
Using incentives to increase availability in a DHT

Fabio Picconi

Laboratoire d’Informatique de Paris 6
fabio.picconi@lip6.fr

Pierre Sens

INRIA Rocquencourt
pierre.sens@inria.fr

Abstract

Distributed Hash Tables (DHTs) provide a means to
build a completely decentralized, large-scale
persistent storage service from the individual
storage capacities contributed by each node of the
peer-to-peer overlay. However, persistence can only
be achieved if nodes are highly available, that is, if
they stay most of the time connected to the overlay.

In this paper we present an incentives-based
mechanism to increase the availability of DHT
nodes, thereby providing better data persistence for
DHT users. High availability increases a node’s
reputation, which translates into access to more
DHT resources and a better Quality-of-Service. The
mechanism required for tracking a node’s
reputation is completely decentralized, and is based
on certificates reporting a node’s availability which
are generated and signed by the node’s neighbors.
An audit mechanism deters collusive neighbors
from generating fake certificates to take advantage
of the system.

1. Introduction

Distributed Hash Tables, or DHTs [4,6,9], are
distributed storage services built on top of
structured peer-to-peer overlays [2,1,10]. The use of
structured networks is desirable as the cost of data
lookup remains very low (i.e., data can be found in
only a few hops) even when the network grows to a
very large scale. Thus, a large-scale DHT can
potentially give users access to a large amount of
aggregate storage capacity.

However, the peer-to-peer systems designer
must deal with issues not found in traditional
systems, such as complete decentralization,
freeloaders, and network churn (i.e., nodes

connecting and disconnecting from the overlay).
Churn in peer-to-peer networks is mainly due to the
fact that users have total control on theirs
computers, and thus may not see any benefit in
keeping its peer-to-peer client running all the time.
This is very common in existing peer-to-peer file
sharing networks, as many users connect to the
overlay to download a particular file, and
disconnect soon after the download has finished.

Although intermittent connections are not
particularly harmful in file sharing networks, this
kind of unstable user behavior is undesirable on
DHTs. Contrary to file sharing systems, DHTs are
designed to guarantee data persistence. This is
achieved by replicating data blocks on
geographically dispersed nodes, which minimizes
the probability of correlated failures, and by
regenerating replicas as soon as they leave the
network so that the replication factor is kept
constant. This reduces the risk of data becoming
unavailable if all replicas leave the network, but it
also means that as nodes join and leave the network
the DHT maintenance algorithm needs to transfer a
large number of replicas from one node to another,
consuming a lot of bandwidth.

Furthermore, DHTs clients lack any flexibility
to choose where their data is stored in the overlay.
For instance, a file’s location may be determined by
the result of the hash of its contents. Although this
constraint on data location is what makes data
lookup efficient, it also means that data may be
stored on nodes which do not “behave well,” such
as nodes which are often disconnected from the
network. Replicas stored on such nodes may often
be unavailable, possibly leading to data loss if all
replicas have left the network. Ideally, a robust
DHT should be made up of nodes which stay
connected to the overlay most of the time, i.e.,

1-4244-0054-6/06/$20.00 ©2006 IEEE

which have high availability. If most DHT nodes
show high availability then the system can provide
an acceptable level of data persistence regardless of
where replicas are stored.

It is worth pointing out that the problem of data
persistence is not only due to clients being unable to
choose where their data is stored. Even if the
system allowed users to only store data on “well-
behaved” nodes, disconnections should be kept to a
minimum. The reason for this is that as nodes store
larger amounts of data (e.g., several Gigabytes),
regenerating all the necessary replicas on another
node after a node disconnects from the network will
take a long time. As Rodrigues et al. [11] have
shown, even modest node departure rates can
prevent the DHT maintenance algorithm from
regenerating all replicas quickly enough (due to the
low upstream bandwidth of ADLS connections),
which eventually leads to data loss. Therefore, even
well-behaved nodes should always avoid
disconnections whenever possible.

