
Neighbourhood Maps: Decentralised Ranking in Small-World P2P Networks

Matteo Dell’Amico∗

Dipartimento di Informatica e Scienze dell’Informazione
Università di Genova

E-mail: dellamico@disi.unige.it

Abstract

Reputation in P2P networks is an important tool to en-
courage cooperation among peers. It is based on ranking
of peers according to their past behaviour.

In large-scale real world networks, a global centralised
knowledge about all nodes is neither affordable nor prac-
tical. For this reason, reputation ranking is often based on
local history knowledge available on the evaluating node.
This criterion is not optimal, since it ignores useful data
about interactions with other peers.

We propose a simple, scalable and decentralised method,
called “neighbourhood maps”, that approximates rankings
calculated using link-analysis techniques, exploiting the
short-distance characteristics of small-world networks.

We test our algorithms using data from the OpenPGP
web-of-trust, a real-world network of trust relationships.

1. Introduction

Trust management is an interesting problem which natu-

rally arises in many P2P applications.

In traditional client-server applications, trust (and, con-

sequently, access to resources) is usually provided through

authentication on a server. The server is assumed to know

which the trusted users are.

Most P2P applications have instead a different approach:

there is no central authority, and peers have to resort to other

criteria in order to evaluate trust.

In those applications where such a problem is ignored,

and each peer receives the same level of trust, there is an in-

centive for selfish behaviour (i.e., consuming the resources

of other nodes, while not giving anything in return). An

increase in free riding [4] then appears, in which the com-

mon resources are exploited at the expense of the whole

peer community.

∗Financially supported by the Italian MIUR under the framework of

the FIRB 2001 action, WEB-MiNDS Project. http://web-minds.
consorzio-cini.it/

The notion of reputation – a measure of how good the

past behaviour of a node was – is introduced to solve this

problem. Each node ranks peers according to an evaluation

of the past interactions it had with them (in the following,

we will refer to this kind of locally evaluated reputation val-

ues as LRVs).

When nodes receive requests from other peers, they

adopt a more cooperative approach towards ones with a

good reputation. An incentive towards a “good behaviour”

thus emerges, since free riders receive a poor quality of ser-

vice. This idea of reciprocative behaviour is inspired by

Axelrod [6], and has been implemented in the BitTorrent

[11] and EDonkey2000 [1] file-sharing networks, with great

success1.

Using this technique, peers can only have information

about nodes that previously gave service to them. This ap-

proach, however, is not effective whenever there is an asym-

metry of interest [13]: when node A wants service from B,

it is possible that B does not want anything from A. Even

in the lucky cases where both interacting nodes can provide

service to each other2, there is an initial period in which

nodes need to build up reciprocal trust, and only afterwards

they can enjoy mutual cooperation. Thus, reciprocative be-

haviour loses effectiveness when networks are large, inter-

est is asymmetrical, and/or interactions have a short dura-

tion.

The notion of indirect reciprocative techniques is intro-

duced to solve the aforementioned shortcomings. Whenever

a node has no direct knowledge about a peer, it uses infor-

mation collected by the other nodes. This allows nodes to

calculate reputation for all peers in the network, enabling

reciprocation even when direct approaches are not success-

ful.

In this work we assume a LRV graph is given, having

peers as nodes and LRV values as edges. Given an eval-

1The traffic generated by these two applications was estimated to be

more than 80% of the total P2P traffic, and about 50% of total Internet

traffic at end of 2004 [9].
2This is true in some important cases (e.g., nodes downloading a big

file and sharing the already completed parts).

1

1-4244-0054-6/06/$20.00 ©2006 IEEE

uating x and an evaluated y node, a distributed reputation
value DRV (x, y) is calculated, depending on the data in

the LRV graph. The basic idea is that DRV (x, y) depends

on the paths from x to y in the LRV graph: given the as-

sumption that a node which is trusted by a trusted node

deserves some trust itself, it becomes apparent that paths

on the network can be used to represent trust relationships,

with shorter paths representing a more direct, and possibly

more significant, relationship.

Our basic idea is that each node creates a “local view” of

reputation by collecting information about the closest nodes

– a neighbourhood map. These maps are constructed by re-

peatedly contacting directly-connected nodes and combin-

ing data received from them. The size of the map is para-

metric, and the concept of closeness itself depends on the

metrics being evaluated.

When peer x wants to rank peer y, y’s reputation is cal-

culated by evaluating data based on the nodes known in both

x’s and y’s neighbourhood maps. Since in small-world net-

works the average distance between couples of nodes is low,

if neighbourhood maps are big enough, with high probabil-

ity there will be an intersection between the two neighbour-

hood maps. Intersections represent middle points in paths

from x to y, and data related to them is used to compute the

desired metrics.

LRV graphs can be created using data representing any

kind of recommendation between entities. Some exam-

ples could be nodes on the EDonkey2000 network and the

credits between them, scientific papers and their citations,

WWW pages and their links, and the PGP web of trust that

will be described in Section 3.

