A Correctness Proof of the SRP Protocol *

Huabing Yang, Xingyuan Zhang, and Yuanyuan Wang
PLA University of Science and Technology, P.R. China
yanghuabing@gmail.com, xyzhang@publicl.ptt.js.cn, wangyy2005@gmail.com

Abstract

The correctness of a routing protocol can be divided into
two parts, a liveness property proof and a safety prop-
erty proof. The former requires that route(s) should be
discovered and data be transmitted successfully, while the
latter requires that the discovered routes have some de-
sired characters such as containing only benign nodes.
While safety properties are relatively easier to prove, the
proof of liveness properties is usually harder. This paper
presented a liveness proof of a secure routing protocol,
SRP [11] in Isabelle/HOL [10]. The liveness property
proved says that if a data package needs to be sent, then
it will be sent and then received, and finally, the sender
will receive an acknowledgement sent back by the receiver.
There are three main contributions in this paper. Firstly,
o liveness property is proved for a secure routing proto-
col, and this has never been done before. Secondly, our
validation model can deal with arbitrariy many nodes in-
cluding malicious ones, and nodes are allowed to move
randomly. Thirdly, a fail set is defined to restrict the
attackers’ actions, so that the safety properties used to
prove the liveness property can be established. The paper
explains why it is reasonable to prevent malicious nodes
from performing the events in fail set.

Index Terms: Correctness, Liveness property, Re-
sponse property, Secure routing protocol, SRP protocol,
Isabelle.

1 Introduction

An ad hoc network is a group of wireless mobile comput-
ers, in which individual nodes cooperate by forwarding
packets for each other to allow them to communicate be-
yond direct wireless transmission range. Several secure
routing protocols [4-6,11] for ad hoc network have been

*This research was funded by National Natural Science Founda-
tion of China, under grant 60373068 ‘Machine-assisted correctness
proof of complex programs’

1-4244-0054-6/06/$20.00 ©2006 IEEE

proposed in recent years. However, each of these proto-
cols treats only a subset of security threats, and most of
them have not been formally verified. However, secure
routing protocols require rigorous formal verification, so
that people can trust and make use of them in real ap-
plication.

To the best of our knowledge, there have been some
formal analysis of ad hoc network routing protocols
[1-3,9,14,15,17], but only paper [2] and paper [17] dealt
with secure routing protocols. Additionally, all of these
verifications only treat safety properties. It seems that
we are the first to deal with liveness properties. Fur-
thermore, many of these cited works, such as [14,15], are
done with model checking. Since model checking technol-
ogy does not scale well, these works can only deal with
models with very small number of mobile nodes. For
instance, paper [14] only discusses a 5-node model.

Liveness property is very important to a routing proto-
col, especially to a secure routing protocol. In this paper,
we focused on the liveness property of a secure routing
protocol, SRP [11]. Since SRP is only a route discovering
protocol which does not consider data transmission, we
combine SRP with a secure message transmission proto-
col, SSP [12]. SSP is a restricted version of SMT [12]. In
this paper, we use SRP to name the combination of SRP
and SSP. The meaning of the liveness propety proved in
this paper is that if a data package needs to be sent,
then the data will be sent, and the receiver will receive
this data and send back an acknowledgement, which will
eventually be received by the sender. This property can
be formulated with a LTL (Linear Temporal Logic) for-
mula of the form ?0 = O(?P — ¢ ?Q). According to
Manna and Puneli [8], formalae of this form represent
response properties.

The liveness proof of a secure routing protocol is harder
than the one for non-secure routing protocol, because the
behavior of malicious nodes must be taken into account.
If there exist some malicious nodes in the system and if
they can do everything, even the securest routing proto-
col can not work normally. So we add a condition that
the malicious node can not execute any event in a fail
set. This paper explains why it is reasonable to prohibit

the events in the fail set from happening in section 4.

In paper [18], a liveness proof method is proposed, to deal
with general liveness properties. Our method extends
Paulson’s inductive protocol verification approach [13]!
The feasibility of our method has been shown by paper
[16], which proved the liveness property of an elevator
control system. In this paper, we use the method to
deal with a more realistic example, that is, the liveness
of SRP. The model proposed in this paper can deal with
networks with arbitrarily many mobile nodes, which is
the virtue of the theorem proving approach.

