicomputer systems, the block — row distribution has
been used for the vectors and the explicit approximate
inverse. Collective communications have been utilized at
the synchronization points and non — blocking
communications have been used, where the exchanging of
messages can be overlapped with computations, where
applicable.

In Section 2, normalized approximate inverse finite
element matrix algorithmic methods are presented, based
on normalized approximate factorization procedures of the
coefficient finite element matrix. In Section 3,
parallelization issues of the normalized explicit
preconditioned conjugate gradient type methods are
discussed, for distributed memory parallel systems, using
the MPI communication library. Finally, in Section 4 the
performance in terms of speedups and efficiency of the
parallel normalized explicit preconditioned conjugate
gradient variants is illustrated by solving sparse finite
element linear system on a distributed system.

2. Normalized Approximate Inverses

In this section we present normalized explicit
approximate inverse finite element matrix techniques by
computing the eclements of a class of normalized
approximate inverses, [13, 14, 15, 16].

Let us now consider the finite element linear system,
ie.

Au=s €))]
where A is a sparse, diagonal dominant, positive definite,
symmetric (nxn) matrix of irregular structure (with all the
off-center band terms grouped into a regular band of width
£), while u is a FE solution at the nodal points and s is a
vector, of which the components result from a
combination of source terms and boundary conditions.

Let us now assume the normalized approximate
factorization of the coefficient matrix A such that, viz.

A= -1 bm-l (2)
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where r is the “fill-in” parameter, i.e. the number of
outermost off-diagonal entries at semi-bandwidth m, D,

is a diagonal matrix, T, is a sparse upper triangular matrix
of the same profile as the coefficient matrix A, i.e.
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I dlag(dl 9d29 adn ) (4)

©)

The elements of the decomposition factors D, and T,
can be computed by the FEANOF-2D algorithm, [18].
The memory requirements of the FEANOF-2D algorithm
are = (r+ 2/ +2)n words, while the computational work
~1/2(t+0)x+ ¢ +3)n
operations + n square roots, [18].
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i+3l-1)] be the normalized approximate inverse of the
coefficient matrix A, i.e.
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where 9l is the “retention” parameter, i.e. the additional
mumber of diagonals retained next to the main diagonal in
the lower and upper part of the inverse, [11, 12, 13, 14, 15,
16].

A class of approximate inverses can be obtained by
solving recursively the following systems:
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Then, the elements of the normalized approximate
inverse can be computed by the Normalized Optimized
Approximate  Inverse  Finite  Element  Matrix
(NOROAIFEM-2D) algorithm, [15]. The memory
requirements of the NOROAIFEM-2D algorithm are
(281-1)xn words, using a moving window shifted from
bottom to top. The computational work of the
NOROAIFEM-2D algorithm is = O[(r+¢+1)dl]n

multiplicative operations.

It should be noted that this class of approximate inverse
includes various families of approximate inverses
according to the requirements of accuracy, storage and
computational work, as can be seen by the following
diagrammatic relation:
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where the entrles of the class I inverse results in a direct
method, i.e. r =m-1 and 8l=n, with the disadvantage of
high memory requirements and computational work for
large order systems. The entries of the class II inverse
have been retained after the computation of the exact
inverse (I =m-1). The entries of the class III inverse have
been computed and retained during the computational
procedure of the (approximate) inverse (r=m-1), while
the entries of the class IV inverse have been retained after
the computation of the approximate inverse (r < m-1). The
class V of the normalized approximate inverse retains only
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the diagonal elements, i.e. 3I=1 hence M =T, resulting in
T

a fast inverse algorithm.

The parallel construction of similar approximate
inverses has been studied and implemented in [12], and is
under further investigation.

It should be noted that if the width-parameter is set to
¢ =1, (2), then the above mentioned approximate
factorization and inverse algorithms reduce to the
corresponding ones, namely the NOBAR-2D and
NOROBAIM-2D algorithm, for solving linear systems of
semi-bandwidth m, which is encountered usually in
solving 2D boundary value problems by the finite
difference method.

