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Abstract

In this paper we propose a formal framework based on
the Markov Chains to prove the performance of P2P pro-
tocols. Despite the proposal of several protocols for P2P
networks, sometimes there is a lack of a formal demon-
stration of their performance: experimental simulations
are the most used method to evaluate their performance,
such as the average length of a lookup. In this paper we
introduce a versatile model for the analysis of P2P pro-
tocols. We employ this model to formally prove which is
the average lookup length for two sample protocols: BaRT
and Koorde. We verify the effectiveness of the proposed
framework also via extensive simulations.

1. Introduction

Peer-to-peer protocols allow building networks of huge
sizes, with thousand or million of users that cooperate
between themselves. P2P networks can be scalable, re-
silient and efficient, usually without the requirement of
centralized servers, in a completely distributed fashion.
P2P protocols provide under-layers for a large variety of
services, like network storage, content distribution, web
caching, searching, indexing and more.
The basic operations performed by the peers of a network
are join, leave and lookup. With a join a peer can intro-
duce itself to the other peers of a network. With a leave
the peer drops the connections with the network. When
a peer has joined the network, it can start to communi-
cate with the other peers and in particular might need to
localize a resource shared in the network: the operation
of lookup is used for this purpose. The lookup is often
the most required operation of the network and then can
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seriously influence the performance experienced by the
peers. Moreover, when the number of nodes is very big,
the localization of the resources scattered in the network
can be a challenge, especially in absence of a centralized
index of the resources.
In literature several protocols have been proposed to lo-
calize the shared resources without introducing high over-
head or bandwidth consumption. The lookup perfor-
mance of these protocols are usually proved as a result of
simulations or by formulas obtained from informal obser-
vations. Protocols simulations are fundamental to take in
account the real environment in which protocols must op-
erate, without heavy assumption or simplifications. But
the only simulations is not enough to formally prove the
properties and the features of protocols. While some-
times there is lack of a formal proof of protocols perfor-
mance, it is also almost impossible to find a generic tool
for formally evaluate operations like peer-to-peer lookup.
Often, to compensate the shortage in formalization for
the lookup performance, protocols are provided with a
proof as for the diameter of the network. Focusing on the
diameter only can hide some aspects of the protocol and
can overlook some particular executions of the lookup
that are very far from the average case. Moreover, it
does not guarantee the real scalability of the whole sys-
tem.

This paper provides a formal framework for the com-
putation of the expected performance of P2P protocols.
We instantiate this model to formally study the perfor-
mance of lookup protocols in BaRT [16] and Koorde [9].
We focused on BaRT and Koorde to ease the exposition
of the proposed methodology. One of our future works is
to apply this methodology to Chord and Pastry as well.
Note that the formal study of the average length of the
lookup can be useful to determine the sensibility of every
peer and the capacity of the whole peer-to-peer network.
The proposed framework is based on the Markov Chains
and is general enough to analyze a large variety of proto-
cols. Besides, the use of one single tool makes also more
easy and fair the comparison between different protocols.
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The remaining of the paper is structured as follow: next
section makes a survey of the main P2P protocols and
focus on the proof for their performance. Section 3 high-
lights the proposed methodology. In Section 4 and Sec-
tion 5 we apply the proposed methodology to characterize
the performance of lookup for the BaRT and Koorde pro-
tocols respectively. In Section 6, the theoretical results
are compared with the experimental results obtained via
simulations. Finally, in Section7 we provide some con-
clusive remarks.

2 Related Work

The popular P2P systems for file sharing, like Napster
[12], Gnutella [7] and Freenet [3], do have a lack of formal
proof for their performance.

