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Abstract

Very large size Peer-to-Peer systems are often required to
implement efficient and scalable services, but usually they
can be built only by assembling resources contributed by
many independent users. Among the guarantees that must
be provided to convince these users to join the P2P system,
particularly important is the ability of ensuring that P2P
applications and services run on their nodes will not unac-
ceptably degrade the performance of their own applications
because of an excessive resource consumption. In this pa-
per we present Interceptor, a middleware-level application
segregation and scheduling system that is able to strictly en-
force quantitative limitations on node resource usage and,
at same time, to make P2P applications achieve satisfactory
performance even in face of these limitations.

1 Introduction

The Peer-to-Peer (P2P) paradigm has recently emerged
as an effective way of organizing highly scalable distributed
systems, as demonstrated by quite a few P2P systems de-
signed for the provision of services of various type, such
as efficient data lookup [5], media streaming and transcod-
ing [12], DNS address resolution [13], distributed storage
management [21], distributed file systems [14], and anony-
mous communication [20]. In order to properly work, these
services require the availability of a large number of nodes,
possibly scattered across the globe. The only viable option
to build such very large size P2P systems seems to be the
aggregation of nodes belonging to many individual entities
(single individuals or institutions), that must be encouraged
to join the system with their own resources. This can be
achieved only if each node owner, besides receiving appeal-
ing incentives [16] and being convinced about the thrust-
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worthiness [6] of P2P users and applications, is guaran-
teed that P2P applications will not unacceptably degrade the
performance of his/her own applications because of an ex-
cessive resource consumption. Providing such a guarantee
requires the availability of application segregation mecha-
nisms able to precisely enforce quantitative limitations on
the usage of the various node resources (e.g., CPU cycles,
RAM, disk space and bandwidth, etc.) set by the respective
owner.

Application segregation mechanisms are not a new con-
cept, and have been studied in various contexts, but the ex-
treme hardware and software heterogeneity found in P2P
systems introduces new requirements and constraints that
must be met in order to make them usable in practice. As a
matter of fact, segregation mechanisms suitable to P2P sys-
tems must not be tied to any specific operating system and
platform, and must not require any modification to exist-
ing operating systems and applications. Placing restrictions
on the supported operating systems would indeed results in
limitations on the number of nodes that can participate to
the P2P system, while requiring modifications to the oper-
ating systems and applications would raise natural concerns
about security and unacceptably increase software mainte-
nance costs and problems.

In this paper we propose Interceptor *, an application
segregation system that is able to simultaneously meet all
the above requirements. Interceptor allows node owners
to specify quantitative constraints on the share allocated to
P2P applications for each node resource, and enforces them
by means of a set of resource-limitation mechanisms. Fur-
thermore, Interceptor allows one to allocate to individual
P2P applications different resource shares, so that more re-
sources can be allocated to critical P2P services (e.g., DHT
routing). Finally, Interceptor encompasses a set of resource
scheduling mechanisms and policies aimed at maximizing
P2P applications performance without violating resource
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The name Interceptor has been choses to indicate that, as discussed
later, it is based on the idea of intercepting the resource access requests
issued by P2P applications.



limitations. Interceptor is designed in such a way that can
be implemented entirely at the middleware-level on stan-
dard operating systems that provide system call intercep-
tion facilities (like many modern operating systems, such as
Linux, Windows NT and subsequent versions, Solaris, and
FreeBSD) and real-time fixed-priority process scheduling
(a feature that is present in all POSIX-compliant systems,
like are the ones mentioned before). As will be discussed
in later sections, this makes Interceptor totally transparent
to applications and able to co-exist with the local operating
systems run on individual nodes. Furthermore, Interceptor
is designed in such a way that it is possible to change the
scheduling policy adopted for any resource without having
to modify anything else.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work, while Section 3 presents the
architecture, the mechanisms, and the scheduling policies
used by Interceptor. Section 4 describes a proof-of-concept
implementation we have devised for Linux, and reports the
experimental results we obtained using it. At the moment
of this writing, only the CPU scheduling policy has been
fully implemented, so we will discuss only results concern-
ing with CPU scheduling. Our results demonstrate the ef-
fectiveness of the application segregation mechanisms, and
the fairness and effectiveness of the CPU scheduling algo-
rithm. Finally, Section 5 concludes the paper and outlines
future research work.

