
Energy-Efficient ID-based Group Key Agreement Protocols for
Wireless Networks

Chik How Tan1 and Joseph Chee Ming Teo2

1NISlab 2Information Communication Institute of Singapore
Department of Computer Science School of Electrical and Electronic Engineering

and Media Technology Nanyang Technological University
Gjøvik University College, Norway Singapore 639798

chik.tan@hig.no jose0002@ntu.edu.sg

Abstract

One useful application of wireless networks is for
secure group communication, which can be achieved by
running a Group Key Agreement (GKA) protocol. One
well-known method of providing authentication in GKA
protocols is through the use of digital signatures. Tradi-
tional certificate-based signature schemes require users
to receive and verify digital certificates before verify-
ing the signatures but this process is not required in
ID-based signature schemes. In this paper, we present
an energy-efficient ID-based authenticated GKA proto-
col and four energy-efficient ID-based authenticated dy-
namic protocols, namely Join, Leave, Merge and Par-
tition protocol, to handle dynamic group membership
events, which are frequent in wireless networks. We
provide complexity and energy cost analysis of our pro-
tocols and show that our protocols are more energy-
efficient and suitable for wireless networks.

1 Introduction

One useful application of wireless networks is for
group communication. However, as the messages in
wireless networks are broadcast in plain, they do not
provide secure group communication. To provide se-
cure group communication, a group key agreement
(GKA) protocol can be used to establish a common
group key known only to the users in the group.

The most common way of providing authentication
in GKA protocols is through the use of digital signa-
tures. However, this approach usually requires each
group member to verify all messages received, which
can be large when group size n is large. In certificate-

based Public Key Cryptography, before a user can use
the public key of the signer to verify the signature,
the user has to first obtain and verify the digital cer-
tificate issued by a Certifying Authority (CA) to the
signer. This results in additional computational cost.
ID-based signature schemes do not require the recep-
tion and verification of certificates as there are no re-
quirements for public keys in ID-based schemes.

In 1994, Burmester and Desmedt proposed an effi-
cient and secure Burmester-Desmedt (BD) GKA pro-
tocol [2] that is suitable for wireless networks. One
intuitive way of providing authentication for the BD
protocol is to sign and verify all messages sent and re-
ceived respectively. Although only two signatures are
required to be generated, each group member will have
to verify n + 2 messages. The original paper of BD
[2] also did not provide protocols to handle dynamic
group membership events such as user join, user leave,
network merge and network partition, which occur fre-
quently in wireless networks that have dynamic net-
work topology. One intuitive but inefficient method to
handle such events as pointed out in [1] and [10] is to
re-execute the BD protocol.

In this paper, we present an authenticated GKA
protocol that is based on a variant of the Guillou-
Quisquater (GQ) signature scheme [5] and the BD pro-
tocol [2]. The GQ signature scheme is an efficient
ID-based scheme that is not based on pairing, which
has high computational cost [14]. We then compare
our scheme with other authenticated versions of the
BD protocol and the ID-based Saeednia-Safavi-Naini
(SSN) GKA protocol [12], which is also based on the
BD protocol. The complexity and energy cost analy-
sis are based on the 133MHz “StrongARM” micropro-
cessor and two communication transceivers commonly

1-4244-0054-6/06/$20.00 ©2006 IEEE

used in wireless networks. From the energy cost anal-
ysis, we show that our scheme is the most efficient.
Next, we present four authenticated dynamic proto-
cols, namely Join, Leave, Merge and Partition proto-
col to handle dynamic group membership events. Simi-
larly, we provide a complexity and energy cost analysis
of our dynamic protocols with the BD and show that
the energy consumed by nodes running our dynamic
protocols are significantly lower.

This paper is organized as follows: Section 2 de-
scribes the related work in this area of research while
a variant of the GQ signature scheme is presented in
Section 3. We present our proposed protocol in Sec-
tion 4 followed by its complexity and energy analysis
in Section 5 and 6 respectively. Section 7 presents our
four dynamic protocols and their complexity and en-
ergy analysis are given in Section 8. Finally we con-
clude in Section 9.

2 Related Work

In 1982, Ingemarsson et al. [7] proposed the first
GKA protocol known as ING protocol. Following their
work, many GKA protocols such as [15, 2, 10, 4, 12]
were proposed. One of these protocols, Burmester-
Desmedt (BD) [2] protocol, is an efficient and secure
GKA protocol, which Katz and Yung [9] recently pro-
vided a rigorous security proof in the standard model.
Saeednia and Safavi-Naini [12] proposed an ID-based
authenticated GKA protocol (SSN) that is based on
the BD in 1998. Although this protocol provides au-
thenticated GKA, the number of exponentiations re-
quired to be performed by each user is dependent on
the group size n. Furthermore, the authors did not
specify any dynamic GKA protocols. Currently, most
GKA protocols are analyzed based on their complexity.
In wireless networks such as MANETs where nodes are
usually low power energy constrained devices such as
PDAs and sensor nodes, it will be more appropriate to
analyze the exact energy consumed by each node for
different GKA protocols based on the computational
and communication costs.