The most popular P2P lookup protocol is Chord [17],
which uses a distributed hash table to guarantee load bal-
ancing among peers, to perform lookups without the use
of central servers, and to obtain a system with good re-
silience. The lookup performance of Chord are showed by
simulations, while the theorem about the lookup length
provides the bound of Θ(log n). Other studies on the P2P
protocol performance are proposed and use simulations
or other empirical evaluation methodology [2], [14], [8]
to justify their performance. Pastry [6] also proposes a
decentralized object location for large-scale P2P system,
but only simulations and informal discussions support the
scalability and short lookup length. Other P2P systems
like P-Grid [1] or H-Chord [4] are based on distributed
hash tables and provide studies on the average case. Our
analysis is focused on BaRT and Koorde protocol. The
BaRT [16] protocol is based on a logical-tree view of the
network: every peer is a leaf of a d-tree and the inter-
nal nodes of the tree are virtual. A protocol with some
similarities with BaRT is Kademlia [11], but it is based
on a Xor metrics and cannot be compared with the arbi-
trary degree of arity provided by BaRT. Koorde [9] can
be view as an implementation of Chord over a network
based on de Bruijn graph. From this kind of graph it
inherits the optimal properties of constant node degree,
connectivity and optimal diameter. As showed in [10],
de Bruijn graphs have more and desirable properties and
we remand to [10] for a more detailed analysis.
Finally, see [13] for a detailed introduction to Markov
Chains and the calculation of the absorbing time.

3 Formal framework methodology

This section presents our formal methodology to for-
mally prove the performance of P2P network protocols.
The framework can have a wide range of applicability
and in particular, to show its effectiveness, we will apply
it to the analysis of lookup performance. Focusing on the
lookup overhead is interesting, since the average lookup

length can also be viewed as the overhead (in terms of
bandwidth required or delay of the network) requested
by the protocol to find out the required data. Moreover,
the lookup operation is useful to calculate the “capacity”
of the network, that is the average available throughput
of each peer in the network: since a peer must forward an
average of � requests originated by other peers for every
request performed, the expected useful capacity is the in-
verse, �−1.
Our methodology counts four steps:

1. protocol analysis;
2. identification of the ”states”;
3. extraction of the Transitions-matrix;
4. calculation of the average absorbing time.

A protocol analysis must be performed to understand
the principles on which the protocol is based and to iden-
tify the actors and the actions of the protocol. The main
goal is to depict a model of the protocol based on states.
For instance, in the case of Koorde and BaRT, from the
analysis we are able to recognize the peers as actor and
the lookup as actions; then, we want to analyze the per-
formance of the protocols w.r.t. the lookup length and,
consequently, we use as metric the number of hops taken
to perform a lookup. All the information collected dur-
ing this phase will be useful to identify the states of the
Markov Chain and the matrix of the transitions.

The states identification step requires to identify
the states of the protocol that can be viewed as a state
of a Markov Chain. Generally, we can say that a state
is a snapshot of the evolution of the protocol in which
the actors share the same probability to be the subjects
or objects of an action (e.g. destination of a lookup,
receiver of a message, subject to failure). For example,
in Koorde we have introduced one state for each peer
of the network: indeed, we can follow the evolution of a
lookup as the sequence of peers that the lookup crosses to
reach its destination. In BaRT, instead, we can partition
the set of all the peer and define state i as the event
“the lookup has reached a peer within the partition i”:
in such way, we can see the lookup as the sequence of the
partitions traversed by the lookup.

In the transitions matrix extraction step, the
transition-edges between the states are detected and the
probabilities of each transition calculated. The transi-
tions are related to the evolutions of the protocol, and
then to the relations between the different actions of the
actors. For example, to model BaRT we calculated the
transition from state i to state j as the probability to
randomly pick a peer from a set of a cardinality that
depends from i and j (see Section 2). The probabilities
associated to the transitions are collected and grouped in
the transition-matrix of the chain.

In the last step (average absorbing time calcula-
tion), a study of the Markov Chain built in the previous
steps is needed in order to identify the transient and the
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Figure 1. Tree as union of disjoint subtrees

recurrent states and, consequently, the absorbing classes.
Since the model is related to properties of the protocol
that we have to study, the average absorbing time of the
chain will be the requested performance of the protocol.