Paper Structure The remainder of this paper is struc-

tured as follows.

In Section 2 we will have a glance at past work regarding

reputation in P2P networks.

Section 3 will introduce the PGP web of trust, the real-

world graph we used for our experiments.

Section 4 will introduce the most important issues in de-

signing indirect reciprocative techniques in P2P systems.

Sections 5 and 6 will describe how to use neighbour-

hood maps in order to approximate respectively the shortest

path between nodes and PageRank on a graph; experimen-

tal Monte-Carlo results will show the level of accuracy for

our method.

In Section 7 we will outline our ideas for further work

and experimentation using neighbourhood maps.

2. Related Work

DRVs are calculated by analysing the structure of the

network. Our technique is inspired by the “link analysis”

algorithms [8] used in web-search engine ranking, such as

PageRank [21] or HITS [18].

In the P2P area, EigenTrust [17] is a distributed imple-

mentation of PageRank. A distributed structure for storing

data (e.g., a distributed hash table such as Chord [23]) is

needed. A weakness of this approach is that a set of nodes

needs to be pre-trusted by all the nodes, thus reducing the

degree of decentralisation of the network.

[13] advocates a criterion in which the DRV depends

on the node evaluating it, and proposes the calculation of

the maximal flow between the evaluating and the evaluated

node to be used as DRV. Unfortunately, the proposed algo-

rithm requires a complete knowledge of the network and no

scalable solution for large networks is proposed.

Under the assumption that the preferences of the nodes

can be different depending on the characteristics of the net-

work, nodes can evaluate similarity in preferences and give

a higher reputation to “similarly minded” nodes, as seen in

[19, 20].

A different approach, suitable for unstructured P2P net-

works such as Gnutella [2] is a rewiring approach [3]: nodes

constantly change their connections in the network when-

ever they are unsatisfied with their current neighbours, in

order to get connected to better peers.

3. The OpenPGP Web of Trust

In order to evaluate our algorithm on significant data, we

have chosen the OpenPGP web of trust as our test case,

since it is a significantly sized network of real-world trust

relationships.

OpenPGP [10] is an open protocol for privacy and

authentication, using asymmetric key cryptography. In

OpenPGP, there is no central certification authority bind-

ing persons to their respective public keys. Conversely, the

users themselves sign the keys of other users (usually, af-

ter a real-life meeting) to attest their correspondence to an

identity. The set of such information is called a web of trust,
and can be seen as a directed graph having keys as nodes

and trust relationships as edges. Based on (part of) the data

in the web of trust, users decide whether to trust or not the

authentication of other users.

We are using data taken from the strongly connected

component of the OpenPGP web of trust [16] on May 9,

2005, a graph having 27398 nodes and 246355 edges (with

an average of 8.99 outgoing edges per node).

In figure 1 on the following page, the in-degree and out-

degree distributions are plotted on a logarithmic scale, and

they are shown to be approximated with a power-law dis-

tribution. The graph is also a small-world network, hav-

ing a mean shortest distance (MSD) between nodes of 5.96.

These characteristics of low average distance and power-

law degree distribution are common to many kinds of real-

2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

D
eg

re
e

of nodes

Degree distribution in OpenPGP keyring

Indegree
Outdegree

Outdegree approximation with cxγ (γ=-1.64)
Indegree approximation with cxγ (γ=-1.59)

Figure 1. OpenPGP degree distribution

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14

P
er

ce
nt

ag
e

Distance

Distances

OpenPGP web of trust
Random network

Figure 2. OpenPGP distance distribution

world networks [7], such as the Internet, the WWW, or the

graph representing co-authorship of scientific papers.

In figure 2, the distribution of distances of this network

is plotted against the one of a random network having the

same number of nodes and edges (MSD 4.89). The random

one has a much narrower shape, due to the absence of nodes

with very high degree (hubs) and peripheral nodes in the

random network.

The web of trust we are studying also exhibits quite a

high clustering3 value of 0.371. This feature, which is com-

mon among this kind of networks, poses us some problems,

because this means that “close” pairs of nodes will have

more intersections in the neighbourhood maps, and “far”

ones will have fewer, resulting in a lower probability of find-

ing intersections in more difficult cases.

3Clustering for a node n is defined, with kn being the number of nodes

connected to n via a an edge, as ratio between the numbers of edges be-

tween those kn nodes and the maximal possible count of kn (kn − 1).

Clustering for a network is the average clustering for all nodes in that net-

work.

4. Security Issues

While indirect reciprocative approaches are clearly more

powerful than direct ones, adoption in P2P systems presents

some important issues.

No Global Knowledge In networks having large size

and/or a great number of interactions, it is unfeasi-

ble for peers to keep updated data about every inter-

action in the system. Our method is based on local

knowledge. Another possibility is the use of decen-

tralised data structures, like DHTs (distributed hash ta-

bles) such as Chord [23].