In this paper we present an incentives-based
mechanism to increase node availability in DHTs,
which leads to better data persistence. Each DHT
node is monitored so that the system can track its
up-time and availability. Nodes with higher
availability are given a higher reputation, and can
benefit from a higher storage quota and a higher
Quality-of-service (e.g., higher download
bandwidths). Our mechanism is fully decentralized,
and requires only a small amount of message
exchanges to track and verify node reputations.

The rest of this paper is structured as follows.
Section 2 recalls some basic characteristics of
structured networks. Section 3 presents our
incentives-based design. Section 4 lists related
work, and Section 5 concludes the paper.

2. Structured networks

This section recalls some basic concepts of
structured peer-to-peer networks and DHTs. The
terms in italics are of especially relevant as they
will be used later throughout the paper.

Structured peer-to-peer networks, such as
Pastry [1], Chord [10], and CAN [9], are highly-
scalable overlays networks which employ some
kind of key-based routing algorithm [2]. These
routing algorithms map every unique node

identifier, or nodeid, to a point in a logical address
space (e.g., a ring in Pastry and Chord, or a d-torus
in CAN). Nodes which are adjacent in the logical
address space are called neighbors, although this
does not mean that they are actually geographically
close. In fact, since nodeids are usually randomly
assigned, nodes which are neighbors in the logical
address space will most probably be geographically
dispersed.

Messages are associated with a routing key

which maps to the same address space as nodeids.
The routing algorithm routes the message through
the overlay towards the node whose nodeid is
closest to the key in the logical space. For instance,
a Pastry message is routed to the overlay node
whose nodeid is numerically closest to the message
key1.

Overlay nodes usually maintain a list of its
neighbors, as well as the addresses of more distant
nodes. For instance, in Pastry each node maintains a
structure called the leafset, which contains the
addresses of the L/2 closest neighbors in the
clockwise direction of the ring, and the L/2 closest
neighbors counter-clockwise. Each node monitors
its leafset neighbors, removing nodes which have
disconnected from the overlay and adding new
neighbor nodes as they join the ring.

Distributed Hash Tables provide an abstraction
for a highly-scalable distribute storage service
accessible through a simple put-get interface similar
to that of traditional hash tables. Inserted objects, or
blocks, are replicated and persistently stored in
several nodes. For instance, in the PAST DHT
block replicas are stored in the k nodes which are
numerically closest to the block’s key. We then say
that the DHT uses a replication factor of k. Since
PAST is built on top of Pastry, determining the
location of a block’s replicas is achieved by
retrieving the leafset of the node which is
numerically closest to the block’s key, and selecting
the k nodes which are closest to the key.

In the following section we present our
incentives-based design. For the sake of
concreteness, we have based our design on the
Pastry/PAST DHT. We will therefore speak of

1 Except when the key is close to the zero and maximum
values, which are considered adjacent in the ring
geometry.

using Pastry’s leafsets to determine a node’s
neighbors, and we will refer as neighbors to the
nodes which are numerically closest to a given
node. However, the main features of our design are
not specific to Pastry/PAST, and can be easily
applied to other DHTs designs such as DHash or
CAN.

3. Design

In order to achieve high node availability we
establish two basic principles: first, nodes should
only be allowed to join the DHT after they have
shown to be stable, i.e., to be highly available, and
second, once a node has joined the DHT, its
availability should determine a node’s reputation,
which in turn grants the node better access to the
DHT.

The first principle implies that a client who
wants to join the DHT to use the storage capacity of
other nodes should first prove that he is stable
enough for other DHT clients to trust him to store
their data. In other words, only highly available
nodes are allowed into the DHT. This means that
new nodes, which by definition do not have any
reputation, cannot immediately join the DHT.
Instead, a new node must first earn a minimum
level of reputation by contacting some nodes in the
DHT and showing them that it can stay on-line for a
certain amount of time (e.g., 24 hours). During this
test period, it must also fetch and store the block
replicas it will responsible for after joining the
DHT. Once the test period is over, the node is
allowed to join the DHT, i.e., to contribute its
resources to the DHT by storing blocks from other
DHT nodes, and in return it is allowed to use some
of the DHT’s available storage capacity.