The paper is organized as follows. Section 2 presents
the system model, which consists of two concurrent sub-
systems: srp and attacker fail. The sub-system srp de-
scribes the activities of benign nodes, and the sub-system
attacker fail describes the activities of malicious nodes.
Section 3 introduces SRP briefly, and gives the formal de-
scription of the sub-system srp. Section 4 describes the
fail set and the sub-system attacker fail. Section 5 for-
mulates the liveness part of the correctness of SRP and
describes the liveness proof. Section 6 concludes.

2 Concurrent systems

According to the definition of a concurrent system in [18],
the type of concurrent systems is (‘a list X 'a) set and a
concurrent system is written as cs. The expression (7, €)
€ c¢s means that the event e is legitimate to happen under
system state (event list) 7, according to c¢s. Under such
a definition of the concurrent system, the composition
operator ‘||’ can be defined naturally as:

cs1 || es2 = es1 U csa

The intuition behind this definition is that, in a concur-
rent system consisting of sub-systems c¢s; and cs2, an
event e is legitimate to happen iff it is eligible to happen
either according to cs; or according to css.

Using ‘||, a complex concurrent system cs can be decom-
posed into many sub-systems as:

cs=cs1 || es2 || es3]l ...

In this paper, the SRP protocol is composed of two sub-
systems: srp and attacker fail. The sub-system srp de-
scribes activities of the benign nodes, and the sub-system
attacker fail describes activities of the malicious nodes.
Since there exist both benign nodes and malicious nodes
in the system, the SRP protocol is modeled as:

srp || attacker fail

1Paulson’s approach can only be used to prove safety properties,
i.e. properties about finite execution traces.

01234567890123456789012345678901

IP Header
Basis Routing Protocol Packet
SRP Header

Figure 1. SRP route request packet

01234567890123456789012345678901
Type | Reserved
Query Identifier (Qid)
Query Sequence Number (Qseq)
SRP MAC

Figure 2. SRP header

3 The SRP protocol and its formaliza-
tion

3.1 Overview

The SRP protocol is a secure routing protocol for mobile
ad hoc networks, based on some reactive routing proto-
cols such as the DSR protocol [7]. SRP assumes the exis-
tence of a security association (SA) between the source S
and the destination D, which can be achieved through a
shared key x5 p between S and D. And the intermediate
nodes do not need to validate the control message.

We assume there exist N nodes in the system. And N
can be an arbitrarily large natural number. Thus our
model can deal with arbitrarily many nodes.

types Node = nat

‘We use natural number to represent the addresses of
nodes, and 0 to indicate a broadcasting address.

consts N :: nat — | N expresses node number.

axioms N2: 1 < N — | We assume N is greater than 1.

The source initiates a route discovery by broadcasting a
route request packet as shown in Figure 1. SRP adds an
additional header called SRP header to the underlying
routing protocol packet. The SRP header is shown in
Figure 2.

The query identifier Qid is a random 32 bit identifier
generated by S. It is used by the intermediate nodes as
a means to identify the request. Since @id is an out-
put of a secure pseudo-random number generator and is
unpredictable by the attackers, it can provide protection
against attackers who fabricate requests only to cause
subsequent requests to be dropped.

The query sequence number @seq is a 32 bit sequence
number maintained by the source node (S) for each des-
tination (D), with which it has a security association. It

increases monotonically for every route request generated
by S for D, thus allowing D to detect outdated requests.
Q)seq is initialized at the establishment of the SA and is
not allowed to wrap around.

The @Qid and @Qseq are represented as natural number:

types Qid = nat
types Qseq = nat

The SRP MAC is a 96 bit value calculated using the
shared key and the non-mutable fields of the message.
Therefore the SRP MAC not only validates the integral-
ity of the message but also authenticates the origin of the
packet because the attackers do not know the shared key.
datatype NonMutableField =

NQ@P Node Node Qid Qseq Node list
The non-mutable fields in the route request message and
route reply message.
| NDA Node Node Data Node list

The non-mutable fields in the data message and ac-
knowledgement message.

types MAC = nat
consts crypt :: Key = NonMutableField = MAC

An example of the MAC for route request is crypt kg p
(NQP S D qid gseq []) -

3.2 Messages and events in SRP

The message in SRP is expressed as: MSG Source Des-
tination Msg-option. It is defined as:

datatype Msg = MSG Node Node Msg-option

There are four kinds of Msg-option, defined as:

datatype Msg-option =
RREQ Node Qid Qseq Node list MAC — Request
| RREP Qid Qseq SegsLeft Node list MAC — Reply
| DATA Data SegsLeft Node list MAC — Data
| ACK Data SegsLeft Node list MAC ~— Acknowledgement

We do not consider the route error messages because it
does not affect the liveness proof.