4 The Balanced Randomized Tree proto-
col

This section presents the application of the proposed
methodology to the BaRT protocol, while in Section 6
these formal results are compared with simulations. The
BaRT protocol uses a Distribute Hash Table: every peer
maintains a piece of the whole data structure that al-
lows to route information within the network. The data
structure is a tree where every non-leaf node has ex-
actly d ∈ N

+ children. Every peer is associated to a
leaf of the tree. When we consider a peer associated to
a leaf l of the tree, we can view that the whole tree T
is composed by the union of (d − 1)(h − 1) + 1 subtrees
T0, T

(0)
0 , T

(1)
0 , . . . , T

(d−1)
0 , T

(0)
1 , . . . , T

(d−1)
h−1 : T0 is the sub-

tree composed by leaf l only, while every subtree T
(i)
h is

the i-th subtree of height h from the left that does not
contain l (see Figure 1, where d = 3). For each subtree
T

(i)
h , the peer l knows the address of (has a link to) one

peer associated to a random leaf of T
(i)
h : the whole set

of these links is called the links table of peer l. The set
of the keys is partitioned and almost uniformly (see [16])
scattered between the peers, in such a way that every
peer p knows exactly in which subtree T

(i)
h is the peer

that maintains a key k. Then, p starts a lookup search-
ing for k, requesting to its link q for T

(i)
h to continue the

lookup. If q has key k, it answers to p; else, q determines
in which subtree T

(i′)
h′ is the key k and then asks to its

link for subtree T
(i′)
h′ to continue the lookup. This process

is iterated until the peer t storing the key k is reached.

4.1 BaRT Analysis

Before presenting the model for the BaRT analysis, we
depict a basic scenario to introduce the notation used in
the following. Assume, without loss of generality, to have
a balanced and complete binary tree T ′, of height h′, with
N ′ ≤ 2h′

leaves that represents the logical structure of a
BaRT network. Consider T , subtree of T ′, of height h ∈

p
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h= 4
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Figure 2. Lookup scenario

N
+ and with N = 2h leaves. T has N peers associated,

one for every leaf of the tree and every peer has log N
links toward peers in the tree T and h′−h other links to
the peers outside T , according to the rules of BaRT. The
tree T can be viewed as the union of the h disjoint subtree
T0, T1, T2, . . . , Th of height respectively 0, 0, 1, . . . , h − 1,
as in Figure 2. A peer p of the network, associated to
a leaf outside the tree T (see Figure 2), must perform a
lookup for a key k stored in T . The key k is stored by
the peer associated to the (only) leaf q in the tree T0.
Now we are ready to introduce the model. We consider
a discrete time homogeneous chain {Xt}t, with t ∈ T ⊂
N

+. The chain represents the succession of the trees that
the lookup hits to reach q. Then, every Xt assumes a
value in the set E = {0, 1, . . . , h}, that is in the set of the
indexes of the subtrees (T0, . . . , Th) that compose the tree
T . In particular, the random variable Xn = i indicates
subtree Ti as the subtree in which is the leaf that, at time
n, must perform the next step of the lookup.

Due to the randomization of the links of a subtree if
the lookup must be forwarded in a peer of Ti, every peer
of Ti has the same probability pi to be the peer reached
by the lookup. Then, the following fact holds:

Fact 1. pi = 1
# of leaves of Ti

For the probability of a subtree Ti to be the next sub-
tree hit by the lookup, it is not relevant which leaf r of a
subtree Ti receives the request to perform the next step:
it is only relevant the number of leaves of the subtree Ti.