2 Related work

The need of providing application segregation has arisen
in various fields, and several solutions have been proposed
in the literature. The simplest solution is the one adopted in
most public-resource computing systems [3, 10], consisting
in using an application-specific “client” program, executed
on the hosting resource, that controls the execution of the
external application and enforces the desired resource usage
limitations. Although this solution is attractive because of
its simplicity and ease of implementation, it provides a lim-
ited form of segregation, and does not support the execution
and the scheduling of multiple P2P applications simultane-
ously run on the node.

An alternative solution, able to support multiple P2P
applications, is sandboxing, that consists in providing a
virtual execution environment that mediates applications
resource accesses. Sandboxing uses code transformation
techniques (such as binary modification [26] and API in-
terception [7, 17]) to monitor and control the application’s
interactions with the underlying OS, in such a way that
the desired behavior is enforced. Sandboxing has been
mainly used to enforce qualitative restrictions (i.e., restric-
tions on what resources can be used by an application), but
recently it has been used to enforce quantitative constraints

as well [8, 11]. The main problem of sandboxing is its lack
of generality, as any sandboxing technique is platform spe-
cific. Even if the same technique can sometimes be exported
on a different platform, the development effort usually is
quite significant. Moreover, the use of a sandboxing tech-
nique that requires unmediated access to the hardware (e.g.,
Xen [8]) raises obvious security concerns, while resorting to
user-level sandboxing does not give the complete guarantee
that the segregation mechanisms are not bypassed (either
intentionally or not) by applications [11].

An alternative to sandboxing consists in kernel-level
techniques that extend the OS kernel with suitable mech-
anisms able to enforce quantitative constraints on applica-
tion resource usage. Kernel-level techniques do not present
the same drawbacks of sandboxing, since resource access
is mediated by the OS, but require modifications to the ker-
nel running on the various nodes of the P2P system, some-
thing that is usually impossible for proprietary or commer-
cial OSes, not to mention the efforts necessary to implement
and maintain these modifications. Furthermore, requiring
resource owners to run a modified kernel appears unrealis-
tic because of the obvious security concerns.

Middleware-level resource management solutions [15,
22, 23] have been proposed as an alternative to kernel-level
techniques. As shown in [24], middleware approaches, de-
spite their potentially high overhead, often result in appli-
cation performance similar to those attained by adopting
kernel-level solutions. However, in general they require to
modify or to relink existing application code, since typi-
cally each middleware layer requires that processes use a
particular API to access system resources and middleware
services. Consequently, applications may need to be repro-
grammed to use a new API, which is costly and sometimes
even impossible (for instance, when source code is not ac-
cessible).

Interceptor is instead designed to combine the advan-
tages of all these approaches, while at the same time avoid-
ing their drawbacks. As sandboxing, kernel-level tech-
niques and middleware solutions, it supports the simultane-
ous execution of P2P applications, but unlike them it is not
OS specific (since it relies on facilities available on prac-
tically all modern operating systems), nor it requires any
modification to the operating system running on P2P nodes.
Moreover, it is able to co-exist with the OS running on the
node, but unlike traditional middleware-level techniques it
does not require any modification to P2P applications. Fi-
nally, unlike these solutions (with the notable exception of
kernel-level techniques) it provides also effective P2P ap-
plications scheduling.



3 The Interceptor system: architecture,
mechanisms, and scheduling policies

Interceptor is a software layer, placed on top of the lo-
cal operating system, that intercepts the resource access re-
quests issued by P2P applications, and controls them, in
order to (a) provide application segregation for P2P ap-
plications (i.e., enforce quantitative limitations on P2P ap-
plications resource usage), and (b) maximize their perfor-
mance without violating the above limitations. Interceptor
achieves its purposes by using a set of resource scheduling
mechanisms and policies that are based on the principle dis-
cussed below.