The type of events that may happen in SRP is defined
as:
datatype event =
Send Node Msg
—| Send A msg: Node A sends a message msg. |
| Recv Node Msg
—| Recv A msg: Node A receives a message msg. |

| Disturb real X real real

Disturb (z, y) p: A disturbance happens at position (z,
— | y) with the power p. The disturbance may result in a
failure of data reception.

| Move
Move A ¢ y: Node A moves a distance of z in horizontal
orientation, and y in vertical orientation.

| DataNeedSend Node Node Data

Node real real

DataNeedSend S D d: A data d comes to node S’s net-
— | work layer from application layer and needs to be trans-
mitted to node D.

| DataRecvd Node Node Data Node list
DataRecvd D S d p: A data d is received by node D
from node S, through the path p.

| Tick
— | Tick: It is used to reckon the steps of the system time.

3.3 Describing the sub-system srp

The sub-system srp consists of fourteen rules, which are
established according to SRP. For instance, we use the
following rule:

(t, Move A r1 12) € srp
to express that the nodes can move randomly in the net-
work.

If there exists a data in the sending buffer of the source
S, and there is no route in the route cache of S, then S
broadcasts a new route request:

[(data, 0) mem sendbf (7, S, D) V

(data, 2) mem sendbf (1, S, D) V

(data, 1) mem sendbf (1, S, D) A

(3z. mem curreq (t, S, D) A RetranstimerOut < snd (snd z));
cache (1, S, D) = []]

=

(r, Send S (MSG S 0 (RREQ D (rangid (1, S, D))

(segmono (1, S, D)) [S] (crypt KS.D (NQP S D

(rangid (t, S, D)) (segmono (7, S, D)) []))))) € srp

When an intermediate node receives such a route request,
it extracts the Qid value to determine if it has already
relayed a packet corresponding to the same request. If
not, the intermediate node extracts the node list from the
request. If this intermediate node already exists in the
node list, the request is discarded directly. Otherwise,
the intermediate node appends its own IP address to the
node list and rebroadcasts the request message:

[MSG S 0 (RREQ D qid gseq ndl mac) mem pdREQ (7, B);

B # D; (S, qid, D) ¢ set (sentREQ (7, B)); = B mem ndl]

=

(7, Send B (MSG S 0 (RREQ D qid gseq (ndlQ[B]) mac))) € srp

Thus IP addresses of the intermediate nodes keep
on accumulating on the route request.

when the destination D receives this request packet, it
verifies that the packet has originated from the node with
which it has SA. And Qseq is compared with MAXseq,
the maximum query sequence number received from S. If
Qseq < M AX seq, the request is considered to be out-
dated and is discarded. Else the encrypted hash of the
request field is calculated and matched against the SRP

MAC. The equality validates the integrality of the re-
quest as well as the authenticity of the sender. For each
valid request, the destination puts the accumulated route
of intermediate nodes into the route reply packet. The
Qseq and Qid fields from the route request are copied into
the corresponding fields of the reply packet. MAC is cal-
culated to preserve the integrality of the reply packet in
transit. The @Qseq and Qid fields verify the freshness of
the reply packet to the source. We express the above case
as the rule reply-route-request:

[MSG S 0 (RREQ D qid gseq ndl mac) mem pdREQ (7, D);
mac = crypt £D,S (NQP S D qid gseq []);

mazseq (1, D, S) < gseq |

—

(r, Send D (MSG D S (RREP qid gseq (|ndl Q [D]| — 2)
(rev (ndl @ [D])) (crypt kDS (NQP D S qid gseq

(rev (ndl @ [D]))))))) € srp

When the source S receives the route reply packet, it
checks source, destination addresses, the Qid, and the
Qseq. S discards the reply if it does not correspond to
the currently pending query. Otherwise, S compares the
reply IP source-route with the reverse of the route car-
ried in the reply package. If the two routes match, MAC
is calculated using the non-mutable fields of SRP header
and kg p. The successful verification confirms that the
request indeed reaches the intended destination and the
reply has not been corrupted on the way back from D to
S. Furthermore, since the reply packet has been success-
fully routed and received over the reverse of the route
it carries, the routing information has not been compro-
mised during the request propagation.