Theorem 1. The probability that the first leaf reached
by the lookup lies in the subtree Ti is:

P{X0 = i} =

{
1
2h , if i = 0

1
2h−(i−1) , otherwise

The proof for this theorem and for the followings ones
are omitted due to space limitation and can be found in
[15]. We can calculate the probability pij that the lookup
will be forwarded from a subtree Ti to a subtree Tj . First
of all note that, in absence of failures, the lookup process
of the BaRT protocol is such that a peer requests the next
step of a lookup only to a peer in a subtree of height
smaller than its own. This means that the probability
that the lookup goes back in a subtree already hit is 0,



that is:
P{Xn = j|Xn−1 = i, j ≥ i} = 0

To request the next step of the lookup, a peer r in the tree
Ti refers to its link of the subtree rooted at the brother of
the root of Ti, the subtree T̂i = Ti−1 ∪Ti−2 ∪ . . .∪T0. T̂i

has the same height hi of the subtree Ti and, then, the
same number of peers. Thanks to the randomization,
each of these peers can be the link of r to reach T̂i; the
peer than will perform the next step of the lookup. This
shows that for tree T̂i also holds Fact 1.

Theorem 2. If 0 < j < i ≤ h, then pij = 1
2i−j .

Corollary 1. For each i, 0 < i ≤ h, pi0 = pi = 1
2i−1

For example, with reference to Figure 2, assume that
the lookup for key k stored by peer q has reached a peer
r associated to a leaf of subtree T3. Since the target of
the lookup is the key k, r will forward the request to the
subtree T2 ∪ T1 ∪ T0, that has 2h3 = 4 leaves. Then, the
next peer hit by the lookup will be a peer in T2 with
probability 1

2 , the peer in T1 with probability 1
4 and the

peer in T0 (i.e. q) with probability 1
4 .

When the lookup reaches q (that is subtree T0), the
lookup ends. This can be formalized with p00 = 1. Now,
we are able to build the transition matrix P, using these
elements:

pij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if i ≤ j �= 0

1
2i−j , if 0 < j < i

1
2i−1 , if i �= j = 0

1, if i = j = 0

obtaining a matrix like that in Figure 3. We can repre-
sent the chain as an oriented graph in which: the vertices
are the states of the chain and between two vertex i and
j there is an edge (i, j) labeled with pij if pij > 0. In
Figure 3 we report the transition matrix and the corre-
sponding graph for the chain of the tree T in Figure 2.
Observing the matrix P, we can notice that all the states
1 . . . h of the chain are transient except state 0, that is the
only recurrent state. Moreover, state 0 is also the only ab-
sorbing state, and constitutes an irreducible closed class
C. Then, calculating the average absorbing time τi of the
class C, we calculate the average number of states to pass
through, starting from state i ∈ E, before hitting a state
of the closed class C. In other words, τi represents the
average number of subtrees hit by a lookup that starts
from Ti to reach the peer q, target of the lookup. Recall
that τi (the set of average absorbing time starting from
i ∈ E) can be calculated as the solutions of the linear
system

τi = 1 +
∑
r∈T

pir τr (1)

where T is the set of the transient states of the chain.
We can observe that P is a lower triangular matrix, and
then the solutions to Equation (1) can be determined by
recursion, starting from τ0 = 1 and τ1 = 1:
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Figure 3. Graph and transition matrix of a tree
with h = 4

τi = 1 + pi 1 τ1 + pi 2 τ2 + . . . + pi i−1 τi−1 =

= 1 +
1

2i−1
τ1 +

1

2i−2
τ2 + . . . +

1

2i−(i−1)
τi−1 (2)

To eliminate the recursion and simplify the computation
we prove the following theorem:

Theorem 3. Let
τi = 1 +

1

2i−1
τ1 +

1

2i−2
τ2 + . . . +

1

2i−(i−1)
τi−1

and Ti = 1
2 (i + 1), then τi = Ti ∀ i ∈ N

+

With the above theorem, we have that the value for
τi, the average number of subtrees hit by a lookup within
a binary tree of height i, is provided by the value of Ti.
Since for the hypothesis the tree has height h = log n, we
obtain that the average lookup length of a lookup τh is
equal to 1

