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Abstract

The Chord protocol is the best known example of
implementation of logarithmic complexity routing for
structured peer-to-peer networks. Its routing algorithm,
however, does not provide an optimal trade-off between
resources exploited (the size of the “finger table”) and
performance (the average or worst-case number of hops
to reach destination). Cordasco et al. showed that a
finger table based on Fibonacci distances provides lower
number of hops with fewer table entries. In this paper
we generalize this result, showing how to construct an
improved finger table when the objective is to reduce the
number of hops, possibly at the expense of an increased
size of the finger table. Our results can also be ex-
ploited to guarantee low routing time in case a fraction
of nodes is assumed to fail.
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1 Introduction and Background

Chord [8] is the best known, structured, peer-to-peer
(P2P) protocol proposed in the literature. It imple-
ments the idea of “consistent hashing” [6] to build a
Distributed Hash Table (DHT) based on several inde-
pendent nodes.

Although the general idea behind Chord is very in-
teresting and worth-while, the actual implementation
of the lookup protocol [8] has some performance and
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reliability drawbacks. From a theoretical point view,
for instance, Cordasco et al. [3] proposed a different
way of constructing the so called “finger table” data
structure, that provides a better trade-off between Di-
ameter and Node Degree, thus leading to more efficient
routing. From a practical point of view, the algorithm
complexity analysis shows that “strong stabilization”
in case of failure may require O(N 3) steps [7], thus
preventing the original protocol from properly scaling
up in a realistic context where nodes are subject to
failure.

In this paper we generalize the idea of Fibonacci dis-
tances by defining a family of functions that yield in-
creasing finger tables which are always logarithmic in
size, but that have higher constant factors. The idea is
that the additional fingers yield increased routing per-
formance in case all nodes are functional. Moreover,
even in case a small fraction of nodes fails, thanks to
the increased size of the finger table, the routing algo-
rithm will degrade its performance more gracefully as
compared to the original one. As shown by our analyt-
ical as well as simulation studies, the increased size of
finger tables may substantially increase the reliability
of Chord-like rings and reduce the expected number
of hops even in case a non-negligible fraction of nodes
fails.

The starting point for our work being F-Chord(1/2)
[3], which provides the optimal trade-off between node
degree and network diameter, our generalization keeps
the minimality of the worst case number of hops, while
the average number of hops is reduced by increasing the
number of fingers. Our Montecarlo simulation results
show that our generalization provides superior rout-
ing performance compared to two other alternatives
already considered in literature, namely, Base-k (see
section 2) and Extended Fibonacci [1].

Subsequently, Cordasco et al. [4] extended their
neighbor-of-neighbor (NoN) O(log(N)/ log(log(N)))
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routing algorithm to F-Chord(α). Indeed the very
same extension applies to our generalized finger table
as well, but this kind of extension is beyond the scope
of this work [2, 5].

The rest of the paper is organized as follows. Sec-
tion 2 analyzes the routing performance of overlays
with finger tables characterized by Base-k distances
(which include Chord as the special case k = 2). Sec-
tion 3 re-derives the idea of F-Chord(1/2) routing table
from a different perspectives, and then generalizes the
idea to bases k > 2. Section 4 discusses the efficient
implementation of the proposed finger table manage-
ment protocol, providing details useful to interpret the
simulation results reported in the following sections.
Section 5 compares the routing performance estimates
computed by Montecarlo simulation of our generalized
tables against Base-k and extended Fibonacci finger ta-
bles. Section 6 assesses the problem of routing fault tol-
erance, presenting simulation results in case a fraction
up to 10% of the nodes do not respond to routing re-
quests. Finally, section 7 contains concluding remarks
and discusses possible extensions of this work.

2 Base-k Finger Tables

The Finger Table in a Chord-like ring can be defined
as an array of log(N) elements (where N is the total
number of nodes in the overlay) that contain the ad-
dresses of some of the successors of the node along the
ring at distances that increase as a function of the in-
dex in the table. In particular, if we denote by J(i) the
distance (also called jump) of the i-th finger from the
considered node, in case of Chord we have: J(i) = 2i

For example, if we consider a Chord ring containing
N=16 nodes, each one characterized by a unique Id
ranging from 0 to 15, each peer will build a finger table
containing 4 elements, defined as: for all n = 0, . . . , 15 :
fingn[0] = n + 1 mod 16 fingn[1] = n + 2 mod 16
fingn[2] = n + 4 mod 16 fingn[3] = n + 8 mod 16

In the worst case (e.g., when node 0 is requested to
route to node 15), the number of hops required to reach
destination, is equal to the size of the finger table, i.e.,
log2(N). If we generate routing request at random,
with uniform distribution from 0 to N − 1, the average
number of hops is instead half the size of the finger
table, namely log2(N)/2.