4 The fail set and the definition of at-
tacker fail

4.1 The fail set

If there exist some malicious nodes who can do every-
thing, such as knowing all shared keys of others, even
the securest routing protocol will fail. So we define a
fail set, and assume the events in which will not happen.
Then we can prove some safety properties of SRP, so long
as the events fabricated by attackers are not in the fail
set. And we will explain the fail set is defined reason-
ably. That is to say, SRP is safe enough to withstand
any reasonable attackers.

The fail set changes with the system state, so it is defined
as a function of event list. We divide it into five parts:
faill, fail2, fail3, fail4, and fails.

constdefs fail :: event list = event set
fail T = (faill T U fail2 7 U fail3 7 U fail4 7 U fail5 T)

In the following subsections, we will interpret the five
parts of the fail set separately.

4.1.1 The faill

We know that no node can receive any message if no node
has sent any message. Namely, only if a node has sent a
message, can the node’s neighbors receive this message.
Therefore, the event Recv B msg should not happen ex-
cept that the event Send A msg has happened and that
the distance between A and B is not more than the send-
ing power of A. This property is described in faill:
consts faill :: event list = event set

faill [| = {e. (3B msg. e = Recv B msg)}

faill (Send A msg # 1) = faill T —

{e.(3B.disT A B < powr ANA# B A e= Recv B msg)}
faill (e # 1) = faill T

4.1.2 The fail2

We assume that the attackers do not know the shared
key between the source S and the destination D. Since
the non-mutable parts in the messages are protected with
the MAC and the MAC is encrypted with kg p or kp g,
any message fabricated by attackers will be detected by
S or D, except that the attackers only change the muta-
ble parts in the messages, and the change must be very
skillful for the purpose of not being detected by S or D.

For route request messages, only when the malicious in-
termediate nodes change the message sender and the ac-
cumulated node list synchronously, can the change not be
detected by the destination. It is described in fail2:

consts fail2 :: event list = event set
fail2 [| = {e. (3A S D qid gseq ndl.
e = Send A (MSG S 0 (RREQ D qid gseq ndl
(crypt kg p (NQP S D qid gseq [1)))))}
fail2 (Send A (MSG S DO (RREQ D qid gqseq ndl mac)) # 7) =
(if DO = 0 A mac = crypt KS.D (NQP S D qid gseq [])
then fail2 T —
{e. (3n < |ndl|. e = Send (ndl ' n) (MSG S 0
(RREQ D qid gseq (take (Suc n) ndl) mac)))}
else fail2 7)
fail2 (e # 1) = fail2 T

4.1.3 The fail3, fail4, and fail5

For route reply messages, data messages, and acknowl-
edgement messages, only that the malicious intermedi-
ate nodes change the message sender and the segments-
left synchronously, can the change be not found by the
source. the fail3 describes the change on reply messages:

consts fail3 :: event list = event set
fail3 [| = {e. (3A S D qid gseq segl ndl.
e = Send A (MSG D S (RREP qid gseq segl ndl
(crypt kD,S (NQP D S qid gseq ndl)))))}
fail3 (Send A (MSG D S (RREP qid gseq segl ndl mac)) # 7) =
(if mac = crypt kDS (NQP D S qid gseq ndl)
then fail3 ™ —
{e. (An.n < |ndl| A0 < n A e= Send (ndl ! n)

(MSG D S (RREP qid gseq (n — 1) ndl mac)))}
else fail3 7)
fails (e # 1) = fail8 T

The fail{ and the fail5 are defined almost the same as
the fail3, so we do not give their definitions here.

4.2 The definition of attacker fail

We define a concurrent system attacker G as follows:

consts attacker :: ('a list = 'a set) = ('a list x 'a) set
ak: e ¢ G T = (7, e) € attacker G

In this system, any event may happen if only the event is
not in the event set G 7. We assume that the malicious
nodes should not produce any event in the fail set. So
the concurrent system attacker fail can exactly describe
the behaviour of attackers, who can produce any event
in anytime, except those in the event set fail 7.

5 Liveness proof of SRP
5.1 Liveness Description

The informal description of the liveness propety proved
in this paper is that if a data package needs to be sent,
then the data will be sent, and the receiver will receive
this data and send back an acknowledgement, which will
eventually be received by the sender. When a data pack-
age needs to be sent from S to D, there exist three cases.