2 (log n + 1).
Now, we can generalize to BaRT networks based on

trees of arity d ∈ N
+. The process is the same: fix arity

d and key k for the lookup, we can suppose without loss
of generality, that the tree T is complete with height h,
and it is a subtree of a higher subtree T ′ that represents
the logical structure of the BaRT network. The tree T
can be viewed as the union of (d − 1)(h − 1) + 1 sub-
trees T0, T

(0)
0 , T

(1)
0 , . . . , T

(d−1)
0 , T

(0)
1 , . . . , T

(d−1)
h−1 : T0 is the

subtree of height 0 that contains the peer q target of the
lookup and T

(j)
hi

is the j-th subtree of height hi from the
left. Denote with Ti the set of subtrees with the same
height hi. We can see the lookup process for the key k
as the sequence of subtrees hit by the lookup from a peer
p: every Xt assumes a value in the set E = {0, 1, . . . , h},
that is in the set of the indexes of the set (T0, . . . , Th)
that compose the tree T . Each random variable Xn = i
indicates that at time n a peer in a subtree of Ti must
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perform the next step of the lookup. Repeating the log-
ical steps shown for binary trees, we can calculate the
probability for every peer to be the link of p for tree T
as pi = 1

dh−1 .
Moreover, generalizing Theorem 2, we have that:

pij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if i ≤ j �= 0
d−1
di−j , if 0 < j < i

1
di−1 , if i �= j = 0

1, if i = j = 0

and obtain the required matrix P. Solving Equation (1),
we obtain the recursive formula:

τ
(d)
i = 1 +

d − 1
di−1

τ
(d)
1 +

d − 1
di−2

τ
(d)
2 + . . . +

d − 1
di−(i−1)

τ
(d)
i−1 (3)

Using a straightforward generalization of Theorem 3, we
can show that, fixed i = h:

τ
(d)
h = T

(d)
h =

1
d

(
(d − 1)h + 1

)
(4)

that is, the average number of subtree hit by a lookup to
reach a target peer effectively depends on the height of
the tree. If the tree is balanced the number of exchanged
messages between peers is logarithmic in the number of
peers of the network, where the base of the logarithm is
d. With Equation (4), we can prove another result for
BaRT; set d = log n, then with a tree where h = logd n
we obtain that

T
(d)
h =

log n − 1

log log n
+

1

log n
(5)

that is, the length of a lookup is Θ
(

log n
log log n

)
.

5 The Koorde protocol

The Koorde [9] protocol is a Distributed Hash Ta-
ble based on Chord [17] and the de Bruijn graphs [5].
The main characteristic of this kind of graphs is the
constant degree d of nodes. This model is completely
characterized by the graph described as (V, E), where
V = {0, . . . , n − 1} (n = db − 1,with b ∈ N) and
∀u ∈ V, ∃(u, v1), . . . , (u, vd) ∈ E, where vi = d ∗ u +
(i−1) mod db (see Figure 4 for a pictorial representation
of an instance of such a model). Informally, the set of
vertices is the set of the first db natural numbers and ev-
ery vertex has exactly d outgoing edges, one toward every

vertex with the identifier between d∗v and (d+1)∗v−1,
where all the operations are performed modulo db.
Without loss of generality, we can instantiate a Koorde
network where the degree of the de Bruijn graph is d = 2,
the number of nodes is n = 2m, m ∈ N, and also the num-
ber of keys are n, ordered from 0 to 2m−1. Every peer of
the Koorde network is mapped on a vertex of the graph:
the peer mapped to vertex p is labelled with the binary
representation of value p, referred as p̂ and stores the key
p. Every key k is labelled with the binary representation
of k, that is k̂. Every peer has two links, according to
the outgoing edges of its associated vertex. To perform
a lookup of k, a peer with identifier p finds the longest
sequence of bits in which the less significant bits of p̂ and
the most significant bits of k̂ match. Then, p shifts p̂ to
the left, in according to the bit of k̂ in which the sequence
differs, obtaining the value t = p̂l ◦ topBit(k̂) (◦ denotes
the operation of concatenation and p̂l is the sequence p̂
without the first bit). Then p forwards the lookup to the
node with identifier t, which is one of its neighbours. The
process is iterated until the request reaches the peer that
maintains the key k.
The same steps have to be performed for a lookup also if
the degree d of the graph is greater than 2: it is sufficient
to take in account a bigger set of symbols Σ to encode
every identifier of keys and nodes [10].