In analogy with the representation Base-k for nat-
ural numbers, if one wants to increase the size of the
finger table in order to reduce the expected number of
routing hops, a more or less obvious approach is to use
a base greater than 2. For example one could construct
a finger table whose jumps increase as a power of k = 3
rather than as a power of two, but that are repeated

k − 1 times, i.e.: for all l = 0, . . . , log3(N) :

J((k − 1) · l) = kl J((k − 1) · l + 1) = 2 · kl

For example, if we consider a Chord-like ring contain-
ing N=27 nodes, each one characterized by a unique Id
ranging from 0 to 26, each peer will build a finger table
containing 6 elements, defined as: for all n = 0, . . . , 26 :
fingn[0] = n + 1 mod 27 fingn[1] = n + 2 mod 27
fingn[2] = n + 3 mod 27 fingn[3] = n + 6 mod 27
fingn[4] = n + 9 mod 27 fingn[5] = n + 18 mod 27

Definition 2.1 Base-k sequence of jumps.
For any chosen base k>2, for all l = 0, . . . , logk(N)−1,
for all i = 0, . . . , k − 2

J((k − 1) · l + i) = (i + 1)kl

An overlay adopting this kind of finger table and
adopting a Greedy routing algorithm is characterized
by the following properties:

Property 2.1 Node degree (i.e., size of the finger ta-
ble) of the order of:

(k − 1) · logk(N)

Property 2.2 Diameter (i.e., worst case number of
hops) of the order of:

logk(N)

Proof : Consider two nodes s and t at distance d(s,t).
Compute p such that kp−1 ≤ d(s, t) < kp. Since in the
interval [kp−1, kp) there are k − 1 jumps at distance
kp−1, after one (Greedy) jump the distance reduces
to less than kp−1. By iterating, we have that after i
jumps the distance reduces to less than kp−i. Since
d(s, t) < N , the diameter is logk(N).

Property 2.3 Average number of hops (for uniformly
distributed random routing requests) of the order of:
k−1

k · logk(N)

Proof : Assume N = kp and consider a generic
lookup request. Partition the routing in phases as
follows: in phase i, the distance between the current
source and the final target belongs to [ki−1, ki). From
the proof of Prop 2.2 we know that we need at most one
jump to move from phase i + 1 to phase i. Moreover,
after a jump from phase i+1, if the remaining distance
is less than ki−1, then we reach a phase j < i without
any jump in phase i. In particular, the probability that
a jump of size ki−1 is needed is ki−ki−1

ki = k−1
k .

For small values of k, e.g. k = 3 or k = 4, this
extension of the finger table may provide substantial



performance improvements compared to the standard
Base-2 tables, while increasing the size of the finger
table by a relatively small multiplicative factor (1.5 in
case k = 4). For larger values of k, instead, a dimin-
ishing return effect is expected, with almost linear in-
creases of the finger table size (of the order of k/ log(k))
only partially compensated by very modest reductions
of the path length (of the order of 1/ log(k)).

3 Finger Tables based on Generalized
F-Chord(1/2) Jumps

A first attempt to extend Fibonacci sequence of
jumps in order to reduce the average number of hops at
the expense of larger finger tables was presented in [1].
The idea was simply to reduce the speed of the increase
of the jumps by using a recursive definition of the type:
J(i + 1) = J(i) + J(i − k) with k ≥ 1. This sequence
was empirically studied by simulation and showed to
be able to reduce the average path length for increas-
ing values of k. Unfortunately the increase in size of
the finger table prevented the use of large values for k.

In this paper, we present a completely different ap-
proach to the extension of Fibonacci type sequences of
jumps. In this case we show by construction that the
sequence of jumps is such that the minimal diameter is
produced over the maximum range of ring size.