Firstly, if the route cache of S is not empty, and the first
route in the cache is good?, the data will be transmitted
successfully using this route. Then D will send out an
acknowledgement when it receives this data, and S will
receive this acknowledgement eventually.

Secondly, if the route cache is empty, a route discovery
will be performed, and at least one path (good route)
will be discovered because we assume there will exist
paths between the source and the destination®. And then
the data will be transmitted using this newly discovered
route.

Thirdly, if the route cache is not empty, and the first
route in the cache is broken, S will transmit the data
using this broken route. The transmition will fail and
S will retransmit this data after a period of fixed time.
While the retransmision times is larger than a threshold

2We let nodes choose the first route in its cache to send data.
31t is possible that there is no path sometimes in the network by
reason of nodes’ movement, so we assume that the maximum time
interval of non-existent path has an upper limit. The following
axiom expresses this assumption clearly:
azioms mobility: ezpath S D 7 V (37'. expath S D 7' A time 7' —
time T < RetranstimerOut)

value, S will delete this broken route from its cache. As
the size of the cache is limited, S will delete all of the
broken routes, and use a good route to send the data. If
all routes in the cache are broken, S will clear its cache,
and find a new path through a route discovery.

The formal expression of the liveness property is theorem
send-will-recv:

[(srp || attacker fail) & o3

PF (srp || attacker fail) {F S D data, E S D data, M} o]

BN

o = O({(DataNeedSend S D data|)) —

O{(A7. Ip. (Recv S (MSG D S (ACK data 0 p

(crypt 65 p (NDA D S data p))))) 7))

The conclusion of send-will-recv is a response property.
It says that if the event DataNeedSend S D data happens,
then there exists a path p and the event Recv S (MSG D
S (ACK data 0 p (crypt ks p (NDA D S data p)))) will

eventually happen*.

The premise of send-will-recv is a Parametric Fairness
(PF) assumption. The explanation and the definition
of PF are given in paper [18]. The PF assumption can
ensure that the concurrent system srp || attacker fail
runs fairly . In unfair executions, even though the event
DataRecvd D S data p is enabled infinitely many times,
if it never happens, then D will never receive any data.
The fairness assumption is necessary to prevent such oc-
casions from happening for infinitely many times.

5.2 Liveness proof

5.2.1 Overview
According to the resp-rule [18]:

[RESP %cs 2F ?E ¢?N ?P 2Q);
?cs - 205 PF ?cs {?F, ?E, ?N|} ?0]
— %0 = O(?P) — O(?2Q) ,

if we let

?cs = srp || attacker fail,

?P = (A7. (DataNeedSend S D data)) 7),

?Q = (Ar. dp. (Recv S (MSG D S (ACK data 0 p (crypt K8.D
(NDA D S data p))))) 7),

we can gain:

[RESP (srp || attacker fail) ?F ?E ¢N

(DataNeedSend S D datal) (Ar. 3p. (Recv S (MSG D S

(ACK data 0 p (crypt k$.D (NDA D S data p))))) 7);

srp || attacker fail = o; PF (srp || attacker fail) {?F, ?E, N} o
=

o = O({(DataNeedSend S D data|)) —

O{(A7. Ip. (Recv S (MSG D S (ACK data 0 p

(erypt KS.D (NDA D S data p))))) 7))

And then, we only need to prove the premise RESP in

4(e) T means that the last event of the event list T is e.

locale RESP =
fixes cs :: (‘a list x a) set
and F :: 'a list = nat
and E :: ‘a list = a
and N :: nat
and P :: ‘a list = bool
and Q :: ‘a list = bool
assumes mid: [cs - 75 [P ——Q %] 73 - Q 7]
— 0<FTAFTN
and fd: [es+ 7;0 < F 7]

= 7s>ETAF(ET#7)<FrT

Figure 3. The definition of RESP

locale RESP1 =

fixes cs :: (‘a list X a) set

and TR :: ‘a list = ‘a list

and N :: nat

and P :: ‘a list = bool

and Q :: ‘a list = bool

assumes path: f[es - 7; [P —— Q x| 75 - Q 7]
— |[TR7|<NAQ (TR T)QT)A

csHF(TRT)QT

Figure 4. The definiton of RESP1

order to get the theorem send-will-recv, which is the
formal expression of the liveness property.