5.1 Koorde Analysis

From now on, we suppose that the network in analysis
has built on a de Bruijn graph with degree d and that the
number of peers of the network is n = db −1. To analyze
the model presented above, we can consider a typical
scenario: we have a random peer p that has to perform a
lookup for a random key k, where p, k ∈ V = {0, . . . , n}.

We can divide the space of identifiers V in b+1 subsets
C0, C1, . . . , Cb, where:⎧⎪⎨⎪⎩

C0 = {p}
Ci = {dx + j mod db, j = 0, . . . , d − 1 mod db

∀x ∈ Ci−1 \ Ci−2}
that is the set of nodes reachable from p the first time

respectively in 0, 1, . . . , b steps. Notice that every set
Ci contains all the peers that have the first b − i most
significant bits of the identifier equal to the b − i less
significant bits of the identifier of p.
If we consider the Markov Chain Xn that represents the
set in which the lookup for key k is at step n, we can
build the corresponding matrix:

P 0 1 2 3 . . . z z+1 . . . b
0 0 1 0 0 . . . 0 0 . . . 0
1 0 0 1 0 . . . 0 0 . . . 0
2 0 0 0 1 . . . 0 0 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
z-1 0 0 0 0 . . . 1 0 . . . 0
z 0 0 0 0 . . . 1 0 . . . 0

z+1 0 0 0 0 . . . 0 0 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.
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.
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.
b 0 0 0 0 . . . 0 0 . . . 0



Notice that the state z corresponds to the set Cz and
contains the peer that maintains key k. Indeed, after z
shift the identifier of p becomes the identifier of k. The
matrix P identifies state z as the only recurrent state
and also the only absorbing state. Then, fixed z, using
Equation 1 we can calculate the average absorbing time
of the chain, starting from C0. For every τi, the only non-
zero value of Equation 1 is pi i+1τi+1. Then, Equation
(1) corresponds to:

τi = 1 +
z−1∑

j=i+1

τj

except for τz = 1, where we obtain recursively that
τz−i = i and, finally:

τi = z − i.

For i = 0 (the state that starts the lookup) we have that
τ0 = z, that is, fixed z, the number of steps that a lookup
must perform in average to hit the target is z. To evaluate
the average length of a lookup, we use the function f(i)
defined in [10] that approximates the distribution of the
lookup length, that is:

p(i) ≈ f(i) =
di

n

(
1 − di + di−1 − 1

dn

)
, n ≥ 1

Then we obtain that

E[τd] =
b∑

i=0

i p(i) ≈
b∑

i=0

i
di

n

(
1 − di + di−1 − 1

dn

)

6 Experiments and Discussion

In this section we report the simulation results for the
BaRT and Koorde protocols and compare these experi-
mental results with the analytical results from the pre-
vious sections. In Koorde, we randomized the peer re-
questing a lookup query as well as the requested key. We
counted the number of hops needed for the lookup to
reach the node that stores the requested key. In BaRT,
an experiment consists of two phases: generation of the
network and lookup execution. During the network gen-
eration, every peer of the network receives its random
links table, according to BaRT rules. To perform the
test of a single lookup, we randomly chose a requesting
peer and a key and counted the number of peers involved
by the lookup. Every test was repeated 25 times and the
reported results are the averaged values.

