
Detecting Selective Forwarding Attacks in Wireless Sensor Networks ∗

Bo Yu1,2 Bin Xiao1

1Hong Kong Polytechnic University 2Fudan University
Dept. of Computing Dept. of Computer Science and Engineering

Hung Hom, Kowloon, Hong Kong Shanghai, 200433, P.R.China
{csbyu, csbxiao}@comp.polyu.edu.hk boyu@fudan.edu.cn

Abstract

Selective forwarding attacks may corrupt some mission-
critical applications such as military surveillance and for-
est fire monitoring. In these attacks, malicious nodes be-
have like normal nodes in most time but selectively drop
sensitive packets, such as a packet reporting the movement
of the opposing forces. Such selective dropping is hard
to detect. In this paper, we propose a lightweight secu-
rity scheme for detecting selective forwarding attacks. The
detection scheme uses a multi-hop acknowledgement tech-
nique to launch alarms by obtaining responses from inter-
mediate nodes. This scheme is efficient and reliable in the
sense that an intermediate node will report any abnormal
packet loss and suspect nodes to both the base station and
the source node. To the best of our knowledge, this is the
first paper that presents a detailed scheme for detecting
selective forwarding attacks in the environment of sensor
networks. The simulation results show that even when the
channel error rate is 15%, simulating very harsh radio con-
ditions, the detection accuracy of the proposed scheme is
over 95%.

1. Introduction

Wireless Sensor Networks (WSNs) are ideal candidates
for monitoring environments in a wide variety of applica-
tions such as military surveillance and forest fire monitor-
ing [7]. In such a network, a large number of sensor nodes
are deployed over a vast terrain to detect events of interest
(e.g., enemy vehicles, outbreaks of forest fires), and to de-
liver data reports to the base station over multi-hop wireless
paths. The node-patterned deployment of WSNs, however,
can be the focus of certain types of malicious attack. One

∗This work is partially supported by HK POLYU A-PA2F and ICRG
A-PG52.

base station

Sensor

Reading

Sensor

Reading

Compromised node

Uncompromised nodeOutside Jammer

Physical intruder

Figure 1. An example sensor network under
selective forwarding attacks.

such strategy is the selective forwarding attack, first pro-
posed by Karlof [2]. In such attacks, a malicious node selec-
tively drops sensitive packets, for example, a packet report-
ing the enemy tank movements. Selective forwarding at-
tacks are typically most effective when the attacking nodes
are explicitly included on the path of a data flow. They
can corrupt a number of existing routing protocols such
as TinyOS beaconing, Directed Diffusion [9], GPSR [10],
GEAR, and clustered based protocols, especially when they
are used in combination with other attacks such as worm-
hole and sinkhole attacks.

Karlof et al.[2] suggested countering selective forward-
ing by using multipath forwarding. However, multipath for-
warding also suffers from several drawbacks. First, commu-
nication overheads increase dramatically as the number of
paths increases. Second, multiple paths ultimately join up
in the area neighboring the base station, so if nodes around
the base stations are compromised, selective forwarding is
still applicable. Finally, the multipath forwarding shows
poor security resilience. To compromise the system, an ad-

1-4244-0054-6/06/$20.00 ©2006 IEEE

base station

(a) Single malicious node (b) Two consecutive malicious nodes (c) Surrounding malicious nodes

Figure 2. Deployment of malicious nodes.

versary only needs to ensure the presence of one compro-
mised node in each path. Traditional transport layer pro-
tocols [11,12] for WSNs also fail to guarantee that packets
are not maliciously dropped. They are not designed to deal
with malicious attacks.

In this paper, we propose a lightweight security scheme
that detects selective forwarding attacks by using a multi-
hop acknowledgement technique that increases detection
accuracy yet lowers overhead. The scheme allows both the
base station and source nodes to collect attack alarm in-
formation from intermediate nodes. This means that even
when the base station is deafened by surrounding malicious
nodes, the source nodes can still make decisions and re-
sponses. The scheme can efficiently obtain those alarm
information whenever intermediate nodes in a packet for-
warding path detect any malicious packet dropping. Simu-
lation results show that the communication overhead of our
scheme is usually less than 2 times the overhead of the com-
mon one-path packet delivery process, and the detection ac-
curacy is over 95% even when the channel error rate is a
harsh 15%. To the best of our knowledge, this is the first
paper that presents a detailed detection scheme in response
to selective forwarding attacks.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the attack model and our design goals.
Section 3 presents our detection scheme based on multi-hop
acknowledgement in detail. Section 4 first proposes several
evaluation metrics for our detection scheme and then shows
the simulation results in terms of these metrics. Finally, we
introduce the related work in Section 5, and conclude our
work in Section 6.