The definition of RESP, given in Figure 3, expresses some
requirements on the underlying state-transition system.
RESP requires F' to be a measuring function which re-
turns the distance from the current state to the desired
()-state. RESP also requires function F to be a strategy
for choosing the next eligible event to happen, so that
the happening of the selected E-event will decrease the
F-measurement. The N is an upper bound of F. The
existence of F, ' and N will ensure the desired liveness
property. The detail explanation of the RESP is in pa-
per [18].

We only need to find two functions F', E and a natural
number N to prove the RESP premise. We have suc-
cessfully found such functions F', F in the liveness proof
of an elevator control system [16]. However, it is more
difficult to find such functions with regard to SRP. So we
use another locale RESP1, whose definition is shown in
Figure 4.

Comparing with RESP, RESP1 only needs one function
TR, and there exists only one assumption path. The path
assumption ensures that there exists a finite, valid list
TR 7 leading to the desired @-state .

we can substitute RESP1 for RESP, since we can prove
the lemma resp-from-1:

RESP1 ¢cs TRNPQ — 3dFE. RESPcs FENP Q@

Now what we need to do is to prove the RESP1 in order
to get the conclusion.

5.2.2 Proving the RESP1

In order to prove the RESP1, we should first find a finite
valid event list TR 7 and a natural number N, and prove
the path assumption of RESP1.

From above discussion, we know that there are three
cases when a data comes to S and needs to be sent. In
the first case, the first route in S’s route cache is good.
We let ?TR equals to the event list of the process of
transmitting this data, and the process of receiving data
and transmitting acknowledgement.

In the second case, S’s route cache is empty. We let
?TR equals to the event list of the process of discover-
ing the route, and transmitting the data using the route
just discovered, and the process of receiving data and
transmitting acknowledgement.

In the third case, the first route in S’s cache is broken.
We let TR equals to the event list of the process of delet-
ing broken route(s), and the process of discovering new
route (if needed), and the process of transmitting this
data, and the process of receiving data and transmitting
acknowledgement. Figure 5 illustrates a state transition
diagram for a network with four nodes S, A, B, and D .

We can find such a valid event list TR 7 according to
above description, and the length of it is finite because
the size of route cache and the number of nodes is finite.
Once found TR 7, the path assumption of RESP1 is prov-
able. The proof is straight forward with the definition of
TR in mind, although it is a little boring.

6 Conclusion

At present, there are few formal verifications for secure
routing protocols, and there is no liveness verification for
ad hoc routing protocols of any kind. In this paper, we
presented a liveness proof of the secure routing protocol
SRP. In our model, any node can move randomly, and
there exists disturbance which may result in a failure of
data reception. For the purpose of the liveness proof, we
proposed a fail set to reasonably restrict the attackers’
behaviours, and we explained why the definition of fail
set is reasonable.

References

[1] K. Bhargavan, D. Obradovic, and C. A. Gunter. For-
mal verification of standards for distance vector routing
protocols. Journal of the ACM, 49(4):538-576, 2002.

[2] L. Buttyan and I. Vajda. Towards provable security for
ad hoc routing protocols. In SASN ’04: Proceedings of
the 2nd ACM workshop on Security of ad hoc and sen-
sor networks, pages 94-105, New York, NY, USA, 2004.
ACM Press.

/N

/Dal(aNeedSend SD dala\

The third case)
DataNeedSend S D data DataNeedSend S D data
(The second gase)]] (The ﬂ&al case) Send A (MSG D S(ACK
Tick...., Tick..... data 0 [DBAS] macl))
Tick Tick

Send S (MSG S 0 (RREQ
D gid gseq [S] mac))

_,G

Send S
data 2

G S D (DATA

BD]mac))

Send A (MSG D S (ACK
data 0 [DBAS] macl))

=2
23

&

Recv S(MSG D S (RREP
qid gseq 0 [DBAS] macl))

()
-

=
@
Q
2

Recv A
D qit

0 (RRE
NI inac))Q

S D (DATA

Recv A
dat: BD] mac))

s
D2
717

Q

S.

s
o
3
&
8
>

-G
(&

Recv A (MSG D S (ACK

Send A (MSGD S (RREP
data 1 [DBAS] macl))

qid gseq 0 [DBAS] macl))

&)~

-
{D+

$0;