However, a client that has just become a DHT
node has, again by definition, a very low reputation
(the other nodes have only known him for a short
time). According to our second principle this will
limit the storage resources and QoS that it can get
from the DHT. As the node’s total up-time and
availability increases, so will its reputation,
granting him access to more storage resources and a
better QoS. It is therefore in a node’s best interest to
stay connected to the overlay as much and as long
as possible.

We assume strong node identities, which
prevents a node from rejoining the network under a

new identity after having been discovered to cheat
or being blacklisted. One way to do this is to have a
trusted authority sign certificates binding a nodeid
to a public key and an IP address. The certificate
authority only intervenes once to generate the
nodeid certificate, and is no longer contacted
afterwards.

3.1. Restricted joins

New nodes must show that they can be highly
available before joining the DHT. In this section we
describe a join procedure whose goal is to prevent
nodes with low availability from entering the DHT.

The join procedure basically consists of two
phases. During the first phase the joining node must
show that is can be stay connected to the network
for some period of time Tphase1. Then, during the
second phase it fetches and stores all the block
replicas held by its future ring neighbors. During
this phase the node must also prove that it is
actually storing those blocks. The node may finally
join the DHT after Tphase1+Tphase2 of continuous up-
time, and if it proves to store the blocks
downloaded from its neighbors. These two phases
let a node earn a minimum reputation as to its
availability and willingness to store data from other
nodes.

We will now describe the two phases in more
detail. Let us call node A the new node who wants
to join the DHT. Node A starts by determining the
m nodes whose nodeids are numerically closest to
its own nodeid. This can be done by asking any
node to route a message using A’s nodeid as the
routing key. Since the message will be delivered to
the node B whose nodeid is numerically closest to
A, fetching B’s leafset (i.e., the list of nodeids
adjacent to B in the ring) allows A to determine the
m nodes closest to it in the ring. We will call this set
of nodes the monitoring set M, and a typical value
of m may be 10.

Node A then starts sending heartbeats to every
node in the monitoring set M to prove it remains
connected to the network and is running the peer-
to-peer client. This means that nodes in M are
responsible for monitoring A’s liveness. During this
phase node A is not allowed to store any data in the
DHT yet, but it may ask the nodes in the monitoring
set to act as proxies for get() operations (i.e., to read
blocks from the DHT). After a time period Tphase1 of

continuous up-time, node A enters phase two, and
should now start fetching and storing the data
blocks it will be responsible for once it has joined
the DHT. We assume that the replication factor k is
smaller than m, so that all the block replicas that
node A needs can be found in M.

During phase two, each node in the monitoring
set keeps a log of the blocks that A has fetched
from it. In order to verify that A has not deleted
these blocks, each node in M periodically sends a
challenge to A on a random block (picked among
those which A has already fetched). A challenge is
a query on the hash of the block contents and a
random value. Node A can only return the correct
keyed hash value of the block if it is still storing it.
The monitoring node will also inform all other
replicas of the block before sending the challenge,
so that A cannot fetch the block after receiving the
challenge request without the other nodes detecting
this.

In order for phase two to complete, node A
must have fetched all block replicas from M. The
reason for this is that once node A has joined the
DHT, it will become responsible for storing all the
blocks whose ids are close to A (this is how DHTs
locate data). Therefore, it makes sense that the node
should already store all the necessary data when it
joins the ring. The duration of the phase two
therefore depends on the time it takes the node to
transfer all block replicas from its future ring
neighbors.

As an example, we assume a DHT in which
each node stores 10 GB of other clients’ blocks, the
replication factor is 3 (i.e., three copies of each
block exist at any given time), and the available
upload bandwidth per node is 256 Kbits/s (we
assume a higher download bandwidth of 1 Mbits/s,
which corresponds to standard ADSL links). The
time needed to transfer all replicas to a new node is
S / BW, where S is the total size to be transferred
(10 GB), and BW the aggregate download
bandwidth (in our case, 3 * 256 Kbits/s, since
blocks can be downloaded in parallel from 3
different nodes). This yields a transfer time of
approximately 30 hours, which is not very high
given the assumption that our nodes must be highly
available (i.e., stay connected 24 hours a day, 7
days a week). Furthermore, 30 hours is a nice value

since it proves that the node can be stay connected
for more than 24 hours.