3. Parallel Normalized Explicit Preconditioned
Conjugate Gradient Type Methods

In this section we present a class of normalized explicit
preconditioned conjugate gradient - type schemes, based
on the normalized finite element approximate inverses,
yielding a class of efficient parallel explicit preconditioned
schemes, [13, 15, 16].

In the following we present a modified form of the
Chronopoulos-Gear variant of the Conjugate Gradient
method, [5, 9], henceforth called the Normalized Explicit
Preconditioned Conjugate Gradient — Chronopoulos Gear
variant (NEPCG-ChG-variant) method, for solving
linear systems and can be expressed by the following
compact scheme:

Let u, be an arbitrary initial approximation to the

solution vector u. Then,

compute 1y =s—Aug, 9
set 9.1 =Py =0andp_, =0 (10)
form W =D~ MalDr I (11)

sp =AW, (12)
calculate Py = (ro, WO)’ Ho :(SO, WO) (13)
and a4y =Po/Hy (14)

Then, for i=0, 1,
vectors pl, ql, ui_l,

, (until convergence) compute the
Ly, W, |, s; jand the scalar

quantities a;_ 1, B;, M, 1, Pjq @S follows:

compute  p; =W, +[3i_ 1Pi- 1> (15)
9j =8; +Bi 1951 (16)
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set Pitr] :(ri_ T Wi— 1), 21
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evaluate Bi =p; 1/pi, (23)
a :pi—+1 (24)
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The computational work required for the NEPCG -
ChG - variant method is =O[(28]+2 ¢ +10)n mults + 5n
adds]v, where v denotes the number of iterations required
for convergence to a predetermined tolerance level.

The Normalized Explicit Preconditioned BlIconjugate
Conjugate Gradient-STAB (NEPBICG-STAB) method,
can be expressed by the following compact scheme:

Let u, be an arbitrary initial approximation to the

solution vector u. Then,



set ug = 0 (25)
compute 1y =s—Aug, (26)
t - —a=0_ =1 27
se I, =Ty Py =a=0, =1, 27
—p =0 28

Vo =Py =0 (28)

Then, for i=0, 1, ..., (until convergence) compute the

vectors u.,r. and the scalar quantities o,B,®. as
i i

follows:
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The computational complexity of the NEPBICG-
STAB method is =O[(66]+4 ¢ +22)n mults + 6n adds]v
operations, where v denotes the number of iterations
required for convergence to a predetermined tolerance
level.

The effectiveness of the normalized explicit
preconditioned schemes using the NOROAIFEM
algorithm is related to the fact that the normalized
approximate inverse exhibits a similar “fuzzy” structure as
the coefficient matrix A.

The convergence analysis and computational
complexity of normalized approximate inverse
preconditioning has been presented in [14].

For the parallel implementation of the NEPCG-ChG-
variant and NEPBICG-STAB methods (henceforth
called PNEPCG-ChG-variant and PNEPBICG-STAB
respectively), the Message Passing Interface (MPI)
communication library was utilized.

Let no_proc denote the number of processors available.
Then, the two most computationally dominating

operations of the normalized explicit preconditioned
conjugate gradient - type schemes (i.e. multiplication of
the normalized optimized approximate inverse with a
vector and inner products), can be computed in parallel by
partitioning the approximate inverse matrix and the
vectors by a block — row distribution. Each processor is
assigned to a strip of elements (from the
(myrank*local n+1)-th to the (myrank* local n +
local n)-th row) of the normalized approximate inverse
and vectors, and performs all the necessary operations,
where local n=n/no_proc.

During each iteration, communication operations are
required before matrix X vector and after inner product
computations. The collective communication routines
MPI_Allreduce and MPI_Allgather were used for sending
and receiving data among distributed processes, [19, 20].
The parallel algorithm of the NEPBICG-STAB method
has been presented in [13].