3 GQ ID-based Signature Scheme

Guillou and Quisquater [5] designed an efficient ID-
based Signature scheme (GQ) in 1990. We present a
variant of the GQ signature scheme as follows:
Setup : The Private Key Generator (PKG) selects two
large primes p′ and q′ and computes n = p′q′. Next, the
PKG chooses a large number d that is relatively prime
to Φ(n), where Φ() is Euler’s totient function and cal-
culates e such that gcd(e, d) = 1. The PKG also selects

a one way hash function H : {0, 1}∗ → {0, 1}l, where
l is a security parameter. The parameters params are
(n, e,H) and the master keys are (p′, q′, d).
Extract : The PKG verifies the given user identity
ID and computes the secret key for the identity as
SID = H(ID)d mod n. The secret key SID is then
sent securely to user ID.
Sign : Given a private key SID and a message M ,
choose τ ∈R Z∗

n and compute c = H(τe,M) and s =
τ · Sc

ID mod n. Then σ = (s, c) is the signature of M .
Verify : The signature σ = (s, c) of an identity ID
on a message M is valid if the equation c = H(se ·
(H(ID))−c,m) holds good.

4 Proposed ID-based Authenticated
Group Key Agreement Protocol

The proposed authenticated GKA protocol is ID-
based and uses batch verification based on a variant of
the GQ signature scheme. We assume that only honest
and trusted nodes are participating in the GKA.

Let G = {U1, · · · , Un} be the initial group of n
users where Ui = IDi for i ∈ {1, · · · , n} refers to the
given identity of user Ui. We consider a ring structure
among the users of G where the users’ indices can be
considered on the circulation of {1, · · · , n}. The pro-
posed protocol consist of two rounds during which each
user Ui will broadcast their key materials zi and Xi in
Round 1 and Round 2 respectively for group key com-
putation. The protocol works as follows:
Setup : The PKG first selects two large (512-bit) prime
numbers p′ and q′ and calculates n = p′q′. Next, the
PKG chooses a large number d that is relatively prime
to Φ(n) and calculates e such that gcd(e, d) = 1. The
PKG also selects two random large primes, q (160-bit)
and p (1024-bit), such that q divides p−1 for the GKA
protocol. Next, an element g ∈ Z∗

p of order q is se-
lected as the generator. Finally, the PKG selects a
one way hash function H : {0, 1}∗ → {0, 1}l, where l
is a security parameter. The parameters params are
(n, e, p, q, g,H) and the master keys are (p′, q′, d).
Extract : The PKG verifies the 32-bit identity Ui =
IDi of user Ui and computes the secret key for Ui as
SUi

= H(Ui)d mod n. The secret key SUi
is then sent

securely to Ui.
Round 1 : Each user Ui for i ∈ {1, · · · , n} first selects
ri ∈ Z∗

q and τi ∈ Z∗
n and computes zi = gri mod p

and ti = τe
i mod n. Ui then broadcast mi = Ui||zi||ti

(where || denotes concatenation of messages).
Round 2 : Each user Ui first computes :

Xi =
(

zi+1

zi−1

)ri

= griri+1−ri−1ri mod p (1)

Next, Ui computes Z =
∏n

i=1 zi mod p, T =∏n
i=1 ti mod n and c = H(T ,Z). Ui then com-

putes si = τi · Sc
Ui

mod n and produces the signa-
ture σi = (si, c). Ui stores Z and c and broadcasts
m′

i = Ui||Xi||si. It is noted that U1 is assumed to be
a trusted controller such that U1 will be the last user
to broadcast its message m′

1 after all the other users
Uj �= U1 have broadcast their messages m′

j .
Authentication and Key Computation: Each Ui veri-
fies the received messages m′

j �= m′
i by using the stored

Z and c to check the equation:

c = H((
n∏

i=1

si)e · (
n∏

i=1

H(Ui))−c,Z) (2)

If equation (2) is correct, Ui will proceed to ver-
ify the Xi values broadcast in Round 2. However, if
equation (2) is incorrect, then all members will re-
transmit again. From equation (1), we have Xi =
griri+1−ri−1ri mod p for i ∈ {1, . . . , n}, where r0 = rn

and rn+1 = r1. By simple computation, we have the
following lemma:

Lemma 1
∏n

i=1 Xi = 1 mod p.

Using Lemma 1, we can check whether the Xi sent
by group member Ui is genuine. If

∏n
i=1 Xi �= 1 mod p,

it means that at least one of the Xi is incorrect. Then,
all members will retransmit again. If each Ui correctly
verifies that

∏n
i=1 Xi = 1 mod p, then Ui computes the

common group key K as follows:

K =
n∏

i=1

griri+1 mod p = gr1r2+···+rnr1 mod p (3)

where r0 = rn and rn+1 = r1.