BaRT networks for arity 2. This section presents
the data obtained by simulating BaRT using binary trees.
The graph in Figure 5 compares the lookup lengths for
networks of different sizes. The number of nodes n of a
network is doubled starting from 128 up to 8192. The
graph plots also the function T

(h)
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to compare the simulated values with the expected val-
ues. We assumed tree of height �log n�. The bars of the
graph report the minimum and the maximum lengths of
a lookup, whereas the middle signs are the experimented
average lengths of the lookups. The simulations confirm
our theoretical analysis, because the values of the func-
tion T

(h)
2 (i ∈ N) are very close to the average length

values experimented.
BaRT networks for arity 3, 5 and 10. In Fig-

ure 6 are reported the comparison between results ob-
tained simulating networks with a fixed size (8192 nodes),
but varying the arity. In the plot the theoretical values
are also reported for the expected average length for arity
2, 3, 5 and 10. To obtain the theoretical values, we calcu-
lated the succession of Equation (4) using for the height
of the tree h the nearest value that can be expressed as a
power of the arity. In particular, for the arity 3 we used
a height of 8 because 8192 ≈ 38.2, while for arity 5 we
used h = 6 because 55 = 3125 < 8192 < 15625 = 56

(then we used respectively τ
(8)
3 and τ

(6)
5 ). For arity 10,

we used τ
(4)
10 . Notice that, if we do not evaluate T

(d)
i



Table 1. BaRT
d h n,Size T

(d)
h T

(d)
i ad, Exper. value

2 13 8192 7 7 6.50
3 8 8192 5.66 5.38 5.40
5 6 8192 5 4.32 4.50
10 4 8192 3.7 3.62 3.55
10 4 10000 3.7 3.7 3.61
10 4 50000 3.7 4.33 4.3
10 5 100000 4.6 4.6 4.6
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Figure 7. BaRT: lookup length varying n, d=10

rounding to the nearest integer value, but use instead
the log n function, we obtain more accurate theoretical
values. All the values are reported in Table 1, where
logd(n) = i. The not rounded values (T

(d)

i ) are reported
as well. Figure 7 reports the results of three simulations
performed with arity 10. The size of the network was of
10,000, 50,000 and 100,000 nodes, while 300,000 lookup
were performed for every network size. For every plot, we
reported the expected value (T (4)

10 for 10,000 and 50,000,
T

(5)
10 for 100,000) and the experienced average length (re-

spectively a10k, a50k and a100k).
Koorde networks, based on binary graph.

In Figure 8 and Figure 9 we reported the results of
the simulations for the Koorde networks with degree 2.
Figure 9, in particular, shows the comparison between
the simulated and the theoretical length of a lookup.
The simulation is based on a network with 8192 peers
(n = 213) in which we simulated 500,000 lookups, ran-
domly selecting the requesting peer and the requested
key. We reported in the graphic, for every lookup length
k, the fraction of lookups that was performed in k steps.
To show the theoretical value, we plotted the function
f(i), used in Section 5.1 to evaluate the average lookup
length E[τ], and also reported the average value a2 ob-
tained from simulations. Considering only two decimal
digits, we obtained the same value for E[τ] and a2, that
is E[τ] = a2 = 11.33. In fact, as we can see in the inner
graphic (a magnification for the interval [11 − 13]) the
differences between the different values are negligible.

Table 2. Koorde
d n, Size b = logd n E[τ] ad, Exper. value

2 8192 13 11.335 11.3378
3 6561 8 7.31319 7.31785
5 15625 6 5.69803 5.69881
10 10000 4 3.87772 3.87791
10 100000 5 4.87767 4.87771
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Figure 8. Koorde: Min/med/max experienced
values for lookup length varying n, d=2

Koorde networks based on non-binary graph.
Figure 10 shows both simulated and theoretical values
for the length of every lookup. The figure allows to make
a comparison between different sizes of the network and
different degrees. For all degrees we can observe a strict
agreement between experiments and theoretical values.
Figure 11 reports the values obtained simulating net-
works with degree d = 10 and with 10,000 and 100,000
nodes respectively. In Table 2 we summarize the values
related to Figure 10 and Figure 11.
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Figure 10. Koorde: lookup length varying d
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7 Conclusion