An essential modification in order to improve
performance, by overlapping some computations during
exchanging messages, can only be adopted for the
PNEPCG - ChG - variant method, [9]. For example, the
computations of equation (22) can be concurrently
executed with the reduction operation required for
gathering the “partial” sums of the inner product (21).
Then, a simple collective communication step is used to
broadcast the final sum to all processors.

The theoretical estimates on speedups and efficiency
for the PNEPCG-ChG-variant and PNEPBICG-STAB
methods can be similarly obtained, as in [13]. Thus,

Sp = : . (39
1 . atslog(nOJ)roc) . b(no_proc - 1)ty
no_proc O(Sl)ntm O(8)no_proc
and
- ! . (40)
Ep =

atsno_proc log(no_proc) . b(no_proc - 1)ty
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where t; denotes the message latency, t, the time
necessary for a word to be sent, t,, the computational time
of one multiplication, and a, b are parameters whose
values depend on the number of collective
communications required during each iteration (e.g. for the
PNEPBICG-STAB, a=5 and b=2), [13].

Hence, for dl->n and n—«, it is evident that
S,—no_proc and E,—1, which are the theoretical upper
bounds, [1, 19, 20].

4. Numerical Results

In this section we examine the applicability and



effectiveness of the normalized explicit preconditioned
conjugate gradient — type schemes for solving
characteristic two dimensional boundary value problems,
on distributed memory machines, using Message Passing
Interface communication library (MPI), [19, 20].

Let us consider the following 2D-model problem

Au(x,y)- ux,y) =f(x,y), X,¥)eR, 41)
subject to boundary conditions
ux,y) =0, (x,y)e dR, (41.2)

where A is the Laplacian operator, R is the unity square
and JR is the boundary of the domain R. The domain
RUJR is covered by a non-overlapping triangular
network. The PNEPCG-ChG-variant and the
PNEPBICG-STAB methods were terminated when
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The numerical test runs were performed on a cluster,
which consists of fifty (50) dual Intel Pentium III servers,
running at 1.26 GHz with 512K cache, 1GB ram and
133MHz bus. Each server has a gigabit network interface
and is located in a chassis (9 total chassis, 8 with 6 servers
and one chassis with only 2 servers). Within each chassis
the servers are connected by a LOM (Lan On
Motherboard). This LOM has 6 Ethernet ports shared
amongst the servers in the chassis. Each chassis has an
external 4 port gigabit switch, which is connected to a
gigabit switch (and internally on the 6 port LOM).

The speedups and the number of iterations of the
PNEPCG-ChG-variant and the PNEPBICG-STAB
method for several values of the “retention” parameter 3l
with n=10000, m=101, r=2 and ¢ =3, are given in Table
1 and 2 respectively. It should be noted that these
speedups do not take into account the performance of the
construction of the approximate inverse. It should be also
noted that these results presented are in qualitative
agreement with the theoretical results given.

In Figure 1, 2, 3, 5, 6 and 7 the speedups and
processors allocated for several values of 61, the speedups

versus the “retention” parameter 8l for several numbers of
processors and the parallel efficiency for several values of
Ol is presented for the PNEPCG-ChG-variant and the
PNEPBICG-STAB method respectively, with n=10000,
m=101, r=2 and ¢ =3. In Figure 4 and 8 the overall
performance evaluation measurements of the PNEPCG-
ChG-variant and the PNEPBICG-STAB method are
given respectively, with n=10000, m=101,r=2 and ¢/ =3.

As it is verified by our experimental results, the parallel
behavior of the PNEPCG-ChG-variant is better than the
PNEPBICG-STAB method for large values of the
“retention” parameter 0l, as it was expected, because of
the non-blocking communications that was adopted, [9].
Additionally, in the PNEPCG-ChG-variant all the
vectors need to be loaded only once during each iteration,
which leads to a better exploitation of the data (improved
data locality), [5, 9]. For large values of the “retention”
parameter, i.e. multiples of the semi-bandwidth m, the
speedups and the efficiency tend to become optimum,
which is in qualitative agreement with the theoretical
results presented. For small values of the “retention”
parameter dl, the communication cost is responsible for
such performance.