5 Complexity Analysis

Table 1 presents the complexity analysis of differ-
ent protocols to achieve authenticated BD and the
Saeednia-Safavi-Naini (SSN) scheme [12]. The first
protocol refers to our proposed GKA scheme in Section
4. The second protocol uses 194-bit ID-based SOK sig-
nature scheme [13] to provide authentication for BD.
The third and fourth protocols are the BD with 160-bit
ECDSA and BD with 1024-bit DSA signature scheme
respectively. The last protocol, 1024-bit SSN scheme,
uses ID-based cryptography. Although the last proto-
col do not require any signature generation and ver-
ifications, the number of modular exponentiations re-
quired is 2n+4. All other protocols requires only three
modular exponentiations for the BD GKA protocol.

Table 1. Complexity Analysis for Authenti-
cated BD GKA

Our BD BD BD SSN
Prop. with with with sch.
sch. SOK ECDSA DSA

Exp. 3 3 3 3 a
Msg Tx 2 2 2 2 2
Msg Rx b b b b b
Cert Tx - - 1 1 -
Cert Rx - - n − 1 n − 1 -
Cert Ver - - n − 1 n − 1 -
MapToPt - n − 1 - - -
Sign Gen 1 1 1 1 -
Sign Ver 1 n − 1 n − 1 n − 1 -

a : 2n + 4 b : 2(n − 1)

All protocols, including SSN scheme, require two mes-
sage transmission and 2(n−1) messages to be received
by each user. The third and fourth protocol require
each user to transmit their certificate in the first mes-
sage as well as receive and verify n−1 certificates from
other users. The second protocol is based on pairing
and requires n − 1 MapToPoint operations.

All protocols except the SSN scheme requires one
signature generation. This signature generation is
done in Round 2 of the GKA for the second, third
and fourth protocol where each user signs the message
mi = Ui||zi||Xi||

∏n
i=1 zi to provide authentication for

both keying materials zi and Xi broadcast in Rounds 1
and 2 of the BD respectively. In terms of signature ver-
ifications, our proposed protocol is the most efficient.

6 Energy Analysis

In this section, we perform the total energy con-
sumption cost analysis of performing authenticated BD
using the 133MHz SA-1110 “StrongARM” micropro-
cessor and two different communication transceivers,
namely the 100kbps radio transceiver module and
the IEEE 802.11 Spectrum24 WLAN card. We then
present a graph that illustrates the total energy con-
sumed by each node while performing authenticated
GKA using the protocols shown in Table 1 with the
“StrongARM” microprocessor and the two transceiver
modules for group size n = 10, 50, 100 and 500.
Computational Energy Cost

Table 2 shows the computational energy consump-
tion costs, the computational timing costs of the
133MHz “StrongARM” microprocessor and the com-
putational timing costs of the Pentium III 450MHz

Table 2. Computational Energy Cost

133MHz 450MHz
StrongARM P-III

Mod. Exp. 9.1mJ 37.92ms 8.8ms
MapToPoint 18.4mJ 76.67ms 17.78ms
Tate Pairing 47.0mJ 191.5ms 44.4ms
Scalar Mul. 8.8mJ 36.67ms 8.5ms

Sign. DSA 9.1mJ 37.92ms 8.8ms
Gen. ECDSA 8.8mJ 36.67ms 8.5ms

SOK 17.6mJ 73.33ms 17ms
GQ 18.2mJ 75.83ms 17.6ms

Sign. DSA 11.1mJ 46.33ms 10.75ms
Ver. ECDSA 10.9mJ 45.42ms 10.5ms

SOK 137.7mJ 573.75ms 133.2ms
GQ 18.2mJ 75.83ms 17.6ms

microprocessor (P3-450MHz) for performing different
cryptographic and signature operations.

From [3], we obtained the energy consumption cost
of modular exponentiation for the “StrongARM” mi-
croprocessor to be 9.1mJ . As the “StrongARM” mi-
croprocessor power consumption is 240mW [3], we can
obtain the timing cost of modular exponentiation to be
9.1mJ
240mW = 37.92 ms. Based on the MIRACL software li-
brary [11], we obtained the computational timing costs
of modular exponentiation (8.8ms) and other crypto-
graphic operations executed on a Pentium III 450MHz
(P3-450MHz) microprocessor in Table 3. From these
information, we can extrapolate and estimate the time
taken α (ms) for primitive cryptographic operation Y
(e.g. Tate Pairing) on the “StrongARM” microproces-
sor as follows:

α =
γ ms

8.8 ms
× 37.92 ms (4)

where γ refers to the time taken for primitive oper-
ation Y on the P3-450MHz microprocessor. Next, we
estimate the energy consumed β (mJ) for primitive op-
eration Y on the 133MHz “StrongARM” microproces-
sor as β = 240mW×α ms. With these information, we
obtained the energy costs in Table 2. The timing cost
of the Tate Pairing operation was given to be 20ms
on the Pentium III 1GHz (P3-1GHz) microprocessor
[11]. To obtain the equivalent timing cost on the P3-
450MHz microprocessor, we scale down by a factor of
1000MHz
450MHz = 2.22 to obtain 44.4ms. From [11], the tim-
ing costs of Identity-based Encryption (IBE) Encrypt
and Decrypt were given to be 35ms and 27ms respec-
tively on the P3-1GHz. As the IBE Encrypt requires
one additional MapToPoint operation than IBE De-