When phase two is over, node A may finally
join the DHT. However, in order for DHT nodes to
accept its join request, it must prove it behaved well
during the two phases. It does so by contacting all
nodes in M, and requesting a “join authorization”
certificate from each one of them. Each certificate,
which is timestamped and signed, states three
things: 1) that the certificate issuer has verified A’s
liveness since the beginning of phase one (the
elapsed time is also specified), 2) that A has fetched
all blocks from it, and 3) that all block challenges
were correct. Join authorization certificates have an
expiration date and should only be valid for a few
minutes (the time needed to complete the join), thus
preventing a node from disconnecting and then
joining the network again using an old certificate.

Once node A has collected the certificates from
M, it attaches them to the final DHT join request,
and sends the request into the network. From this
moment the join procedure is the same as the
standard DHT join procedure, the only difference
being that the certificates must be valid for nodes to
accept the join request (see Section 3.4 for a
description of how certificates are verified).

A Byzantine node in the monitoring set could
prevent a “well-behaved” node from joining the
DHT by refusing to issue a correct certificate. If we
assume that there may be up to f nodes which refuse
to issue a certificate, then node A contacts all m

nodes and waits for m-f nodes to respond. Setting m
= 3f+1 ensures that a majority of responses will be
correct among the m-f responses. Therefore, node A
must present at least f+1 valid certificates to be
allowed to join the DHT. For instance, if m=10,
then valid certificates from at least 4 different
monitoring nodes must be presented.

3.2. Tracking reputation

Once a node has joined the DHT, the system starts
tracking its availability and determines a reputation
value accordingly. Our mechanism basically
consists in increasing a node’s reputation when it is
connected to the overlay, and degrading it when it
is off-line.

More specifically, a node’s reputation value R

is increased every time interval Tup of continuous
up-time, up to a maximum value Rmax. Conversely,

when a node disconnects from the network its
reputation value is decreased every time interval
tdown(d, n), which is a function of the node’s
downtime d (i.e., the elapsed time since it has gone
off-line), and the number n of leafset neighbors
which are also off-line at the same time. Intuitively,
tdown(d, n) should decrease as d increases, meaning
that a node’s reputation should degrade faster and
faster as it spends more time off-line. Similarly,
tdown(d, n) should also be smaller as n increases in
order to discourage nodes from disconnecting when
some of their neighbors are already off-line, a
situation in which fewer replicas are available and
some may be in the process of being regenerated.

Each live node must send heartbeats to M, the
monitoring set of nodes responsible for maintaining
its reputation. Every Tup intervals (e.g., one hour), a
node A asks each node in M to increase its
reputation value R and to issue a signed certificate
containing the following fields: the new value of R
for node A, its uptime, a timestamp, and an
expiration date. Since a node will usually request a
new certificate every Tup, certificates should only be
valid for Tup.. As before, in order to avoid Byzantine
nodes refusing to issue A’s certificates, collecting
f+1 valid certificates (with m=3f+1) is sufficient2.
However, this also means that node A must always
present at least f+1 valid certificates to prove its
reputation.

Finally, we must avoid the situation in which
all nodes in M collude and issue certificates with a
false reputation value, i.e., one which is higher than
it should be. We prevent this by using a random
certificate audit mechanism, which will be
discussed in Section 3.4.

3.3. Node disconnections

When a node A disconnects from the overlay, its
neighbors do not immediately remove it from their
leafsets. Instead, they flag node A as being
temporarily off-line, hoping it will come back on-
line soon. Even though its block replicas are
unavailable, the maintenance algorithm does not

2 As time passes the values of R calculated by different
nodes in M may drift. To solve this, when a node detects
that the drift has exceeded a given threshold, it requests
that all nodes in M perform a Byzantine fault-tolerant
agreement on the value of R to be used henceforth.

start regenerating them on another node. However,
A’s disconnection will be detected by the nodes in
M, which will start decreasing A’s reputation value
R.