2. Attack Model

We consider a military application of sensor networks
for reconnaissance of opposing forces, as shown in Figure
1. Each sensor node is battery-powered and has limited
sensing, computation and wireless communication capabili-
ties. When the activities of the opposing forces such as tank
movement are detected, sensor readings are aggregated to
generate a report, which will be forwarded to the base sta-
tion through multi-hops. The sink is a data collection center
equipped with sufficient computation and storage capabili-

ties. Once the base station receives the report, it can take
action by, for example, sending soldiers or missiles to the
target field.

In a military application such as this, prompt detection
and reporting of each relevant event in the field are impor-
tant, but these processes can be easily corrupted by selective
forwarding attacks. In such attacks, malicious nodes may
refuse to forward certain packets and simply drop them, en-
suring that they are not propagated any further. An adver-
sary will not, however, drop every packet. To avoid raising
suspicions, the adversary instead selectively drops packets
originating from a few selected nodes and forwards the re-
maining traffic. As shown in Figure 1, the adversary may
attack in two ways, from inside the network via compro-
mised nodes or from outside the network by jamming the
communication channels between uncompromised nodes.

Figure 2 shows three basic ways in which malicious
nodes can be distributed in a network for different tacti-
cal purposes. Figure 2(a) shows a single malicious node
located in the middle of a forwarding path. This node can
selectively forward packets to the base station. Figure 2(b)
shows two or more malicious nodes chained along a for-
warding path. This can make it more difficult to detect
packet dropping. Figure 2(c) shows a number of compro-
mised nodes surrounding a base station. This arrangement
can be used to deafen a base station by refusing to forward
any packets at all.

In this paper, our goal is to design a scheme that detects
selective forwarding attacks and identifies malicious nodes.
Once the ids of suspect nodes are known, routing proto-
cols can exclude them from routing paths. Furthermore,
professionals can be sent to the battlefield to examine the
nodes physically and even physically remove the compro-
mised nodes. The detection scheme should have the follow-
ing properties. First, the scheme should be able to quickly
detect any malicious packet dropping. Second, detection
accuracy should be guaranteed even when radio conditions
are poor. Finally, the scheme should cause little additional
communication overhead.

BS S
u1u2u3u4u5u6u7u8

ACK

ACK
ACK

ACK

u9

ACK

compromised nodesuncompromised nodes where ACK dropped

Figure 3. An example of multi-hop acknowledgement with ACK Span = 3 ,ACK TTL = 6. Node
u3,u6,u9 are ACK nodes, which are required to send out ACK packets.

3. A Multi-hop Acknowledgement-Based De-
tection Scheme

In this section, we present the design of our multi-hop
acknowledgement-based detection scheme. In our scheme,
each intermediate node along the forwarding path is in
charge of detecting malicious nodes. If an intermediate
node detects the misbehavior of its downstream (upstream)
nodes, it will generate an alarm packet and deliver it to
the source node (the base station) through multiple hops.
In this paper, downstream denotes the direction toward the
base station, and upstream denotes the direction toward the
source node. The base station and the source node can then
use more complicated IDS (Intrusion Detection System) al-
gorithms to make decisions and responses.