Table 3. Communication Energy Cost

100kbps WLAN
Transceiver Card

Tx per bit 10.8µJ 0.66µJ
Rx per bit 7.51µJ 0.31µJ

Tx. 263-Bytes DSA cert 22.72mJ 1.38mJ
Rx. 263-Bytes DSA cert 15.8mJ 0.64mJ

Tx. 86-Bytes ECDSA cert 7.43mJ 0.45mJ
Rx. 86-Bytes ECDSA cert 5.17mJ 0.21mJ
Tx. DSA/ECDSA sign.1 3.46mJ 0.21mJ
Rx. DSA/ECDSA sign.1 2.40mJ 0.1mJ

Tx. SOK sign.2 4.19mJ 0.26mJ
Rx. SOK sign.2 2.91mJ 0.12mJ
Tx. GQ sign.3 12.79mJ 0.78mJ
Rx. GQ sign.3 8.89mJ 0.36mJ

1 DSA/ECDSA signature (r, s), both r, s = 160-bits.
2 SOK signature (S1, S2), both S1, S2 = 194-bits.
3 GQ signature (s, c), s = 1024-bits and c = 160-bits.

crypt, we were able to obtain the timing cost of MapTo-
Point operation to be 35−27 = 8ms. To get the timing
cost of the MapToPoint operation on the P3-450MHz,
we scale down by a factor of 2.22 to get 17.78ms.

Communications Energy Cost

Table 3 shows the communication energy costs com-
parison using the 100kbps transceiver module and the
IEEE 802.11 Spectrum24 LA-4121 WLAN card. Us-
ing the information given in [3] and [6] for the 100kbps
transceiver module and [8] for the WLAN card, we ob-
tained the transmission and reception cost per bit of
the two transceiver modules. We then obtained the
transmission and reception energy costs of transmit-
ting and receiving certificates and signatures.

Energy Consumption Cost Results

By considering the complexity in Table 1 and the en-
ergy costs in Tables 2 and 3, we obtained the graph in
Figure 1 that shows the total energy consumption costs
of each node using the 133MHz “StrongARM” micro-
processor with either 100kbps transceiver module or
WLAN card. The total energy costs include the trans-
mission and reception costs of all messages as well as
the total computational costs in each respective GKA
protocol. The figure clearly shows that our proposed
scheme is the most energy-efficient when using either
the 100kbps transceiver module (i) or WLAN card (j).

133MHz StrongARM Microprocessor

0.01

0.1

1

10

100

10 50 100 500

BD w/ ECDSA w/ 100kbps Transceiver (a)
BD w/ ECDSA w/ WLAN card (b)
BD w/ DSA w/ 100Kbps Tranceiver (c)
BD w/ DSA w/ WLAN card (d)
BD w/ Sakai et al Sign Scheme w/ 100kbps Transceiver (e)
BD w/ Sakai et al Sign Scheme w/ WLAN card (f)
Saeednia-Safavi-Naini scheme w/ 100kbps Transceiver (g)
Saeednia-Safavi-Naini scheme w/ WLAN Card (h)
BD w/ our batch verif. sign. scheme w/ 100kbps Transceiver (i)
BD w/ our batch verif sign scheme w/ WLAN card (j)

Number of nodes (n)

(f)

(e)

(c)
(a)

(g)

(i)

(d)

(h)

(b)

(j)

E
ne

rg
y

C
on

su
m

ed
 (

J)
(l

og
 s

ca
le

)

Figure 1. Energy Consumption Costs.

7 Dynamic Protocols

In this section, we present four authenticated dy-
namic protocols, namely the Join, Leave, Merge and
Partition protocol, that can be used to efficiently han-
dle dynamic group membership events. We assume
that all group members taking part in the dynamic
protocols with possession of the current group key K
are trusted nodes. Our proposed dynamic protocols
use symmetric key cryptography, which studies [3] and
[6] have shown to have energy requirements of orders
of magnitude lower than modular exponentiations.
Join Protocol

Let G = {U1, · · · , Un} be the current group and
Un+1 be the new user joining the group. We di-
vide G into two parts, {U1, Un}, which has the
two users actively involved in the Join Protocol and
{U2, · · · , Un−1}, which consists of the rest of the group.
We consider a ring structure among the users of G with
Un+1 joining G in between Un and U1 to form the new
group G′ = {U1, · · · , Un+1}. The Join Protocol con-
sists of three rounds and works as follows:
Round 1: The new node Un+1 first chooses a random
rn+1 mod q and computes zn+1 = grn+1 mod p. Next,
Un+1 signs Un+1||zn+1 using the variant of the GQ
signature scheme (Section III) to obtain the signature
σn+1 and broadcasts mn+1 = Un+1||zn+1||σn+1.
Round 2:
(1) U1 first verifies the signature σn+1. Next, U1

chooses a new random r′1 ∈ Z∗
q and computes K∗ as

follows:

K∗ = K · (z2 · zn)−r1 · (z2 · zn+1)r′
1 mod p

= gr′
1r2+···+rn−1rn+rn+1r′

1 mod p. (5)

U1 then encrypts K∗||U1 using the current group key

K and a symmetric key encryption Ek(m) (where
m is the message for encryption and k is the se-
cret key) to obtain EK(K∗||U1) and broadcasts m′

1 =
U1||EK(K∗||U1) to current group G.
(2) Un verifies the signature σn+1. Un then com-
putes the DH key KUnUn+1 = grnrn+1 = (zn+1)rn mod
p, which it shares with Un+1. Next, Un encrypts
KUnUn+1 ||Un using K to obtain EK(KUnUn+1 ||Un). Un

then signs EK(KUnUn+1 ||Un)||zn using the variant of
the GQ signature scheme to obtain the signature σ′′

n

and broadcasts m′′
n = Un||EK(KUnUn+1 ||Un)||zn||σ′′

n.
Round 3 :
(1) Un+1 first verifies the signature σ′′

n. Next, Un+1

computes KUnUn+1 = grnrn+1 = (zn)rn+1 mod p.
(2) Un first decrypts EK(K∗||U1) in m′

1 to obtain
K∗ and the identity U1. Un then checks if the iden-
tity U1 is decrypted correctly to ensure the validity
of K∗. Next, Un encrypts K∗||Un using KUnUn+1

to obtain EKUnUn+1
(K∗||Un) and transmits m′′′

n =
Un||EKUnUn+1

(K∗||Un) to Un+1.
Key Computation :
(1) Un+1 decrypts EKUnUn+1

(K∗||Un) in m′′′
n to obtain

K∗ and the identity Un. Un+1 checks if the identity Un

was decrypted correctly to ensure the validity of K∗.
(2) All users Ui �= U1, Un for i ∈ {2, · · · , n − 1} de-
crypts EK(K∗||U1) from m′

1 and EK(KUnUn+1 ||Un)
from m′′

n using the current group key K to obtain K∗,
the identity U1, KUnUn+1 and the identity Un respec-
tively. Next, each Ui checks that the identities U1 and
Un are decrypted correctly to ensure the validity of K∗

and KUnUn+1 .
(3) Finally, all users including Un+1 compute the new
key K ′ as follows:

K ′ = K∗ · KUnUn+1 mod p

= gr′
1r2+···+rnrn+1+rn+1r′

1 mod p (6)

Merge Protocol
A merge occurs when two or more subgroups are com-
bined into a single group. Let GA = {U1, · · · , Un}
denote all users in Group A with group key KA and
GB = {Un+1, Un+2, · · · , Un+m} denote all users in
Group B with group key KB . We divide GA into
two parts, {U1, Un} and {U2, · · · , Un−1} and GB into
{Un+1, Un+m} and {Un+2, · · · , Un+m−1}. We consider
a ring structure for GA, GB and the merged group
G′ = GA ∪ GB = {U1, · · · , Un+m}. The Merge Proto-
col consists of three rounds and works as follows:
Round 1 :
(1) U1 first selects a new random r′1 ∈ Z∗

q and com-
putes z̃1 = gr′

1 mod p. Next, U1 signs U1||z̃1||zn using
the variant of the GQ signature scheme to produce the
signature σ′

1 and broadcasts m′
1 = U1||z̃1||zn||σ′

1.

(2) Un+1 selects new random r′n+1 ∈ Z∗
q , computes

z̃n+1 = gr′
n+1 mod p and signs Un+1||z̃n+1||zn+m us-

ing the variant of the GQ signature scheme to ob-
tain the signature σ′

n+1 and broadcasts m′
n+1 =

Un+1||z̃n+1||zn+m||σ′
n+1.

Round 2 :
(1) U1 verifies the signature σ′

n+1. Next, U1 extracts
z̃n+1 from m′

n+1 and computes the DH key KU1Un+1 =
gr′

1r′
n+1 = (z̃n+1)r′

1 mod p to be shared with Un+1. U1

then computes:

K∗
A = KA · (z2 · zn)−r1 · (z2 · zn+m)r′

1

= gr′
1r2+···+rn−1rn+rn+mr′

1 mod p (7)

Next, U1 encrypts K∗
A||U1 using Group A’s

current key KA and KU1Un+1 to obtain
EKA

(K∗
A||U1) and EKU1Un+1

(K∗
A||U1) respec-

tively. Finally, U1 broadcasts the message
m′′

1 = U1||EKA
(K∗

A||U1)||EKU1Un+1
(K∗

A||U1).
(2) Un+1 first verifies the signature σ′

1. Next, Un+1 ex-
tracts z̃1 from m′

1 and computes KU1Un+1 = gr′
1r′

n+1 =
(z̃1)r′

n+1 mod p, the DH key shared with U1. Un+1 then
computes K∗

B :