At this point two things can happen. One, node
A quickly returns to the network (e.g., after a peer-
to-peer client crash and restart, a reboot, or a
network outage), albeit with a degraded reputation.
Its neighbors will detect its presence (through the
heartbeats) and modify its leafsets to change A’s
status back to on-line.

Two, node A stays off-line until its reputation
value R drops to zero. In this case it is considered to
have definitively left the DHT. Nodes in M then
broadcast a message to its ring neighbors so that
A’s entry is removed from all the leafsets. Since the
block replicas that A was storing are considered
lost, the maintenance algorithm starts regenerating
them on another node.

After a node’s reputation has dropped to zero, it
can still be allowed to rejoin the DHT (after all it
may still have most of the data blocks the system
will ask it to store). However, the node must go
through the complete two-phase join procedure
again, as it must rebuild its reputation before being
trusted again. Since in this case the second phase
may be very short (the node already has most of the
blocks), an additional third phase should be inserted
as a penalty for having being previously kicked out
of the system. Nevertheless, if repeating this
process several times is considered a bad behavior,
the system could backlist the node, preventing him
from joining again.

3.4. Verifying reputation certificates

Several measures must be taken to make sure
reputation certificates are valid. First of all, the
signature must be authentic, which can be verified
using the issuer’s public key. However, a node must
also be prevented from presenting certificates from
fake nodes, i.e., issued by nodes other than those in
the monitoring set. For this, verifying a certificate’s
validness also implies checking that the issuer is
actually one of the m closest nodes to A in the ring.
This can be done by looking up the node which is
closest to A’s nodeid and fetching its leafset.

However, A’s monitoring set may change as
new nodes join the network and others leave
permanently. If a certificate issuer leaves the

monitoring set, then the certificate will not be
considered valid. We assume that the rate of node
arrivals and departures is much lower than that of
certificate regeneration (one hour). Since only f+1
valid certificates are sufficient for A to prove its
reputation, we can assume that at least f+1
certificate issuers will still be in M between
certificate regenerations.

We must also prevent collusive nodes in M
from generating false certificates, i.e., with a higher
reputation value than the node should have. This is
achieved by having all DHT nodes randomly audit
the monitoring set of other nodes. This works as
follows: a random node B periodically picks some
random key and asks the nodes closest to that key
in the ring to return special signed versions of their
leafsets. Each entry of these leafsets also contains
the uptime for each node. Node B repeats this
several times, for instance, every 30 minutes for a
few hours, to temporarily monitor that portion of
the ring. Then, node B fetches all the reputation
certificates of the nodes in that portion of the ring,
and verifies that the up-times values are consistent
with the leafsets it fetched before.

If a certificate states that a node A has been up
for 24 hours, while it did not show in the leafsets of
the previous hours, then the monitoring set of node
A is lying. Node B also checks that the returned
leafsets are not fake (i.e., containing nodes which
are off-line) by pinging every node in the leafset to
verify its liveness.

Once a monitoring set’s leafsets and
certificates, which are both signed, have been
shown to be inconsistent, the accused nodes will
have lost their credibility and their certificates will
have little value for other nodes in the system. The
penalty may range from clients deleting the blocks
they store on the lying nodes’ behalf (as they are no
longer trusted), up to being permanently backlisted
and left out of the system.

3.5. Benefits of a higher reputation

One of the goals of our reputation mechanism is to
grant nodes with higher reputation better quality
access to the system’s resources. In this section we
present two mechanisms for rewarding users
according to their reputation.

Druschel et al. [12] have proposed an
incentives-based mechanism by which users are

allowed to consume only as many resources as they
provide to the system. Their mechanism consists in
having each node publish a signed usage record

containing: the total storage capacity contributed to
the system, the local list of data blocks stored on
behalf of other nodes, and the remote list of blocks
stored by other nodes on its behalf.