Let S(P2P, 7) the maximum share of resource 7 (i.e.,
the fraction of its capacity) that can be allocated to P2P ap-
plications, and let S(P;, 7) the resource share allocated to
the P2P process P; (henceforth referred to as the nominal
share of P;). Interceptor schedules the usage requests for
7 issued by P2P processes in such a way that the following
inequalities simultaneously hold:

R(P;,T,7) > S(P;,7), VP e P2P (Ch)
> R(P,T,7) < S(P2P,7) (C2)

P;,eP2P

where P2P is the set of P2P processes running on the node,
and R(P;, T, ) is the share of 7 received by P; in the in-
terval going from its creation to time 7'. In practice, in-
equality (C) states that each P2P process must receive at
least its nominal share for resource 7, while inequality (C's)
states that the share globally allocated to P2P applications
must not exceed the upper limit on P2P resource usage.
R(P;,T,7) is in turn defined as:

UT(P;,T)

R(P,T,T) = T

(1
where UT'(P;, ) denotes the amount of time in which
P; has used resource 7. For instance, if process P; uses
the CPU for 10 sec. in an interval lasting 100 sec., then
R(P;,CPU) =10/100 = 0.1 = 10%.

3.1 Architecture

The architecture of Interceptor is schematically depicted
in Fig. 1, and encompasses two management modules (the
Creator and the Catcher) and four resource schedulers (one
for each of the main node resource types). The Creator cre-
ates the processes corresponding to P2P applications, upon
receiving the corresponding request. Once created, the con-
trol of a P2P process is passed to the CPU Scheduler, that
— by using the mechanisms and policies discussed in the
next subsection — schedules it. During its execution, the
P2P process requests access to the resources of the node by
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Figure 1. The architecture of Interceptor. Continuos (dot-
ted) thin lines represent issued (intercepted) system calls,
thick lines correspond to actions performed bo control pro-
cess execution.

issuing a set of system calls. These system calls are trans-
parently intercepted by the Catcher, that forwards them to
the proper resource scheduler. Each scheduler places the
requests it receives in a request queue, sorted according to
a resource-specific scheduling policy, and delays their for-
warding to the local operating system in such a way that
inequalities (C7) and (C52) are satisfied. It should be noted
that, as shown in Fig. 1, only those system calls that corre-
spond to requests for resource usage issued by P2P applica-
tions are intercepted.

3.2 Mechanisms

The consequence of implementing Inferceptor at the
middleware level is that it must co-exist with the local oper-
ating systems run on P2P nodes. This in turn implies that /n-
terceptor must be able to impose its scheduling decisions to
the local OS, that otherwise would schedule application re-
quests by using its own policies. This is achieved by means
of the following mechanisms, that are used to override the
scheduling decisions made by the underlying OS:

e Real-time, fixed-priority round-robing CPU schedul-
ing: in this policy, the CPU is scheduled in a round-
robin fashion using time slices of constant duration.
Each process is associated with a fixed priority, and al-
ways the process with the highest priority is run, pos-
sibly preempting lower priority processes. A process
that is preempted by a higher priority process will stay
at the head of the list for its priority and will resume



execution as soon as all processes of higher priority
are blocked again. A process that becomes runnable,
or that uses an entire time slice, is inserted at the
end of the list for its priority. This policy is avail-
able in POSIX-compliant systems, where is named

SCHED_RR.

e High-resolution timers, such as those specified by the
POSIX Realtime Extensions, that are necessary in or-
der to accurately control the allocation and release of
node resources.

e System call interception facilities, required to transpar-
ently mediate resource access. System call intercep-
tion facilities are available in practically all the modern
operating systems (including Linux and various Win-
dows variants).

e Multi-threading support, required to implement the
various modules of Interceptor and to orchestrate their
interactions.