K∗
B = KB · (zn · zn+2)r′

n+1 · (zn+2 · zn+m)−rn+1

= grnr′
n+1+···+rn+m−1rn+m mod p (8)

Next, Un+1 encrypts K∗
B ||Un+1 using Group

B’s current key KB and KU1Un+1 to obtain
EKB

(K∗
B ||Un+1) and EKU1Un+1

(K∗
B ||Un+1) re-

spectively. Finally, Un+1 broadcasts m′′
n+1 =

Un+1||EKB
(K∗

B ||Un+1)||EKU1Un+1
(K∗

B ||Un+1).
Round 3 :
(1) Group B users Uj �= Un+1 for j ∈ {n+2, · · · , n+m}
first decrypts EKB

(K∗
B ||Un+1) to obtain K∗

B and the
identity Un+1. Next, each Uj checks if the identity
Un+1 was decrypted correctly to ensure that K∗

B is
valid and stores K∗

B for key computation later.
(2) U1 decrypts EKU1Un+1

(K∗
B ||Un+1) in message m′′

n+1

to obtain K∗
B and the identity Un+1. Next, U1 checks

if the identity Un+1 was decrypted correctly to ensure
the validity of K∗

B . U1 then encrypts K∗
B ||U1 using

Group A’s key KA to obtain EKA
(K∗

B ||U1). Finally,
U1 broadcasts m′′′

1 = U1||EKA
(K∗

B ||U1) to GA.
(3) Un+1 decrypts EKU1Un+1

(K∗
A||U1) in message m′′

1

to obtain K∗
A and the identity U1. Next, Un+1 checks

if the identity U1 was decrypted correctly to ensure
that K∗

A is valid. Un+1 then encrypts K∗
A||Un+1 us-

ing Group B’s key KB to obtain EKB
(K∗

A||Un+1). Fi-
nally, Un+1 broadcasts m′′′

n+1 = Un+1||EKB
(K∗

A||Un+1)
to GB .
Key Computation :

(1) Group A users Ui �= U1 for i ∈ {2, · · · , n} first de-
crypts EKA

(K∗
A||U1) in message m′′

1 and EKA
(K∗

B ||U1)
in m′′′

1 to obtain K∗
A, K∗

B and the identity U1. Each Ui

then verifies that the identity U1 decrypted from both
messages m′′

1 and m′′′
1 is correct to ensure the validity

of K∗
A and K∗

B respectively.
(2) Group B users Uj �= Un+1 for j ∈ {n+2, · · · , n+m}
first decrypts EKB

(K∗
A||Un+1) in m′′′

n+1 to obtain K∗
A

and Un+1. Each Uj then verifies that the identity U1

decrypted is correct to ensure the received K∗
A is valid.

(3) Finally, all users in the merged group G′ compute
the new group key K ′ as follows:

K ′ = K∗
A · K∗

B mod p

= gr′
1r2+···+rnr′

n+1+···+rn+mr′
1 mod p. (9)

Leave Protocol
Let G = {U1, · · · , Un} denote the current group and
G′ = G \ Ul denotes the new group. We also consider
a ring structure for G and G′. The Leave Protocol
comprises of two rounds and works as follows:
Round 1 :All remaining odd-indexed users Uj �= Ul for
j ∈ {1, 3, 5, · · ·} select new randoms r′j ∈ Z∗

q and τ̄j ∈
Z∗

n and computes z′j = gr′
j mod p and t′j = τ̄e

j mod n.
Uj then broadcasts mj = Uj ||z′j ||t′j .
Round 2 : All users Ui �= Ul compute X ′

i as follows:

X ′
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
zi+1
zi−1

)ri

if i �= l, l − 1, l + 1,(
zl+1
zl−2

)rl−1

if i = l − 1,(
zl+2
zl−1

)rl+1

if i = l + 1.

Next, each Ui ∈ G′ computes Z̄ =
∏n

i=1 zi mod p, T̄ =∏n
i=1 ti mod n (where zi = z′j and ti = t′j for remaining

odd-indexed users Uj ∈ G′) and c̄ = H(T̄ , Z̄). Ui �= Ul

then computes s̄i = τ̄i · S c̄
Ui

mod n and produces the
signature σ̄i = (s̄i, c̄). Ui �= Ul stores Z̄ and c̄ and
broadcasts m′

i = Ui||X ′
i||s̄i. U1 is assumed to be a

trusted controller such that U1 will be the last user to
broadcast its message m′

1 after all the other users have
broadcast their messages m′

j .
Authentication and Key Computation: Each Ui ∈ G′

verifies the received messages m′
j �= m′

i by using the
stored Z̄ and c̄ to check the equation:

c̄ = H((
n∏

i=1

s̄i)e · (
n∏

i=1

H(Ui))−c̄, Z̄) (10)