In order to verify that a node does not consume
more storage capacity than it contributes, the
system employs an audit mechanism in which
nodes pick other nodes at random and check that
local and remote lists are balanced. A node that
deflates its remote list (to pretend to consume fewer
resources than it actually does) exposes itself to
being discovered and losing its data, since a node’s
remote list is the only guarantee that the remote
nodes will keep storing the data on its behalf.
Conversely, a node that is discovered to have
inflated its local list (pretending to store more data
on behalf of other nodes than it actually does) has
practically signed a public confession of its lies
(since usage records are signed and public). It has
therefore lost its reputation and risks deletion of the
blocks the other nodes store on its behalf, as well as
being blacklisted.

This mechanism can be extended to take our
reputation scheme into account. For instance, the
amount of DHT storage space that a node is
allowed to consume could be dependent on its
reputation. A new node contributing 10 GB of
storage but having a reputation value R of Rmax/10,
i.e., 10% the maximum reputation value, could be
allowed to consume only 1 GB of DHT space (10%
of its contributed capacity). As its total up-time
increases, it will be granted an amount of DHT
storage space proportional to its R value.

This can easily be achieved by including the
certificates that state the node’s R value in its usage

record. Therefore, when nodes randomly audit
other nodes’ usage records they take R into account
to see if the audited node is respecting its quota.
Certificate verification would add some overhead,
as verifying certificates implies checking that they
are issued by the actual monitoring set. However,
this is only carried out during auditing. Nodes
processing put() requests from other nodes could
accept to store the block right away, and defer
certificate verification for a later time. If the
certificate is later found to be fake, then the node

that had accepted the put() request can delete the
blocks inserted by the lying node.

Disconnections may significantly lower a
node’s reputation value. Therefore, if a node
disconnects and quickly rejoins the network an
audit may show that it is storing more data than its
new R value allows it to. Nodes should therefore be
given a grace period to restore their reputation
before their data is deleted. This can be done by
examining the certificate’s uptime and R value. A
relatively high R value and low uptime will indicate
a recent disconnection. Conversely, both low
uptime and R values indicate either a long
disconnection or a relatively new node, both cases
in which the grace period may not be granted.

Finally, the quality-of-service experienced by a
node may also be made dependant on its reputation.
For instance, if a node A has a high reputation
value, it could attach its reputation certificates when
sending a get() request node B in order to request a
higher transfer bandwidth, or to have its request
processed with a higher priority. Since verifying a
certificate takes some time (the certificate’s issuers
must be contacted), node B could handle the request
immediately, and verify A’s certificate in the
background. As before, if the certificates are found
to be false, then A risks being blacklisted.

Since attaching f+1 certificates to every get()
request can produce a large overhead, node A may
just attach a reputation value which it will sign with
his own key, implying that he also possesses the
corresponding certificates. When verifying A’s
reputation, node B will ask it to provide these
certificates for verification. Again, if node A has
lied about the R value, then its signed request
(containing the R value) can be used against it.

3.6. External clients

Some users may be unwilling or unable to remain
connected to the DHT for a long time. For instance,
a user may access the DHT infrequently to read a
file published by someone else, while other users
may not have a permanent connection to the
Internet (e.g., those using notebooks). These users
should access the DHT using one of the stable DHT
nodes as a proxy. Joining the DHT makes no sense
since their low availability makes them unsuitable
to store other nodes’ data.

In order to avoid freeloaders, DHT nodes may
be configured to act as proxies only for the clients
they know, e.g., computers within the same LAN or
the same organization. In this case they may relay
both put() and get() operations from those well-
known clients. Other more “altruistic” DHT nodes
may accept to relay get() operations from unknown
clients (e.g., anonymous users), but deny put() calls
unless the client’s identity and access rights can be
established. Finally, some DHT nodes may choose
not to act as proxies at all (e.g., home computers).

4. Related work

Incentives in peer-to-peer systems have been the
subject of several publications in the last few years,
and some mechanisms have actually been deployed
on existing systems.

Shneidman et al. [15] explain the case for
considering rationalities and incentives in a peer-to-
peer system design, and describe the concept of
Mechanism Design.

Golle et al. [14] present a game theoretic model
and analyze equilibria for a file sharing system
(Napster).