3.1. Assumptions

The following five assumptions are appropriate to use of
the proposed detection scheme in a mission-critical applica-
tion such as military reconnaissance, as opposed to a civil-
ian application such as temperature monitoring. Our first
assumption is that during the deployment phase each sen-
sor can acquire its geographical position and loosely syn-
chronize its time with the base station. Secure positioning
and time synchronization discussed in [15,16,17] are also
required by other purposes in a military mission, so our
assumption does not add additional overhead. Note that
our scheme can function over various existing routing al-
gorithms but does not rely on geographic routing. Second,
we assume that the adversary cannot successfully compro-
mise a node during the short deployment phase. Some exist-
ing work [7] has made similar assumptions and argued that
such attacks can indeed be prevented in real-life scenarios
when appropriate network planning and deployment keep
away attackers during the bootstrapping process. Third, we
assume that malicious nodes, in order to allay suspicions,
selectively drop only a small proportion of all packets pass-
ing by rather than every packet. Fourth, we assume that
each node shares a master secret key with the base station
and a node can establish a pairwise key with another node

that is multiple hops away. Finally, we assume that rout-
ing and transport protocols such as Directed Diffusion[9]
and PSFQ[10] have been implemented in sensor nodes. Our
scheme can function over these protocols.

Although the routing layer of WSNs is threatened by
various attacks, here we are considering only selective for-
warding attacks. It is out of the scope of the paper to con-
sider the issue of verifying whether an sensor report is mod-
ified or injected. The interested will find discussions of this
in [4,5,6,7]. Nor do we consider the detection of link-layer
jamming attacks [14], which are also able to cause packet
loss.

3.2. Node Initialization and Deployment

Before deployment, the key server loads every node with
a unique secret key and a symmetric bivariate polynomial
f(u, v).

The unique key is shared with each sensor node and the
base station and can be used to encrypt sensor reports and
generate MACs (Message Authentication Codes) for the re-
ports.

The symmetric bivariate polynomial is used to estab-
lish a pairwise key between any two sensor nodes in
the network. Before deployment, the key server gener-
ates a symmetric bivariate k-degree polynomial f(u, v) =
Σk

i,j=0aiju
ivj over a finite field Fq, where q is a prime num-

ber that is large enough to accommodate a cryptographic
key. A polynomial f(u, v) is said to be symmetrical if
f(u, v) = f(v, u). The key server then loads each node
with this polynomial. After deployment, each node regen-
erates a polynomial g(x) using its node id: g(x) = f(id, x),
and erases f(u, v) from its memory forever. Suppose that
node a owns ga(x) = f(a, x), node b owns gb(x) =
f(b, x), and node a wants to send a packet to node b. First
node a calculates k1 = ga(b) as the key to generate a MAC
for the packet and then sends the packet together with the
MAC and its id to node b. After receiving the packet, node
b calculates k2 = gb(a), (k1 = k2), as the decryption key
and verify the MAC. If the verification is passed, node b
believes the packet comes from the authentic node a.

During deployment, each nodes tries to find its down-
stream and upstream nodes which might be multi-hop away.
The node just need to save its neighbors’ ids in memory for
generating a pairwise key in the future. The id information
can be piggybacked on existing routing messages such as
TinyOS beaconing or interest and reinforcement messages
in Directed Diffusion [9]. As a result, little memory and
communication overhead will be incurred for these opera-
tions.

Please note that we assume it is secure in the deploy-
ment phase. After the original bivariate polynomial f(u, v)
is erased from the node’s memory, it will be difficult for
the adversaries to regenerate f(u, v). When used in key
establishment, symmetric bivariate polynomials have been
proved to be unconditionally secure as long as no more than
k nodes are compromised [4].

3.3. OHC-based One-to-Many Authentica-
tion

In this subsection, we use OHC(Oneway Hash Chain) to
establish one-to-many authentication among sensor nodes,
which might be multiple hops away. Compared with
pairwise key-based authentication, the OHC-based one-to-
many authentication allows the reduction of both communi-
cation and computation overhead.

OHC is a sequence of numbers, generated by a pub-
licly known one-way function F . To generate the one-
way key chain, randomly choose the last key Kn of the
chain, and repeatedly apply F to compute all other keys:
Ki = F (Ki+1). OHC was proposed in [19] and has since
been widely used on account for its simplicity and effi-
ciency in one-to-many authentication, for example, in [6].