This paper described a methodology to assess the per-
formance of a P2P network. The methodology is formal
and based on Markov Chains. We have shown its validity
focusing on the performance evaluation of lookup opera-
tions. In particular, we have employed the methodology
to analyse two protocols: BaRT and Koorde and their
relative performance as for the lookup operations. Exten-
sive simulations confirmed the sharp validity of analytical
results. Among future works, we envisage to adapt the
methodology to Chord and Pastry as well; moreover, we
are planning to extend the methodology to the analysis
of other properties of interest in P2P network, such as
connectivity.

Acknowledgments.
The authors are grateful to professor Luigi V. Mancini
and the anonymous reviewers for providing useful sug-
gestions and comments.

References

[1] K. Aberer. P-Grid: A self-organizing access structure for
P2P information systems. In Proceedings of the 9th Inter-

national Conference on Cooperative Information Systems
(CoopIS 2001), Trento, Italy, 2001.

[2] J. Chu, K. Labonte, G. Bissias, D. LaFlamme, and B. N.
Levine. A trace-driven evaluation of chord. Technical
Report 04-38, Dept. of Computer Science, Univ. of Mas-
sachusetts, Amherst, MA 1003, 2004.

[3] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A Distributed Anonymous Information Storage
and Retrieval System. In Designing Privacy Enhancing
Technologies: International Workshop on Design Issues
in Anonymity and Unobservability. LNCS 2009. Springer
Verlag., 2001.

[4] G. Cordasco, L. Gargano, M. Hammar, and V. Scarano.
Degree-optimal deterministic routing for p2p systems. In
PODC ’04, New York, NY, USA, 2004. ACM Press.

[5] N. de Bruijn. A combinatorial problem. In Proceedings of
Koninklijke Nederlandese Akademie van Wetenschappen,
1946.

[6] P. Druschel and A. Rowstron. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-
to-peer systems. In Proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems Plat-
forms (Middleware 2001), 2001.

[7] Clip2. The Gnutella Protocol Specification v.0.4 (Docu-
ment revision 1.2).

[8] J. Guillaume, M. Latapy, and S. Le-Blond. Statistical
analysis of a p2p query graph based on degrees and their
time-evolution. In LNCS Proceedings of the 6th Interna-
tional Workshop on Distributed Computing (IWDC’04)
(Calcutta, Inde), volume 3326, 2004.

[9] D. Karger and M. F. Kaashoek. Koorde, a simple degree-
optimal hash table. In Proceedings of the 2nd Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS ’03),
Berkeley, CA, USA, 2003.

[10] D. Loguinov, J. Casas, and X. Wang. Graph-theoretic
analysis of structured peer-to-peer systems: routing dis-
tances and fault resilience. IEEE/ACM TON, 13(5),
2005.

[11] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-
peer information system based on the XOR metric. In
Proceedings of IPTPS ’02, Cambridge, MA, USA, 2002.

[12] Napster web address: http://www.napster.com.
[13] S. M. Ross. Probability Models. Academic Press, 8th

edition, 2002.
[14] S. Saroiu, K. Gummadi, and S. Gribble. A measure-

ment study of peer-to-peer file sharing systems, 2002. In
Proceedings of Multimedia Conferencing and Networking
(San Jose, CA), 2002.

[15] A. Spognardi and R. Di Pietro. A formal framework
for the performance analysis of P2P networks protocols,
TR-WEBMINDS-64. Technical report, Web-Minds, Unit
of Rome, Jan. 2006.

[16] A. Spognardi, R. Di Pietro, and L. V. Mancini. Bart,
balanced randomized tree: A scalable and distributed
protocol for lookup in peer-to-peer networks. In IEEE
HOT-P2P’04, pages 22–29. IEEE Press, 2004.

[17] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup protocol for Internet appli-
cations. IEEE/ACM TON, 11(1), 2003.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