Let us explain now, with the help of Fig. 2, how these mech-
anisms are used to concretely implement the abstract ar-
chitecture discussed above. As indicated in Fig. 2, each
module of the architecture of Interceptor corresponds to
one or more threads. In particular, the Catcher is imple-
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Figure 2. Implementation mechanisms of the Interceptor
architecture. Each thread or process is labelled with the
corresponding fixed priority value.

mented as a set of threads (one for each P2P process),

while all the other modules correspond to a single thread.
All these threads, as well as the P2P processes, are sched-
uled according to the SCHED_RR policy using five pri-
ority levels PRI_1, PRI 2, PRI 3, PRI 4, and PRI}
(where the higher the final number, the higher the prior-
ity). The Creator thread runs at the highest priority level
(PRI.5), so that it is able to preempt any other thread to
serve as quickly as possible any new P2P process creation
request. Upon receiving a request, the Creator does not di-
rectly create the process, but instead it starts a new Catcher
Thread and waits for another creation request, thus block-
ing itself and allowing another (lower priority) process to
be scheduled by the underlying OS scheduler. As soon as
it is started, the Catcher Thread will create the P2P process
(for instance, as indicated in Fig. 2, by means of a fork()
system call), will put it into the stopped state by sending a
SIGSTOP signal, will attach to it in order to perform sys-
tem call interception, and will place it into the ready-to-run
queue of the CPU Scheduler. After doing so, the Catcher
Thread will enter an endless loop in which it waits for the
P2P process to issue a new system call, and forwards it to
the proper resource scheduler. After process creation, the
Catcher Thread blocks waiting for the first system call is-
sued by the process, so either the CPU Scheduler or one of
the other resource schedulers may be scheduled by the un-
derlying OS. In the current implementation, that runs under
Linux, the basic ptrace mechanism is used to perform in-
terception, although alternative mechanisms can be used as
well.

The CPU Scheduler works by performing an endless
loop in which it (a) selects the P2P process at the head of its
ready-to-run queue, (b) dispatches it on the CPU, (c) waits
to be scheduled again by the local OS, (d) places the running
P2P process either back in the ready-to-run queue or into the
I/O-blocked queue, (e) removes from the I/O-blocked queue
those processes that have completed the operation they were
waiting for, and (f) suspends itself and all the P2P processes
(by means of a SIGSTOP signal) for an amount of time
T'susp computed as:

1 — S(P2P,CPU)
S(P2P,CPU)

Teu,sp = x*T'SD 2)

were T'SD denotes the duration of the time slice used by
the SCHED_RR policy. Ts,sp is computed as indicated by
Eq. 2 in order to enforce inequality (C2). For instance, if
TSD = 100 ms. and S(P2P,CPU) = 0.2, T_susp =
(0.8/0.2) x 100 = 4 % 100 = 400 ms. This means that the
CPU Scheduler cannot be active for more that 100 ms. in
a period lasting 500 ms., so P2P processes will not be al-
lowed to use the CPU for more that 100 ms. in a period
of 500 ms., and consequently will not receive a share larger
than 100/500 = 0.2 (that was the value of S(P2P,CPU)
in this example). The CPU Scheduler imposes its schedul-



ing decisions to the local OS scheduler by using a variant
of the Dual-Priority Assignment scheme [9]. This scheme
uses the SCHED_RR priority with two priority levels: a
higher level (PRI_2), assigned to the running process, and
a lower level (PRI _1), assigned to ready-to-run processes.
The CPU Scheduler always runs at the higher priority level,
while the priority of a P2P processes alternates between
PRI_1 and PRI 2. When the CPU Scheduler wants to
make the local OS scheduler dispatch a P2P process on the
CPU, it raises the priority of this process to PRI _2, and vol-
untarily yields the CPU. As a consequence of the yield op-
eration, local OS schedules the P2P process (it is the ready-
to-run process with the highest priority), that runs until the
current time slice expires, or it issues a blocking I/O oper-
ation, whatever event occurs first. When the running P2P
process is descheduled by the local OS, the CPU is given
back to the CPU Scheduler (provided that no other higher
priority thread becomes active), that decreases the priority
of the P2P process by setting it to PRI _1, and places it ei-
ther into the ready-to-run or into the I/O-blocked queue.
Let us discuss now the interactions of the Disk and Net-
work Scheduler with the rest of the Interceptor’s threads.
Both schedulers are based on the idea of delaying for a suit-
able amount of time the forwarding of the intercepted sys-
tem calls to the operating system. Each time a new sys-
tem call is forwared by a Catcher Thread, the scheduler
wakes up, preempts any other running process (it runs at
the PRI_3 priority level) and places this call into a request
queue sorted according to the particular scheduling policy
in use. Both schedulers work by performing an endless
loop in which they (a) select the system call at the head
of the queue, (b) determine the time instant at which it can
be forwarded to the local OS without violating Inequality
(c2), (c) sleep until that time and then forward the selected
system call. When one of these schedulers wakes up (step
(c)), it has a priority higher than any other thread (with the
exception of the Creator), so it is scheduled immediately
by the local OS and can thus forward the selected system
call at the proper time instant. Quantitative limitations on
P2P network and disk resources usage are enforced as fol-
lows. Denoting with Np and Dp the network and the disk
bandwidth (measured in bytes/sec.), respectively, the total
network and disk capacities C' (T') and Cp (T") that can be
allocated over an interval lasting 7" time units are given by:

Cn(T)=Np-T 3)

Cp(T)=Dg-T )
Consequently, in an interval lasting 7' time units, the
amount of bytes C'52”(T) that can be globally read/written
to/from the disk is given by

CE?P(T) = Cp(T) - S(P2P, Disk), 5)

while the amount of bytes CL?F(T) that can be
sent/received to/from the network is given by:

CR*F(T) = Cn(T) - S(P2P, Net), (6)

where S(P2P, Disk) and S(P2P, Net) denote the disk
and the network share allocated to P2P applications, respec-
tively. Both the Disk and the Network scheduler keep track
of the disk and network capacities used by P2P applications
by using discrete time intervals lasting 7" time units. In each
interval the Disk (Network) scheduler keeps track of the
number of bytes globally read/written to disk (sent/received
over the network) by P2P applications from the beginning
of that interval, and when this byte count exceeds C 527 (T)
(CL?F(T)), system call forwarding is delayed until the be-
ginning of the next time interval.

Finally, let us consider the Memory Scheduler. The
mechanisms used by this scheduler must be necessarily dif-
ferent from those used by the other Interceptor schedulers,
since the memory — once allocated to a process — is not re-
leased after a predefined amount of time (as instead done
for the CPU, the disk and the network interface). Conse-
quently, the principle of enforcing quantitative constraints
by delaying the forwarding of system calls cannot be ap-
plied anymore. Devising a mechanisms able to override the
actions performed by memory management system of the
underlying OS is not trivial, and will be part of our future
work. At the moment, the Memory Scheduler acts a simple
broker, that keeps track of the amount of memory allocated
to P2P processes and forwards an allocation request to the
local OS only if this does not make the amount of allocated
memory exceed the limit set by the node owner, while it
returns an allocation error otherwise.

3.3 Scheduling policies

Interceptor uses a set of proportional-share resource
scheduling policies aimed at allocating to each P2P pro-
cess its nominal share, and to achieve the highest possible
performance that can be attained with the above nominal
share. Proportional-share algorithms work by scheduling
processes with a frequency proportional to their nominal
shares. Unlike the proportional-share algorithms published
in the literature for the various resource types (e.g., [19, 27]
for the CPU, [25] for the disk, and [18, 28] for the net-
work bandwidth), the ones used by the Inferceptor have
been designed in such a way that they fairly schedule pro-
cesses whose execution may block for arbitrary amounts of
time. These algorithms are based on a policy called Propor-
tional Number of Slices (or PNS for brevity), that allocates
resources in discrete time units, called allocations. The du-
ration of each allocation can be either fixed (as done when
scheduling the CPU) or variable (as done when scheduling



the disk or network bandwidth). Without loss of general-
ity, we will describe PNS by assuming allocations of fixed
duration and by using CPU scheduling as example.