In our scheme, each node generates and maintains a
one-way hash chain < K0, K1, ..., Kn >, where Ki =
F (Ki+1). Each node can send K0 to its upstream or down-
stream nodes during the neighbor discovery phase. The
pairwise key generated by bivariate polynomial will encrypt
the K0 message. When node u wants to send a message
to node v, it just sends out: {data, Ki, MACKi(data)},
where i ≥ 1 and i increases by one after one message is
sent out. To authenticate the message, node v just needs
to verify whether Ki′ = F (F..F (Ki)), where Ki′ is the
previous OHC number node v receives, and the number of
iterative calls of F () should be limited. If the verification
fails, node v may request that node u updates his OHC num-
bers. For reasons of space, we omit a detailed discussion of
the generation and maintenance of OHC.

During deployment, each node also tries to exchange its
first OHC number with its upstream and downstream nodes.
This process can be combined with the id exchange opera-
tions introduced in Section 3.2.

SrcIDDstID Packet_ID Payload

(a) report packet format

(b) ACK packet format

Packet_ID Node_ID OHC_number

TTL

ACK_Cnt

DstID SrcID Suspicious_Node_ID

MACLost_Packet_ID_End

(c) alarm packet format

2 2 2 50 2

2 2 2

4 1

2 2 2

2 2 4

Lost_Packet_ID_Beg

Time_Stamp

MACOHC

2

Figure 4. Packet formats.

3.4. Upstream Detection Process

In this subsection, we describe how an intermediate node
detects suspect nodes. Our detecting task consists of up-
stream detection and downstream detection. The uncom-
promised nodes upstream of malicious nodes take charge of
the upstream detection task, and the uncompromised nodes
downstream of malicious nodes take charge of the down-
stream detection task.

Three packets, report packet, ACK packet, and alarm
packet, are used in our scheme. The suggested fields and
corresponding byte lengths for each packet are presented in
Figure 4.

First we consider the upstream detecting task. A source
node generates a report packet, when it detects a special
event, e.g. tank movement noise. The report will be for-
warded toward the base station hop-by-hop. The initial
ACK Cnt is set to ACK Span, which is a predefined
metric. When each intermediate node receives the report
packet, it first saves the report packet in its cache, decreases
the ACK Cnt by one, or resets ACK Cnt to its initial
value ACK Span if ACK Cnt equals to 0 already, and
then forwards the report packet to the next downstream
node. Meanwhile, if the node finds ACK Cnt is equal to
0, it generates an ACK packet, where the TTL in the ACK
packet is initially set to ACK TTL, which is also a pre-
defined metric. The node sends the ACK packet to the up-
stream node where the previous report packet comes from.
The ACK packet will traverse multiple hops until TTL is
decreased to 0, following the same path as traversed by the
previous report but in the opposite direction. We call the
nodes which are required to send out ACK packets ACK
nodes, such as nodes u3,u6,and u9 in Figure 3.

After an intermediate node forwards a report packet to
the downstream neighbor, it waits for ACK packets which
will be returned by the downstream neighbor. If less than
t ACK packets are returned within time Tack, the node
suspects that the previous report packet might have been
dropped by a malicious node downstream. The intermediate

node then generates an alarm packet. DstID in the alarm
packet is the source node id. Both Lost Packet ID Beg
and Lost Packet ID End are the lost report packet id.
Time Stamp is set to the current system time in the sensor
node. The node chooses the next downstream node to be the
suspect node and set it in the Suspicious Node ID field
in the alarm packet. The alarm packet then is forwarded
through multiple hops to the source node. There might be
more than one alarm packet generated during the process of
delivering one report packet. Some of these alarm packets
will be false alarms, because the ACK packets might have
been dropped due to harsh radio conditions. However, when
the source node finally receives all the alarm packets, it can
easily remove the false alarms.

The parameters, ACK Span and ACK TTL, provide
a tradeoff between detection capability and communication
overhead. Bigger ACK Span and ACK TTL help to in-
crease the security resilient when a number of nodes in a
path is compromised, but also increase the communication
overhead and the waiting time before enough ACK pack-
ets arrive. We evaluate these parameters in a simulation in
Section 4.

It is possible for a malicious node to fabricate an alarm
packet but this would have only a limited effect because
the malicious node can only set the next downstream node
as the suspicious node. The source node will regard both
the suspicious node specified in the alarm packet and the
node which generates the alarm packet as malicious nodes
(or threatened nodes). Note that it is unnecessary to distin-
guish between malicious nodes and threatened nodes near
the malicious nodes as both malicious and threatened nodes
should be excluded from the forwarding path once rout-
ing responses are made. Some existing works such as [3]
propose similar precautions in response to malicious and
threatened nodes.