If equation (10) is correct, Ui proceeds to verify the
X ′

i values using Lemma 1. If
∏n

i=1,i �=l X
′
i �= 1 mod p,

it means that at least one of the X ′
i is incorrect. Then,

all members will retransmit again. If each Ui ∈ G′ cor-
rectly verifies that

∏n
i=1,i �=l Xi = 1 mod p, then each

Ui ∈ G′ computes the new group key K ′ as follows:

K ′ =
n∏

i=1,i �=l

griri+1 = gr′
1r2+···+rnr′

1 mod p (11)

Partition Protocol
A partition can be seen as multiple users leaving the
group. Let G = {U1, · · · , Un} be the current group,
L be the group of partitioned/leaving users with the
total number of partitioned/leaving users as �d and
G′ = G \L be the new group containing the remaining
users. The Partition Protocol consists of two rounds
and works as follows:
Round 1 :All remaining odd-indexed users Uj ∈ G′ for
j ∈ {1, 3, 5, · · ·} select new randoms r′j ∈ Z∗

q and τ̂j ∈
Z∗

n and computes z′j = gr′
j mod p and t′j = τ̂e

j mod n.
Uj then broadcasts mj = Uj ||z′j ||t′j .
Round 2 : All remaining users Ui ∈ G′ for i ∈
{1, · · · , n} compute X ′

i using the same method as men-
tioned in Round 2 of the Leave Protocol.
Next, each remaining user Ui ∈ G′ computes Ẑ =∏n

i=1 zi mod p, T̂ =
∏n

i=1 ti mod n (where zi = z′j
and ti = t′j for remaining odd-indexed users Uj ∈ G′)
and ĉ = H(T̂ , Ẑ). Ui ∈ G′ then computes ŝi =
τ̂i · S ĉ

Ui
mod n and produces the signature σ̂i = (ŝi, ĉ).

Ui ∈ G′ stores Ẑ and ĉ and broadcasts m′
i = Ui||X ′

i||ŝi.
U1 is assumed to be a trusted controller such that U1

will be the last user to broadcast its message m′
1 after

all the other users have broadcast their messages m′
j .

Authentication and Key Computation: Each Ui ∈ G′

verifies the received messages m′
j �= m′

i by using the
stored Ẑ and ĉ to check the equation:

ĉ = H((
n∏

i=1

ŝi)e · (
n∏

i=1

H(Ui))−ĉ, Ẑ) (12)

If equation (12) is correct, Ui proceeds to verify the
X ′

i values using Lemma 1. If
∏n

i=1,i/∈L X ′
i �= 1 mod p,

it means that at least one of the X ′
i is incorrect. Then,

all members will retransmit again. If each Ui ∈ G′

correctly verifies that
∏n

i=1,i/∈L Xi = 1 mod p, then Ui

computes the new group key K ′ as follows:

K ′ =
n∏

i=1,i/∈L
griri+1 = gr′

1r2+···+rnr′
1 mod p (13)

8 Complexity and Energy Analysis

Complexity Analysis
We compare our dynamic protocols with the authen-

ticated BD protocol using the efficient certificate-based
ECDSA signature scheme. As mentioned earlier, the

BD protocol is re-executed whenever dynamic group
membership events occur as no dynamic protocols have
been specified by Burmester and Desmedt in [2]. The
complexity of the BD protocol is based on the theo-
retical evaluation presented in [1] and [10]. The cur-
rent group size, merging users, merging groups, leaving
users, remaining odd-indexed users and height of key
tree are denoted as n, m, k, �d, v and h respectively.

Table 4. Complexity Analysis of Dynamic Pro-
tocols

Comm Cost Comp Cost
Protocol Rd Msgs Exp. sign. sign.

Gen. verif.
BD J 2 2n + 2 3a 2 n + 3
[2] L 2 2n − 2 3a 2 n + 1

M 2 2n + 2m 3a 2 n + m
+2

P 2 2n − 2ld 3a 2 n − ld
+2

Prop. J 3 5 2b 1 1
Sch. L 2 v + n − 2 3c 1 1

M 3 6(k − 1) 4d 1 1
P 2 v + n 3c 1 1

−2ld

a : All users in BD perform 3 exponentiations.
b : Only U1 and Un+1 perform 2 exponentiations each.
c : Only users Uj for j is odd perform 3 exponentiations
and the rest performs 2 exponentiations each.
d : Only U1 and Un+1 perform 4 exponentiations each.

Discussion
Although our Join and Merge Protocols require 1 ex-
tra round than the BD Join and Merge Protocol, how-
ever both our Join and Merge Protocols require fewer
communication messages than the BD Join and Merge
Protocols. For exponentiation cost, all users in the BD
perform 3 exponentiations each for Join, Leave, Merge
and Partition Protocols whereas for our Join Proto-
col, only U1 and Un+1 performs 2 exponentiations each
while the rest need not perform any exponentiations.
For our Merge Protocol, only U1 and Un+1 perform
4 exponentiations each while all other users need not
perform any exponentiations. Our Leave and Partition
Protocols require only users Uj /∈ L for j is odd to per-
form 3 exponentiations while Uk /∈ L for k is even to
perform 2 exponentiations. All our dynamic protocols
are also more efficient than the BD in terms of signa-
ture generation and verification.
Energy Cost Analysis

In this section, we present the energy cost analy-

sis of our dynamic protocols and compare them with
re-executing the authenticated BD protocol using the
ECDSA signature scheme. We assume that each node
in the group is using the 133MHz “StrongARM” micro-
processor and the communication module used is the
Spectrum24 WLAN card as presented in Table 2 and
3 respectively. We also assume that the current group
size n = 100, the number of merging users m = 20 and
the number of leaving users �d = 20. The energy cost
results are presented in Table 5.