PNS is based on the idea that in each period last-
ing C allocations (henceforth referred to as a schedul-
ing epoch), a process P; whose nominal share of re-
source 7 is S(P;,7) should receive the resource for ar
least Av(P;,7) = C - S(P;, ) allocations, provided that
it continuously requests to use the resource for the entire
epoch. For instance, in an epoch lasting 100 allocations, if
S(P;, CPU) = 0.5 then process P; must receive at least 50
allocations provided that it is always ready-to-run. To pre-
cisely allocate to each process its nominal share, a schedul-
ing algorithm could work by associating with each process
P; avariable, Rem(P;, T), set to Av(FP;, T) at the beginning
of each scheduling epoch, by decrementing it by one unit
each time P; receives an allocation, by sorting the resource
request queue in non-increasing order w.r.t. the Rem() val-
ues, and by always running the process at the head of the
queue. An example is shown in Fig. 3, where the CPU is

4—{ Scheduling epoch (100 allocations) }—»

18 scheduling|
cycles to C
!
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Figure 3. Scheduling example using PNS with
S(A,CPU) = 017, S(B,CPU) = 033,
S(C,CPU) = 0.5.

multiplexed in a round robin way among the three processes
until A completes its Rem(A, CPU) allocations (at time
46). From time 47 to 82 the CPU is multiplexed between B
and C only, until also B terminates its Rem (B, C PU) allo-
cations for the current scheduling epoch. Finally, C receives
18 consecutive allocations (from time 83 to 100). This pat-
tern repeats in all the subsequent scheduling epochs.
Unfortunately, this simple algorithm fails to allocate the
nominal shares to processes that block their executions for
arbitrary amounts of time. For instance, if B blocks its
execution from time 48 to 100, at the end of the schedul-
ing epoch it will have received only 15 allocations instead
of 33 (the ones it receives from time 1 to 47) and, be-
ing Rem(B,CPU) reset to Av(B,CPU) at the begin-
ning of the new epoch, it will never receive these miss-
ing 18 allocations. To correctly deal with these situations,
PNS associates with each process P; an additional variable,
Done(P;, ), that keeps track of the scheduling epochs
completed by P;, and sorts the request queue for resource 7

in increasing order w.r.t. the scheduling epochs completed
by the processes issuing the requests (requests of processes
with the same Done() values are sorted in non-decreasing
order w.r.t. their Rem/() values). To exemplify, let us con-
sider again the three processes in Fig. 3. As show in Fig. 4,

B blocks B wak
AN 35 scheduling W e{ P17 scheduling
AN cycles to C N\, cyclestoB
—
[a[B]c]c] ---[c]a[c]--{c]B]B]...[B[A]B]C]
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scheduling cycle
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R(C)=35.D(C)=0 R(C)=41.D(C)=1 (O=4LDC)=

Figure 4. Dealing with blocking processes in PNS.R()
denotes the Remn/() values, while D() denotes the Done()
values for the processes.

after B blocks (time 48) C' gets 35 consecutive allocations,
since it has precedence over A (being Done(C') = 0) and
B is blocked. After C' completes its current scheduling
epoch (time 84), the CPU is multiplexed between A and
C (they both have completed 1 epoch) until time 100, when
B wakes up. B receives then the 18 next allocations (i.e.,
until it complets its first epoch at time 118), and only af-
ter that time the CPU is multiplexed again among the three
processes.

A similar approach is used to allocate the network and
disk bandwidth to P2P process. The most notable differ-
ence with the CPU scheduling algorithm lies in the fact that
processes that have completed the same number of schedul-
ing epochs are sorted in increasing order w.r.t. the number
of bytes read/written to/from disk, or sent/received over the
network.

4 Experimental evaluation

In order to assess the viability and effectiveness of Inter-
ceptor, we have developed a proof-of-concept implementa-
tion that runs on top of the Linux 2.6.x kernel, and uses the
high-resolution timers provided by the PAPI library [2]. At
the moment of this writing, we have completed the imple-
mentation of the various threads making up Interceptor, but
only the PNS-based CPU scheduling policy has been incor-
porated. Therefore, we report only results concerning the
CPU Scheduler.