Figure 3 provides an example of the operation of our up-
stream detection mechanism. Suppose that node u5 and u6
are compromised nodes, and node u5 drops a report packet
coming from the source node. First we consider node u2.
After forwarding the report packet to node u3, node u2
waits for ACK packets. Suppose that node u2 receives an
ACK packet from node u3 but does not receives an ACK
from u6 within time Tack. Node u2 will set node u3 as the
suspect node in its alarm packet. The alarm packet will be
forwarded through multiple hops to the source node. Next
we consider node u4. Node u4 receives no ACK packets.
It sets the next downstream node, node u5, as the suspect
node. Node u4 also generates an alarm packet and sends
it to the source node. Finally, we consider node u6, which
fabricates an alarm packet which says node u7 is the suspect
node. The alarm packet is also delivered to the source node.
In this way, the source node will receive 3 alarm packets
for the same report packet. However, because it can be sure

that the report packet did arrive at node u4, it’s easy for the
source node to remove the false alarms from nodes u2 and
u4. The source node finally concludes nodes u6 and u7 as
the malicious nodes or threatened nodes.

3.5. Downstream Detection Process

We next consider the downstream detection task. If
an intermediate node receives a report packet which has
a discontinuous Packet ID for a specific source node,
packet loss might have occurred. The node generates
an alarm packet, in which, Lost Packet ID Beg and
Lost Packet ID End describe the range of the lost
Packet IDs, and Suspicious Node ID is set to the
upstream node where the report with the discontinuous
Packet ID came from. The alarm packet will be for-
warded through multiple hops to the base station. The dis-
continuity of Packet IDs might be caused by a malicious
upstream node, a nearby outside jammer, or even by routing
topology changes. Thus it is likely that the alarm packet is
a false alarm. However, when the base station ultimately
receive all the report packets, it is easy for the base station
to remove false alarms.

3.6. Several Other Issues

ACK nodes are critical points along the forwarding path,
such as node u3, u6, and u9 in Figure 3. If these nodes are
compromised, the adversaries can fabricate ACK packets.
It is thus important that the intermediate nodes which act
as ACK nodes should not be fixed. Upstream nodes should
require that ACK packets for the current report come from
different ACK nodes than for the last report. In order to
achieve this goal, we let the source node set the ACK Cnt
field in each report in manner of a descending (or ascend-
ing) counter. The initial ACK Cnt value at the source node
will be cycled between 0 and (ACK Span − 1). In this
way, each node has an equal chance of becoming an ACK
node as well as an equal chance of being compromised.

When global packet loss information from various
sources and paths are collected at the base station and the
source node, more complicated IDS(Intrusion Detection
System) algorithms such as game theory or statistical analy-
sis can be implemented at the base station or even at the
source node. After monitoring the packet loss information
for a period of time, the base station and the source node
may make decisions and take actions allowing the routing
layer exclude the malicious nodes from the forwarding path.

WSN resilience can be improved by integrating redun-
dant and intrusion detection approaches. Its quite difficult
to prevent a compromised yet undetected intermediate node
from dropping a packet going through it. One answer might
be to allow the source node to decide how a packet is deliv-

0.0 0.05 0.1 0.15 0.2
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Channel Error Rate

Ala
rm

 R
e
lia

bili
ty

malicious dropping rate 30%
malicious dropping rate 20%
malicious dropping rate 10%

Figure 5. Alarm reliability when the channel
error rate increases from 1% to 20%.

ered. If the packet is a very important one, the source node
can have the packet delivered via multipath forwarding, or
even flooding. If the packet is just a routine message, the
packet can be delivered via one-path forwarding with intru-
sion detection.