Table 5. Energy Cost for Dynamic Protocols
Energy

BD U1 - Un 1.234J
Join Un+1 2.31J
Our U1 0.039J
Join Un 0.049J

Protocol Un+1 0.057J
Others 1.34mJ

BD Leave Remain. Users 1.179J
Our Uj , j = odd 0.160J

Leave Protocol Uk, k = even 0.150J

BD Group A Users 1.660J
Merge Group B Users 2.532J
Our U1 0.079J

Merge Un+1 0.079J
Protocol Others 0.986mJ

BD Partition Remain. Users 0.942J
Our Uj , j = odd 0.142J

Partition Protocol Uk, k = even 0.132J

Discussion
Based on the energy cost results shown in Table 5,

it can be easily seen that our protocols are much more
suitable to be implemented in wireless networks where
dynamic group membership events occurs frequently. If
the BD protocol were to be implemented, then the bat-
tery life of each node will be depleted more rapidly due
to the high energy costs. On the other hand, our dy-
namic protocols consume much lower energy as shown
in Table 5.

9 Conclusion

We present an energy-efficient initial GKA protocol
and four authenticated dynamic GKA protocols that
take advantage of the ID-based signature scheme. The
complexity and energy cost analysis of our five proto-
cols show that they are much more suitable for wireless
networks. The security of our protocols is based on

the security of the BD protocol and the GQ signature
scheme, both of which have been proven to be secure.
Due to the page limit, the detail security analysis of
our protocols will be provided in the full version.

References

[1] Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik.
On the performance of group key agreement proto-
cols. John Hopkins Univ., Center of Networking and
Distributed Systems, TR CNDS-2001-5, 2001.

[2] M. Burmester and Y. Desmedt. A secure and efficient
conference key distribution system. In Advances in
Cryptography - Eurocrypt ’94, volume 950 of LNCS,
pages 275–286, 1995.

[3] D. W. Carman, P. S. Kruss, and B. J. Matt. Con-
straints and approaches for distributed sensor network
security. NAI Labs TR #00-010, Sept. 2000.

[4] S. Cho, J. Nam, S. Kim, and D. Won. An efficient
dynamic group key agreement for low-power mobile
devices. In ICCSA 2005, volume 3480 of LNCS, pages
498 – 507, Apr. 2005.

[5] L. C. Guillou and J. J. Quisquater. A “paradoxical”
identity-based signature scheme resulting from zero-
knowledge. In Advances in Cryptology - Crypto ’88,
volume 0403 of LNCS, pages 216–231, 1990.

[6] A. Hodjat and I. Verbauwhede. The energy cost of se-
crets in ad-hoc networks. In IEEE CAS Workshop on
Wireless Communication and Networking, Sept. 2002.

[7] I. Ingemarsson, D. T. Tang, and C. K. Wong. A con-
ference key distribution system. IEEE Transaction on
Information Theory, 28(5):714 – 720, Sept. 1982.

[8] R. Karri and P. Mishra. Optimizing the energy con-
sumed by secure wireless sessions: wireless transport
layer security case study. Mobile Networks and Appli-
cations, 8(2):177 – 185, Apr. 2003.

[9] J. Katz and M. Yung. Scalable protocols for authen-
ticated group key exchange. In Advances in Cryptog-
raphy - Crypto’03, volume 2729 of LNCS, pages 110 –
125, 2003.

[10] Y. Kim, A. Perrig, and G. Tsudik. Tree-based group
key agreement. ACM Transaction on Information and
System Security, 7(1):60 – 96, Feb. 2004.

[11] MIRACL. Multiprecision integer and rational arith-
metic c/c++ library. http://indigo.ie/ mscott/.

[12] S. Saeednia and R. Safavi-Naini. Efficient identity-
based conference key distribution protocols. In Infor-
mation Security and Privacy - 3rd Australasian Con-
ference, volume 1438 of LNCS, pages 320–331, 1998.

[13] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosys-
tems based on pairing. In SCIS 2000, 2000.

[14] N. Saxena, G. Tsudik, and J. H. Yi. Identity-based ac-
cess control for ad hoc groups. In ICISC 2004, volume
3506 of LNCS, pages 362–379, 2005.

[15] M. Steiner, G. Tsudik, and M. Waidner. Key agree-
ment in dynamic peer groups. IEEE Transactions
on Parallel and Distributed Systems, 11(8):769 – 780,
Aug. 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