To assess whether Interceptor is able to achieve applica-
tion segregation and, at the same time, to enable P2P ap-
plications achieve satisfactory performance, we performed
a thorough experimentation, in which we ran experiments
considering a rather large set of workloads, comprising dif-
ferent numbers of simultaneously-running applications of
various type. We considered workloads where P2P appli-
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execution time of EMAP instances.

cations were CPU-bound only, interactive only, and of both
types with varying percentages of each type. Unfortunately,
space constraints limit us to report only the results concern-
ing one of tha above workloads, namely that comprising
CPU-bound P2P applications only. The interested reader
may find the results for the other workloads in [4]. The
experiments carried out with this workload were aimed at
verifying if Interceptor is able to (a) allocate to each P2P
process exactly its specified share, (b) schedule these ap-
plications efficiently, and (c) strictly enforce quantitative
limitations on CPU usage. We used a P2P workload com-
prised a set of identical instances of EMAP [1], a CPU-
bound ElectroMagnetic Analysis Program. Furthermore, to
measure the share allocated to owner’s processes, we ran a
synthetic application that used only the CPU (i.e., it did not
perform any I/O operation). We performed a set of exper-
iments in which we progressively increased both the num-
ber N of EMAP instances from 1 to 10, and the CPU share
S(P2P,CPU) globally allocated them from 0.1 to 0.9. In
all experiments the nominal share of each EMAP instance
was set to S(P;, CPU) = S(P2P,CPU)/N. This was
done to ensure that the share actually received by any in-
stance is not larger than its nominal share, as consequence
of the fact that a set of identical instances receiving the
same share will terminate their executions at the same time,
thus maintaining a constant CPU demand. In all the exper-
iments we measured (a) the average allocation lag (the dif-
ference between the share received by an application and its
nominal share), (b) the share globally received by P2P and
owner’s applications, and (c) the average execution time of
the EMAP instances. The results of our experiments, re-
ported in Fig. 5, show that Interceptor’s CPU Scheduler
is very fair, as the average lag (Fig. 5(a)) is always very
close to 0. Moreover, its application segregation capabili-
ties are also very good, as indicated by Fig. 5(b), that shows
that both P2P and owner’s applications received their nom-
inal shares (for the sake of brevity only the results mea-

sured with 10 EMAP instances have been shown, as the
ones observed with different instances numbers are prac-
tically identical). Finally, as shown in Fig. 5(c), that reports
the average execution time of the EMAP instances, Inter-
ceptor is able to efficiently schedule P2P applications. As a
matter of fact, for a given number of instances run simulta-
neously, the average execution time we measured is directly
proportional to the share globally allocated (for instance,
with 10 instances the average execution time with a share
of 10% (1286.1 sec.) is about 9 times larger than the exe-
cution time with a share of 90% (145.7 sec.)), that means
that the scheduling overhead per application instance does
not depend on the number of instances simultaneously exe-
cuted on the node.

5 Conclusions and future work

In this paper we have presented Interceptor, a
middleware-level application segregation and scheduling
able to strictly enforce quantitative limitations on resource
usage. The experiments we carried out with a proof-of-
concept implementation running on Linux show that In-
terceptor is able, at least for the CPU (the only resource
for which, at the time of this writing, we had a working
implementation), (a) to enforce these limitations, thus pro-
viding application segregation for P2P applications, (b) to
fairly schedule P2P applications (i.e. each P2P applica-
tion is guaranteed to receive at least its nominal share), and
(c) to efficiently schedule P2P applications, that are able to
achieve satisfactory performance even in face of the quanti-
tative limitations set by the node owner.

Future work includes the study of memory management
mechanisms, available at the user level, in order to develop
a better memory scheduler, and the completion of the im-
plementation with the inclusion of the disk and network
scheduling policies. Furthermore, in order to reduce the
overhead due to the basic system call interception mecha-



nisms adopted in the current implementation, alternative in-
terception mechanisms will be investigated. On the method-
ological side, we plan to use Inferceptor to investigate is-
sues like the benefits and drawbacks of independently al-
locating and scheduling the various node resources versus
allocating them in a coordinated way.
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