4. Performance Evaluation

In this section, we evaluate the performance, such as
the detection accuracy and communication overhead of
our scheme through simulations. We use a field size of
2000×2000m2 where 400 nodes are uniformly distributed.
One stationary sink and one stationary source sit on oppo-
site sides of the field, with about 20 hops in between. We
carry out a simulation event in which the source generates
500 reports in total and one report is sent out every two sec-
onds. Packets can be delivered hop-by-hop at 19.2 Kbps.
In order to avoid detection, the malicious nodes drop only
part of the packets passing by. To make our scheme more
resilient in poor radio conditions, we implement a hop-by-
hop transport layer retransmission mechanism beneath our
scheme, which is quite similar to that in PSFQ[11]. The
retransmission limit is 5 by default. The channel error rate
is 10% by default , which is usually regarded as a rather
harsh radio condition. Each simulation runs 10 times and
the result shown is an average of these runs. We first define
3 metrics and then provide our simulation results for these
metrics.

4.1. Evaluation Metrics

The first two proposed metrics evaluate the detection ac-
curacy of our scheme. The third evaluates the communica-
tion overhead.

Alarm reliability measures the ratio of the number of de-
tected maliciously-dropped packets to the total number

0.0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

Channel Error Rate

U
n
d
e
te

c
te

d
 R

a
te

malicious dropping rate = 10%

malicious dropping rate = 20%

malicious dropping rate = 30%

Figure 6. Undetected rate when the channel
error rate increases from 1% to 20%.

of lost packets detected including those lost due to poor
radio conditions.

Undetected rate measures the ratio of the number of unde-
tected maliciously-dropped packets to the total number
of maliciously-dropped packets.

Relative communication overhead measures the ratio of
the total communication overhead in a system that in-
corporates our detection scheme against a system that
does not.

4.2. Detection Accuracy

In this section, we study how the detection accuracy of
our scheme is affected by the channel error rate, the packet
retransmission mechanism and the number of compromised
nodes. Our first simulation shows the impact of the channel
error rate on alarm reliability. Figure 5 illustrates that the
channel error rate could be the main cause affecting alarm
reliability. If the condition of communication links is pre-
sumed to be perfect, packet loss must be the result of mali-
cious dropping. Thus channel error rate is a good indicator
of alarm reliability. Indeed, as shown in Figure 5, when
the channel error rate is less than 10%, alarm reliability is
close to 100%. Alarm reliability falls rapidly as the chan-
nel error rate increases over 10% because it is difficult to
distinguish packet loss due to malicious dropping from that
due to poor radio conditions. Interestingly, Figure 5 also
suggests that a larger malicious dropping rate will increase
the alarm reliability, on the intuition that malicious nodes
dropping more packets are easier to detect. On the whole,
our detection scheme works well to achieve over 80% reli-
ability of alarms, even when the channel error rate is 15%,
which is usually regarded as rather harsh radio conditions.

Our second simulation tests the impact of the channel er-
ror rate and compromised nodes on the system undetected

0 0.05 0.1 0.15 0.2
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Channel Error Rate

R
e
la

ti
ve
 C

o
m

m
u
n
ic

a
ti
o
n
 Ove

rh
e
a
d

ACK_Span=3, ACK_TTL=6
malicious dropping rate=10%

ACK_Span=3, ACK_TTL=9
malicious dropping rate=10%

ACK_Span=3, ACK_TTL=6
malicious dropping rate=30%

ACK_Span=3, ACK_TTL=9
malicious dropping rate=30%

Figure 7. Relative Communication Overhead
when the channel error rate increases from
1% to 20%

rate. The undetected rate is mainly affected by two factors,
the channel error rate and how many nodes are compro-
mised. A high channel error rate will cause alarm packets to
be dropped even after several retransmissions. Similarly, if
there are multiple compromised nodes along the forwarding
path, some compromised nodes might drop alarm packets
to prevent other compromised nodes from being detected.
Note that if malicious packet dropping is detected by a node
in the middle of a path, but the alarm packets are ultimately
not delivered to the base station or the source node, we still
regard this as a case of undetection. Figure 6 presents the
results for the undetected rate as we increase the channel er-
ror rate. The undetected rate increases as the channel error
rate increases. This is probably the result of alarm pack-
ets being dropped as retransmission times reach their limit
under harsh radio conditions. The results also show that
various malicious dropping rates do not greatly impact the
undetected rate.