One of the distinctive characteristics of a finger table
based on the Fibonacci sequence as the definition of the
successive jumps J(i) is that the difference between two
consecutive jumps is the preceding jump, i.e.: ∀i ∈ IN
J(i + 2) − J(i + 1) = J(i).
This relation has the following interesting consequence,
when the finger table is adopted to support a Greedy
routing algorithm.

Property 3.1 Diameter with homogeneous Fibonacci
jumps. If a routing request for node v + x is issued to
node x, and if J(l + 1) < v < J(l + 2), then in one
hop this request is forwarded to node y = x + J(l + 1),
and on the latter node the following inequality holds:
w < J(l), where w = v − J(l + 1). As a consequence,
the maximum number of hops will never exceed half the
size of the finger table.

This observation yields to the idea that half of the fin-
gers can be removed from the table (either the ones
with odd index or the ones with even index) without
increasing the diameter of the overlay network. Tak-
ing only the odd (or even) numbers of a Fibonacci se-
quence as the jumps to define the finger table yields
what in [3] was called F-Chord(α) in the particular
case of α = 1/2. This was proved to be the optimal
trade-off between node degree (size of the finger table)

and diameter (the worst case number of hops adopting
the Greedy algorithm). Indeed in this case if a rout-
ing request for node v + x is issued to node x, and if
J(l) < v < J(l + 1), then in two hops this request is
forwarded to node y = x+J(l)+J(m) where m ≤ l. In
either case, on the latter node the following inequality
holds: w < J(l − 1), where w = v − J(l) − J(m).

Hence, the worst case number of hops is again equal
to the size of finger table (as in Base-2, i.e., Chord), but
in this case the size of the finger table is 28% smaller
than Chord’s.

Notice that this property is not enjoyed by Base-
k jumps as defined in Section 2. In this section we
generalize the property of F-Chord(1/2) to bases k > 2.

Definition 3.1 Range of the ring with guaranteed di-
ameter h, denoted R(h). R(h) is the maximum value
v ∈ IN such that ∀w ∈ [0, v) a routing request for x+w
can be routed to destination in no more than h hops
(i.e. R(h) is the size of the greatest ring with diameter
R(h)).

For the sake of simplicity, let us consider first the
case of a routing table derived by Base-3 jumps, as
defined in 2.1. A random request can be routed in zero
hops only if the request is for the node itself, hence
R(0) = 1. On the other hand, a routing request can
be routed in no more than one hop only if the request
is for the node itself or for one of the nodes which Id
is one of the fingers. If we consider the sequence of
jumps for Base-3 finger tables, we can easily realize
that R(1) = 4 = k + 1. This is simply because there is
no jump in the finger table corresponding to the value
k + 1.

Consider now the cases in which the request can be
routed to destination in no more than 2 hops. We may
observe that the two jumps following k = 3 are such
that J(3) − J(2) = J(4) − J(3) = 3 = R(1) − 1. This
is not optimal from the point of view of maximizing
R(2), as if for instance we have to route a value v such
that J(2) < v < J(3) we would forward the request
to node x + J(2) with a remaining displacement w =
v − J(2) < R(1) − 1. Indeed, if we defined J(3) = 7
and J(4) = 11 (instead of 6 and 9), we would have
obtained R(2) = 15 instead of 13. The improvement
seems marginal in case of h = 2 (where the range is
increased only by two compared to Base-3). However,
the difference becomes substantial when we consider
higher values of h.

In general, the jumps for the case k ≥ 2 are recur-
sively defined as follows.

Definition 3.2 Generalized Base-k minimal diameter
maximum range:



R(0) = 1, J(0) = 1, for each integer l ≥ 0,
for each i = 1, . . . , k − 1,

J((k − 1) · l + i) = J((k − 1) · l) + i · R(l)
R(l + 1) = J((k − 1) · l) + k · R(l)

Notice that in the particular case k = 2, the sequence
of jumps defined above is: 1, 2, 5, 13, 44, . . ., which
is the Fibonacci sequence without odd index numbers.
Hence this is the proper generalization of F-Chord(1/2)
to Base-k.

Now let us derive some interesting properties of the
range function:

Property 3.2 for each l ≥ 1,

R(l + 1) = (k + 1) · R(l) − R(l − 1)

Proof : By substitution of: J((k − 1) · l) = J((k −
1)(l−1))+(k−1)·R(l−1) = R(l)−R(l−1) in definition
3.2.