Since there is increased communication cost for small
values of the “retention parameter” 6l and further taking
into account the time consumption of the application it is
recommended that large values of the “retention
parameter” 81 should be chosen.

Based on the derived theoretical estimates, in order to
approach the optimum value of speedup as 8l increases,
the utilized number of processors should be increased.

When coarse grain parallelism is adopted, i.e. when dl
is increased, a reduction in iterations was achieved along
with an increase in the overall speedup. This is because by
increasing dl, the approximate inverse tends to become the
exact inverse (class I), (8).

“Retention™ Numbz? f);(:)l:‘l())scessors 1\.Iumb.er of
parameter ) 4 3 16 iterations
ol=1 1.3058 0.5849 0.5700 0.4972 19
ol=2 1.3121 0.7682 0.7338 0.6502 18

ol=m 1.9153 3.0099 4.4234 5.8597 13
0l=2m 1.9652 3.8352 5.8905 9.6369 9
ol=4m 1.9786 3.9559 7.3386 12.6621 6
0l=6m 1.9999 3.9690 7.5111 13.5700 5

Table 1. Speedups and processors allocated of the PNEPCG-ChG-variant method, for several

values of 61, with n=10000, m=101 and r=2.



6 ——3=1 =32 Sl=m 8=2m —%—dlF4m —e— §l=6m

14 4

12 4
10 4

Speedups
oo

0 M $
2 4 8 16

@

Number of processors

Figure 1. Speedups and processors allocated of the PNEPCG-ChG-
variant method for several values of 61, with n=10000 and m=101.
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Figure 2. Speedups versus the “retention” parameter ol of the
PNEPCG-ChG-variant method for several numbers of processors,
with n=10000 and m=101.
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Figure 3. Parallel efficiency and processors allocated of the
PNEPCG-ChG-variant method for several values of 61, with n=10000
and m=101.
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Figure 4. Performance evaluation measurements of the
PNEPCG-ChG-variant method, with n=10000 and

m=101.

“Retention™ NumbSnP f):(:)l:‘[:)scessors Number of
parameter ) 4 3 16 iterations
ol=1 1.2912 1.1752 1.0633 0.9288 13
ol=2 1.3387 1.1844 1.1069 0.9437 11

ol=m 1.9360 3.1828 5.3622 6.5735 8
ol=2m 1.9349 3.3452 5.9481 7.2508 5
0l=4m 1.9540 3.6554 6.4035 9.8555 3
0l=6m 1.9636 3.7162 7.1375 11.1503 3

Table 2. Speedups and processors allocated of the PNEPBICG-STAB method, for several values
of ol, with n=10000, m=101 and r=2.
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Figure 5. Speedups and processors allocated of the PNEPBICG-STAB
method for several values of 61, with n=10000 and m=101.
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Figure 6. Speedups versus the “retention” parameter 6l of the
PNEPBICG-STAB method for several numbers of processors, with

n=10000 and m=101.
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Figure 7. Parallel efficiency and processors allocated of the
PNEPBICG-STAB method for several values of 61, with n=10000 and

m=101.

Similar results concerning the speedups and efficiency
are expected for other problems and other platforms. It
should be mentioned that similar results concerning the
speedups and efficiency have been presented using
MPICH on different operating systems (Linux, Windows),
MPICH over Globus environment and Remote Internet
Interface (over Microsoft Windows operating system), [3].

Finally, in order to overcome inefficiencies in terms of
the performance of the parallel normalized explicit
preconditioned conjugate gradient methods, for small
values of the “retention” parameter Ol, symmetric
multiprocessor systems are recommended, [16].
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