4.3. Communication Overhead

We compare the communication overhead of two sys-
tems, one incorporating the proposed selective forwarding
attacks detection scheme and one that does not. Their ratio
is denoted as the relative communication overhead. This
ratio can help to us compare our scheme, in which data
delivery is based on one-path, with other anti-selective-
forwarding approaches such as the multipath approach men-
tioned in [2].

Figure 7 provides a more detailed view of the aggre-
gated effects of a malicious dropping rate, ACK Span,
and ACK TTL on relative communication overhead. As
the four curves show, when the channel error rate increases,
relative communication overhead increases very little. An
increased malicious dropping rate leads to increased rela-

0 2 4 6 8 10

1.4

1.6

1.8

2

2.2

2.4

Number of Malicious Nodes

R
e
la

ti
ve
 C

o
m

m
u
n
ic

a
ti
o
n
 Ove

rh
e
a
d

malicious drapping rate = 10%
malicious dropping rate = 20%
malicious dropping rate = 30%

Figure 8. Relative Communication Overhead
in terms of number of compromised nodes.

tive communication overhead, as more alarm packets are
generated and forwarded. A bigger ACK TTL value can
cause relative communication overhead to increase because
an ACK packet traverses more hops before it is dropped.

The number of malicious nodes also impact the relative
communication overhead. In our simulation, there are about
20 hops in the forwarding path between the base station
and the source node. We suppose that the number of ma-
licious nodes in the forwarding path increases from 0 to 10.
Figure 8 shows that the relative communication overhead
increases smoothly as the number of malicious nodes in-
creases. Please note that when the network contains no ma-
licious nodes, the communication overhead is only about
1.4 times of the basic one-path delivery approach, which is
apparently less than any existing multipath approach such
as [2,3].

5. Related Work

WSN security has been studied in recent year in a num-
ber of proposals. Zhang and Lee [1] are among the first to
study the problem of intrusion detection in wireless ad hoc
networks. Karlof et al. [2] analyzes attacks against sensor
network routing protocols, points out possible ways of de-
fense and the author suggests a possible way to counter se-
lective forwarding attacks by using multipath routing. Deng
et al. [3] proposes INSENS, an intrusion-tolerant scheme
based on multipath routing. These schemes [2,3] are all
based on redundant routing.

En-route filtering of injected false data in sensor net-
works has been studied recently [4,5,6,7]. Zhu et al. [4]
proposes an interleaved key scheme, in which member
nodes and intermediate nodes set up interleaved keys using
randomly pre-distributed keys. The SEF scheme [5] pro-
posed by Ye et al. tries to filter false data by a probabilistic
approach. Random keys are shared between the intermedi-

ate nodes and the source nodes in a sensor node group or
cluster. Intermediate nodes can verify the MACs generated
by the source nodes before forwarding packets. Yang et al.
[7] presents a more resilient approach based on location-
binding keys. However, in his scheme, the relative position
between source nodes and the base station is static. His
scheme will be inefficient, if there are more than one base
station, or the base station is mobile.

6. Conclusion

In this paper, we propose a simple and efficient security
scheme for detecting selective forwarding attacks. Unlike
common approaches in which detection is implemented in
the base station or in a central controller, our scheme lets
both the base station and the source nodes have the capabil-
ity to detect selective forwarding attacks. Thus even when
the base station is temporarily deafened by adversaries, at-
tacks can still be detected.

Through simulations, we observe that its difficult to dis-
tinguish packet loss due to compromised nodes from that
due to outside jammers without jamming detection tech-
nique. Both of them share similar symptoms. Currently our
scheme can only discriminate abnormal packet loss from
channel error packet loss at a high detection ratio. As long
as the malicious nodes, including compromised nodes and
outside jammers, cause more packet loss than a normal node
does at a certain channel error rate, the attacks are always
detectable. In the future work, we plan to integrate the jam-
ming detection techniques with our scheme, thus the origi-
nal causes of abnormal packet loss can be find out.

References

[1] Y. Zhang and W. Lee. Intrusion Detection in Wireless Ad-
Hoc Networks. In Proc. ACM MobiCom, pages 275-283,
2000.

[2] C. Karlof and D. Wagner. Secure Routing in Wireless Sensor
Networks: Attacks and Countermeasures. First IEEE Inter-
national Workshop on Sensor Network Protocols and Appli-
cations (SNPA 03), pages 113-127, May 2003.