Property 3.3 for each l ≥ 0,

R(l) =
αl+1 − βl+1

α − β
(1)

where α = (k+1)+
√

(k+1)2−4

2 and β = (k+1)−
√

(k+1)2−4

2 .

Proof : The property is the general solution of the
linear recurrence relation of order 2, with initial values
respectively 1 and k + 1, where α and β are the two
roots of the characteristic equation x2 − (k + 1) · x + 1.

Property 3.4 Let d be the diameter of Base-k system
with N = R(d) nodes,

logk+ k
k+1

((
k2 − 1

k2

)
· N

)
< d < logk+ k−1

k
(N + 1)

Proof : By (1) and observing that
(
k + k−1

k

)
<

α <
(
k + k

k+1

)
and 1

k+1 < β < 1
k , we have that

(
k + k−1

k

)d − 1 < N <
(

k2

k2−1

)
·
(
k + k

k+1

)d

.

Property 3.5 Let δ be the node degree of Base-k with
N = R(d) nodes,

(k − 1) · logk+ k
k+1

((
k2 − 1

k2

)
· N

)
+ 1 < δ

δ < (k − 1) · logk+ k−1
k

(N + 1) + 1

Proof : By definition 3.2 we have δ = (k − 1)d + 1.

Property 3.6 Let APL be the Average Path Lenght,
i.e., the average number of hops (for uniformly dis-
tributed random routing requests) of a Base-k system
with N = R(d) nodes,(

k − 1
k

)
· logk+ k

k+1

((
k2 − 1

k2

)
· N

)
< APL

APL <

(
k + 2
k + 3

)
· logk+ k−1

k
(N + 1)

Proof : Consider a generic lookup request, and par-
tition the routing in phases as follows: in phase i the
distance between current source and final target is less
than R(i). If in phase i the distance is less than or equal
to J((k − 1)(i − 1)), then we can move from phase i
to phase i − 1 without any jump. Therefore, at each
phase i a jump is actually required to move to phase
i − 1 with probability at most R(i)−J((k−1)(i−1))

R(i) =
R(i)−R(i−1)+R(i−2)

R(i) . Hence we have that

APL <

d∑
i=1

R(i) − R(i − 1) + R(i − 2)
R(i)

<

(
k + 2
k + 3

)
· d

<

(
k + 2
k + 3

)
· logk+ k−1

k
(N + 1)

because of the UB in Prop. 3.4. By using the same
argument and the corresponding lower bound in Prop.
3.4 we can easily show the lower bound on APL.

In order to quantify the improvement in range intro-
duced by this definition of jumps, let us consider the
curves depicted in Figure 1. They show the growth of
the size of the finger table as a function of the increase
in the number of nodes in the overlay, simulated over
the range from N = 20 up to N = 900, 000. Notice
that the curve corresponding to the generalized min-
imal diameter Base-k is not only lower than the one
corresponding to Base-k, but also actually quite close
to the one corresponding to Base-(k − 1), while the di-
ameter is guaranteed by definition (see Def. 3.1) to be
the same as the one of Base-k.

In Figure 1, the size of the finger table for the “ex-
tended Fibonacci” functions as proposed in [1] are also
reported for the sake of comparison.

4 Finger table management in Chord-
like protocols

As already pointed out by the authors [7], the finger
table in a Chord-like routing protocol does not nec-
essarily have to be up-to-date in order to guarantee
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Figure 1. Number of elements in the finger
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in the ring, where (as in the following fig-
ures) B-k denotes Base-k, G-k denotes gen-
eralized minimal diameter Base-k, Fib stands
for Fibonacci, and F-k denotes “extended Fi-
bonacci.”

the correctness of the procedure. The only correctness
requirement is the link to the next peer in the ring,
namely the first entry in the finger table. An “error”
in the first entry of the finger table may lead to the
inability to properly route a message to destination,
while an error in the subsequent entries of the finger
table may simply slow-down the routing algorithm by
unnecessarily increasing the number of hops needed to
complete the route.