The widely deployed BitTorrent file
distribution system [13] seeks pareto efficiency by
making a user’s download rate proportional to its
upload rate.

Druschel et al. [12] have suggested two
mechanisms to ensure fair sharing of peer-to-peer
node resources, namely storage capacity and
bandwidth. Their system is completely
decentralized and relies on auditing to prevent
nodes from taking advantage of the system. Nodes
are rewarded according to their contributed storage
capacity and bandwidth. Node availability is not
addressed in their system.

5. Conclusion and future work

We have presented an incentives-based mechanism
to increase node availability in a DHT, which
minimizes the negative effects of churn and
improves data persistence. A new join procedure
prevents nodes with low availability from joining
the DHT, thereby reducing the probability of DHT
data being unavailable or lost.

A reputation scheme based on a node’s
availability grants better access to the DHT

resources to more reliable nodes. The mechanisms
used to maintain and verify a node’s reputation are
completely decentralized, and are based on digital
reputation certificates issued by a node’s neighbor.
A random audit mechanism prevents nodes from
colluding to take advantage of the system by
issuing fake certificates, i.e., with a reputation
higher than it should be.

Future work will include implementing and
evaluating the new join protocol, as well as the
certificate generation, verification, and audit
mechanisms. We are planning to integrate them into
the Pastry/PAST implementations included in
FreePastry 1.4.2, and to test the system using the
Pastis prototype [5], our DHT-based peer-to-peer
file system, as the DHT application.

References

[1] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing on large-
scale peer-to-peer systems. In Proc. IFIP/ACM
Middleware 2001, Heidelberg, Germany, Nov.
2001.

[2] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz,
and I. Stoica. Towards a common API for
structured peer-to-peer overlays. In Proc. of
IPTPS, 2003.

[3] FreePastry. http://freepastry.rice.edu

[4] A. Rowstron and P. Druschel. Storage
management and caching in PAST, a large-scale,
persistent peerto-peer storage utility. In Proc. of
the ACM Symposium on Operating System
Principles (SOSP 2001), October 2001.

[5] J.-M. Busca, F. Picconi, P. Sens. Pastis: a Highly
Scalable Multi-User Peer-to-Peer File System, In
Euro-Par 2005, Lisboa, Portugal

[6] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris,
and I. Stoica. Wide-area cooperative storage with
CFS. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP '01),
Chateau Lake Louise, Banff, Canada, Oct. 2001.

[7] R. Bhagwan, S. Savage, and G. Voelker.
Understanding availability. In Proc. IPTPS, Feb.
2003.

[8] J. Chu, K. Labonte, and B. N. Levine. Availability
and locality measurements of peer-to-peer le
systems. In Proc. of ITCom: Scalability and
Traffic Control in IP Networks, July 2002.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker. A scalable content-addressable

network. In Proc. ACM SIGCOMM’01, San
Diego, CA, Aug. 2001.

[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable peer-to-
peer lookup service for Internet applications. In
Proc. ACM SIGCOMM’01, San Diego, CA, Aug.
2001.

[11] R. Rodrigues and C. Blake. When Multi-Hop
Peer-to-Peer Routing Matters. In 3rd International
Workshop on Peer-to-Peer Systems (IPTPS'04),
Feb. 2004

[12] T.-W. Ngan, A. Nandi, A. Singh, D. S. Wallach,
and P. Druschel. On designing incentives-
compatible peer-to-peer systems. In FuDiCo II,
Bertinoro, Italy, June 2004.

[13] B. Cohen. Incentives Build Robustness in
BitTorrent. In Workshop on Economics of Peer-
to-peer Systems, Berkely, CA, June 2003.

[14] P. Golle, K. Leyton-Brown, I. Mironov, and M.
Lillibridge. Incentives for sharing in peer-to-peer
networks. In Proc. 3rd ACM Conf. on Electronic
Commerce, Tampa, FL, Oct. 2001.

[15] J. Shneidman and D. Parkes. Rationality and self-
interest in peer to peer networks. In Proc.
IPTPS’03, Berkeley, CA, Feb. 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