[3] J. Deng, R. Han and S. Mishra. INSENS: Intrusion-Tolerant
Routing in Wireless Sensor Networks. In the 23rd IEEE In-
ternational Conference on Distributed Computing Systems
(ICDCS 2003), 2003.

[4] S. Zhu, S. Setia, S. Jajodia and N. Peng. An interleaved hop-
by-hop authentication scheme for filtering of injected false
data in sensor networks. In Proc. of IEEE Symposium on
Security and Privacy, pages 259-271, 2004.

[5] F. Ye, H. Luo, S. Lu and L. Zhang. Statistical en-route fil-
tering of injected false data in sensor networks. In Proc. of
IEEE InfoCom, 2004.

[6] J. Deng, R. Han and S. Mishra. Defending against Path-
based DoS Attacks in Wireless Sensor Networks. In Proc. the
3rd ACM on the Security of Ad Hoc and Sensor Networks
(SASN 2005), pages 89-96, 2005.

[7] H. Yang, F. Ye, Y. Yuan, S. Lu and W. Arbaugh. Toward re-
silient security in wireless sensor networks. In Proc. of ACM
MobiHoc, pages 34-45, 2005.

[8] J. Deng, R. Han and S.Mishra. Intrusion tolerance and anti-
traffic analysis strategies for wireless sensor networks. In
Proc. of International Conference on Dependable Systems
and Networks, page 637, 2004.

[9] C. Intanagonwiwat, R. Govindan and D. Estrin. Directed dif-
fusion: A scalable and robust communication paradigm for
sensor networks. In Proc. of ACM MobiCom, pages 56-67,
2000.

[10] B. Karp and H.T. Kung. GPSR: greedy perimeter stateless
routing for wireless networks. In Proc. of ACM MobiCom,
pages 243-254, 2000.

[11] C. Y. Wan, A. T. Campbell, L. Krishnamurthy. PSFQ: A Re-
liable Transport Protocol for Wireless Sensor Networks. In
Proc. of the first ACM International Workshop on Wireless
Sensor Networks and Applications, pages 1-11, 2002.

[12] Y. Sankarasubramaniam, O. B. Akan and I. F. Akyildiz.
ESRT: Event to Sink Reliable Transport in Wireless Sensor
Networks. In Proc. of ACM MobiHoc, pages 177-188, 2003.

[13] W. Xu, W. Trappe, Y. Zhang and T. Wood. The feasibility
of launching and detecting jamming attacks in wireless net-
works. In Proc. of ACM MobiHoc, pages 46-57, 2005.

[14] Y. W. Law, L. V. Hoesel, J. Doumen, P. Hartel and P.
Havinga. Energy-efficient link-layer jamming attacks against
wireless sensor network MAC protocols. In Proc. of the
3rd ACM on the Security of Ad Hoc and Sensor Networks
(SASN 05), pages 76-88, 2005.

[15] S. Capkun, J. Hubaux. Secure Positioning of Wireless De-
vices with Application to Sensor Networks. In Proc. IEEE
InfoCom, 2005.

[16] S. Ganeriwal, S. Capkun, C. Han, M. B. Srivastava. Secure
Time Synchronization Service for Sensor Networks. In Proc.
of the 4th ACM workshop on Wireless Security (WiSe 06),
pages 97-106, 2006.

[17] M. Manzo, T. Roosta, S. Sastry. Time Synchronization At-
tacks in Sensor Networks. In Proc. of the 3rd ACM on the
Security of Ad Hoc and Sensor Networks (SASN 05), pages
107-116, 2005.

[18] C. Ozturk, Y. Zhang, W. Trappe. Source-Location Privacy
in Energy-Constrained Sensor Network Routing. In Proc. of
SASN 04, pages 88-93, 2004.

[19] L. Lamport. Constructing digital signatures from one-way
function. in technical report SRI-CSL-98, SRI International,
Oct. 1979.

[20] J. M. McCune, E. Shi, A. Perrig, M. K. Reiter. Detection of
Denial-of-Message Attacks on Sensor Network Broadcasts.
In Proc. of IEEE Symposium on Security and Privacy, pages
64-78, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