Therefore, our suggestion for managing the finger
table is to only keep the first entry in the finger table
constantly up-to-date by a proper synchronization pro-
tocol between any pairs of subsequent peers in the ring.
When an anomaly is discovered in this link (namely
during the addition of a new node or the removal of one
node from the ring), that portion of the ring may be
temporarily marked as “under repair” and any route re-
quest coming to the node that was responsible for that
subset of keys may be delayed until the link is updated.
By using this approach, one could remove the (global)
“stabilization procedure” that was adopted in Chord.
Such a stabilization procedure could affect availability
as well as performance in case a relatively large frac-
tion of nodes attach and/or detach themselves to/from
the ring.

All subsequent entries in the finger table may be

updated periodically with a periodicity that is selected
as a functional parameter of the system. The addi-
tion/removal of a few nodes from the ring will change
the actual distance of the peers that are linked in the
finger table with respect to the “ideal” distance re-
quested by the jump definition J(i). However, such a
temporary divergence will only (marginally) affect per-
formance, and only until the entries of the finger table
are recomputed. The choice of performing periodic up-
dates of the finger table and allowing their entries to
be slightly out-of-date has a beneficial effect on the re-
quirements placed on the size of the finger table. In
case all elements have to be kept up-to-date, the size
of the finger table must be kept to a minimum in or-
der to reduce the overhead associated with join/leave
operations. On the other hand, if a divergence from
the optimal is tolerated for some time, then the size
of the finger table may grow without major impact on
the ring maintenance protocol overhead.

A final implementation problem worth mentioning
is related to the sparsity of the Ids associated with the
peers compared to the Id space. Normally the space of
node Ids is huge compared to actual size of the ring, so
that the address space is almost empty. This fact, as-
sociated with the use of cryptographic Hash functions
guarantees the absence of collisions in the Id space.
However, this property may give rise to various imple-
mentations of the finger table starting from the same
theoretical definition of jump sequences. In our simu-
lation code we adopted the following choice to map the
sequence of jumps into the actual (simulated) finger ta-
ble each node. The definition of the jumps is mapped
to the node Id space, and the mapped jump values are
normalized by a multiplicative coefficient so that the
range of the last normalized jump R(hmax) is equal to
the highest Id in the Id space. Then a lookup opera-
tion is simulated in order to identify the peer that is
responsible for the given normalized jump value, and
the address of this peer is adopted as the i-th entry in
the finger table.

The filling of the finger table starts with the highest
index jump, and continues until the immediate succes-
sor of the current node is inserted in the table, thus
automatically adjusting to various dimensions of the
ring. Due to the random assignment of Ids to peers,
the finger table of one particular node has not neces-
sarily the same size of another node in the same ring.
The actual number of fingers for a particular node de-
pends on the actual distribution of Ids of its neighbors.
For this reason, the size of the finger table may only be
defined in a statistical way, by computing the average
over all peers of the actual size of their individual fin-
ger tables. This explains why we referred to the size of



the finger table as the “average number of fingers per
peer” in Figure 1.

5 Montecarlo Simulation of the Greedy
routing algorithm

In order to assess the effectiveness of our proposed
finger tables, we used a very simple Montecarlo sim-
ulation approach. A virtual ring is constructed by
randomly generating the IDs associated with the pre-
scribed number of nodes. Then the finger list for each
node is constructed according to the chosen distance
function. Finally, a large number of random, uniformly
distributed, independent routing requests are issued to
the node with the lowest ID in the ring, and routed
through the nodes simulating the Greedy routing pro-
tocol. The number of hops is counted for each route,
and statistics are collected. 99% confidence level in-
tervals are estimated in order to ensure the precision
of the simulated results. The experiments are repeated
until the confidence intervals become small enough. All
the results reported in the paper have 3 digits precision
with 99% confidence level.

The results obtained by our simulation experiments
are depicted in Figure 2. Both average values and 95
percentile are depicted, the latter being defined as the
least integer value that is not exceeded in at least 95%
of the routing requests. As one can see from the di-
agrams, G-2 (which is F-Chord(1/2)) yields substan-
tially worse performance than B-2, due to its substan-
tial reduction in the size of the finger table. However,
as we increase the base to values k > 2, we can no-
tice that the performance gap of G-k with respect to
B-k vanishes, with G-3 already quite close to B-3 even
in case of large rings (where G-3 uses quite less fin-
gers than B-3). The comparison against (extended)
Fibonacci shows that G-4 is superior to Fibonacci and
G-5 is superior to F-2, in spite of the quite lower num-
ber of fingers in case of large rings.