Send A (MSG S 0 (RREQ Send A (MSG S D (DATA
D qid gseq [SA] mac)) data 1 [SABD] mac))
Send B (MSG D S (ACK
Recv A (MSG D S (RREP data 1 [DBAS] macl))
qid gseq 1 [DBAS] macl))
Recv B (MSG S 0 (RREQ @ Recv B (MSG S D (DATA @
D gid gseq [SA]mac)) data 1 [SABD] mac))
v Recv B (MSG D S(ACK
Send B (MSGD S (RREP data2 [DBAS] macl))
qid gseq | [DBAS] macl)) @
Send B (MSG S 0 (RREQ @ Send B (MSG S D (DATA a
Dqid gseq [SAB] mac)) data 0 [SABD] mac))
' Send D (MSG D S (ACK
Recv B (MSG D S (RREP
qid gseq 2 [DBAS] macl)) data 2 [DBAS] macl))

Oy

&
©

[©)}

Recv D (MSG S 0 (RREQ
D gid gseq [SAB] mac))

Recv D (MSG S D (DATA
data 0 [SABD] mac))

\ DataRecvd D S data p

Figure 5. The state transition diagram for a
four-node network

3]

[4]

[5]

[10]

[11]

[12]

13]

[14]

[15]

[16]

[17]

18]

A. R. Cavalli, C. Grepet, S. Maag, and V. Tortajada. A
validation model for the dsr protocol. In ICDCS Work-
shops, pages 768-773, 2004.

B. Dahill, K. Sazgiri, B. N. Levine, E. Belding-Royer,
and C. Shields. A secure routing protocol for ad hoc net-
works. In 10th Conference on Network Protocols, 2002.
M. Z. Guerrero and N. Asokan. Securing ad hoc rout-
ing protocols. In ACM Workshop on Wireless Security
(WiSe) in conjunction with ACM MobiCom, Atlanta,
Georgia, sep 2002.

Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne: a
secure on-demand routing protocol for ad hoc networks.
In MOBICOM, pages 12-23, 2002.

D. B. Johnson, D. A. Maltz, and Y.-C. Hu. The dynamic
source routing protocol for mobile ad hoc networks (dsr).
Internet Draft: draft-ietf-manet-dsr-10.txt, July 2004.
Z. Manna and A. Pnueli. Completing the temporal pic-
ture. Theor. Comput. Sci., pages 91-130, 1991.

S. Nanz and C. Hankin. Static analysis of routing pro-
tocols for ad-hoc networks. In Proceedings of the 2004
ACM SIGPLAN and IFIP WG 1.7 Workshop on Issues
in the Theory of Security (WITS’04), pages 141-152,
2004.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic, volume
2283 of LNCS. Springer, 2002.

P. Papadimitratos and Z. J. Haas. Secure routing for
mobile ad hoc networks. In Communication Networks
and Distributed Systems Modeling and Simulation Con-
ference (CNDS), pages 193-204, 2002.

P. Papadimitratos and Z. J. Haas. Secure data transmis-
sion in mobile ad hoc networks. In WiSe ’03: Proceedings
of the 2008 ACM workshop on Wireless security, pages
41-50, New York, NY, USA, 2003. ACM Press.

L. C. Paulson. The inductive approach to verifying cryp-
tographic protocols. J. Computer Security, 6:85-128,
1998.

R. Renesse and A. H. Aghvami. Formal verification of
ad-hoc routing protocols using spin model checker. In
IEEE MELECON, Dubrovnik, Croatia, May 2004.

S. C. Tanara Lauschner, Autran Macedo. Formal ver-
ification and analysis of a routing protocol for ad-hoc
networks. 2000.

H. Yang, X. Zhang, and Y. Wang. Liveness proof of
an elevator control system. In The ‘Emerging Trend’
of TPHOLs 2005, Oxford University Computing Lab.
PRG-RR-05-02, pages 190-204, 2005.

S. Yang and J. S. Baras. Modeling vulnerabilities of
ad hoc routing protocols. In SASN ’03: Proceedings of
the 1st ACM workshop on Security of ad hoc and sensor
networks, pages 12-20, New York, NY, USA, 2003. ACM
Press.

X. Zhang, H. Yang, and Y. Wang. Liveness reasoning for
inductive protocol verification. In The ‘Emerging Trend’
of TPHOLs 2005, Oxford University Computing Lab.
PRG-RR-05-02, pages 221-235, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