In order to better appreciate the efficiency of the
various routing tables, we defined a “weighted routing
cost” as follows:

wcost = 0.4 ·no fingers+0.3 · avg hops+0.3 ·p95 hops

All parameters are to be minimized in order to obtain
good performance with minimal resources, so that the
lower the weighted cost the better. The results ob-
tained by our simulation experiments are depicted in
Figure 3. As one can see, the cost of “extended Fi-
bonacci” is definitely higher than the others. Notice
also that the cost of G-(k + 1) is roughly comparable
to the one of B-k, thus suggesting the possibility of
obtaining higher performance at similar cost.

6 Montecarlo Simulation of rings with
failures

One possible drawback of our proposed finger ta-
ble management algorithm with lazy update of the fin-
ger tables is the possibility that one (or more) links
may point to peers that disconnected from the ring (or
failed) after the last link update. In order to deal with
this case, the routing algorithm must be prepared to in-
teract with peers that are not ready to communicate.
Notice, however, that the first finger (i.e. the imme-
diate successor) is assumed to be constantly updated,
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of hops for random routing requests as a
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for the considered finger tables.



so that each searched key is always associated with a
functioning node, and no lookup will ever fail: the only
consequence of a non up-to-date finger table is a possi-
ble slow-down of the lookup itself, with higher number
of hops as compared to the “normal case” studied in
the previous section.

Our proposed solution is to set up a time-out af-
ter forwarding a routing request to a peer and reset
it upon receipt of acknowledgment. If no acknowledg-
ment is received before the time-out elapses, then the
contacted peer is assumed not to belong to the ring,
and the routing request is forwarded to the peer whose
address is immediately before the failed one in the fin-
ger table (i.e. the one at a distance immediately shorter
than the “optimal” one that did not respond). In case
of multiple failures, the node will keep trying closer
and closer neighbors, possibly until the first element
in the finger table is reached (remember that this link
is assumed to be kept constantly up-to-date, so that
progress of at least one step in the ring is always guar-
anteed, unless this portion of the ring is momentarily
under repair).

In order to obtain an optimistic bound on the rout-
ing time in presence of failures, in our simulations we
assumed that the time-out is set to only twice the av-
erage hop time (this is the average delay for an ACK
message to come back to the sender in case the peer
is up and running). This timeout is added each time
the simulated routing algorithm makes an attempt to
forward a request to a non operational node.

The results obtained by our simulation experiments
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Figure 3. Weighted routing cost as a function
of the number of nodes in the ring.

are depicted in Figure 4, for varying fractions of failed
nodes ranging from 0 to 10%. The most interesting
observation that one can make is that the G-k family
of finger tables is less sensitive to failures than both
B-k and (extended) Fibonacci. This is probably due
to the more efficient use of the fingers that is made,
which on one hand reduces the number of hops (hence
reducing the probability of getting a failed node in the
route), and on the other hand reduces the size of the
finger table (thus reducing the total number of failed
fingers).

The same kind of benefits can be also appreciated in
the diagrams of the weighted costs, depicted in Figure
5. G-3 and G-4 appear to offer the most stable cost as
a function of node failures.

7 Conclusions

In this paper we have presented the extension of the
F-Chord(1/2) finger table to base k ≥ 2. We studied
the characteristics of the family of functions both ana-
lytically and by Montecarlo simulation. The parameter
k may be increased in order to reduce average and max-
imum number of hops, at the expense of an increased
size of the finger table for a given number of nodes in
the network.

We defined a concept of weighted routing cost that
takes into account average and probability distribution
of the number of hops as well as the number of fingers
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Figure 4. Average and 95 percentile number
of hops for random routing requests in a
10,000 node ring as a function of the fraction
of nodes that failed.
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in the table. According to this weighted cost defini-
tion, our proposed finger table makes optimal use of
the available links by extending the range of the ring
size as compared to Base-k, without losing performance
in case all nodes in the ring are assumed to be func-
tional. Moreover, our new finger table exhibits reduced
sensitivity to failures.

An interesting development of this work is the ap-
plication of our proposed jump functions to pseudo-
randomized finger tables associated with a neighbor-
of-neighbor (NoN) routing algorithm, as already done
in [4] for the case of F-Chord(α). Even in this case
a predefined increase in the size of the finger table
should further improve performance in normal cases
and should reduce the performance degradation in case
a fraction of the nodes fails.
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