Cheap Identities In many cases, it is possible for new

nodes to easily obtain new identities, effectively eras-

ing their past history (whitewashing). Obviously,

this can be used by nodes that had a malicious

past behaviour. As [14] points out, whitewash-

ing “. . . introduces opportunities to misbehave without

paying reputational consequences. A large degree of

cooperation can still emerge, through a convention in

which newcomers ‘pay their dues’ by accepting poor

treatment from players who have established positive

reputations”.

Collusive Attacks A number of malicious nodes could in-

troduce erroneous information in their history, in order

to create attacks that aim to maliciously boost or de-

crease reputation of some nodes. Systems have to be

designed in order to be resilient to this kind of attacks,

giving more weight to data introduced by more rep-

utable nodes.

Collusive attacks carried out by a great number of spurious

identities, thanks to cheap identities, are known as Sybil at-
tacks [12]. By focusing on paths connecting evaluating and

evaluated nodes, we can design systems that are resilient to

these kind of attacks [5, 13].

5. Estimation of Shortest Path

Graph distance is a simple way of evaluating trust for

another node. It is quite natural to think that nodes recom-

mended by a “friend” (i.e., at distance 2) can be trusted up

to a certain degree, those at distance 3 to a lesser degree,

and so on. The concept of shortest path is indeed used as

a reputation evaluation means in the PGP web of trust in

[15, 16], and is resilient to Sybil attacks [5].

The construction of a neighbourhood map for distance,

as shown in the following, can be done just by contacting

neighbours in the network. Given a fixed size delimiter k,

each peer stores the closest k nodes and their distances with

regard both to incoming and outgoing paths. Finding an

3

0

1

2

3

4

5

Figure 3. Example graph

intersection between node x’s map for outgoing links and

node y’s map for incoming ones means that a path from x

to y has been found.

Map Construction When edges are labelled with posi-

tive integer values, we can express a neighbourhood map as

an array that contains, at index i, the set of nodes that are

exactly at distance i. For instance, in the simple graph in fig-

ure 3 (where all edges are labelled with 1), the map for node

0 given a map size k = 5 would be [{0}, {1, 2}, {3, 4}].

Algorithm 1 calculates the map for outgoing paths on

a node n. Inputs are the size k of the neighbourhood

map; a function maps(n, d), which returns the nodes that

n has found at distance d; and a list, called conn, of

(node, distance) pairs representing n’s outgoing edges.

For simplicity, we suppose the algorithm will be eval-

uated synchronously by all nodes in the network (i.e., all

nodes simultaneously evaluate the same step of the outer for
cycle). In a dynamically changing network, nodes would

need to execute continuously this algorithm in order to keep

maps up to date.

An object-oriented notation is adopted, with arrays hav-

ing an append method and indexing starting with 0.

Algorithm 1 Neighbourhood maps for distance

my_maps ← [{my_id}]
for all dist ∈ 1 . . .∞ do

m ← {n′ |(n, d) ∈ conn ∧ n′ ∈ maps(n, dist− d)}

m ← m \
(⋃dist−1

i=0 my_maps[i]
)

my_maps.append(m)
size ←total number of elements in my_maps

if size ≥ k then
arbitrarily select size − k elements from

my_maps[dist] and remove them

return my_maps (exiting from loop)

end if
end for

Oa Ib Ic

Dist. Nodes

0 {a}
1 {x}
2 {y}
3 {w, z}

Dist. Nodes

0 {b}
1 {t}
2 {w}
3 {y, z}

Dist. Nodes

0 {c}
1 {l}
2 {m}
3 {n, o}

Figure 4. Example for algorithm 2

The algorithm recursively finds the set of nodes exactly

at distance dist from a node n by iterating through all nodes

n′ that are connected to n with outgoing edges. For each n′,

all previously undiscovered nodes at distance dist − d are

added, with d being the label of the edge connecting n to

n′.

Algorithm 1 must also be executed to calculate distances

for incoming paths. In order to do this, conn needs to con-

tain data about incoming edges instead of outgoing ones.

Evaluating Distance Once the neighbourhood maps have

been built, estimating distance means finding the minimal

sum of distances for nodes that appear in both maps, i.e.

returning the shortest path found.

If we do not find a path, we have to guess. Since we

are working with small-world graphs, we can guess that the

real distance is not much larger than the greatest distance we

could have possibly found. For this reason, we just use the

sum of the maximum distances indexed by the two neigh-

bourhood maps.

Given node x’s outgoing map Ox and node y’s incom-

ing map Iy , the shortest path from x to y is thus calculated

according to algorithm 2.

Algorithm 2 Distance evaluation

path_lengths ← {i + j |∃n.n ∈ (Ox[i] ∩ Iy [j])}
if path_lengths �= ∅ then

return min(path_lengths)
else

return (length (mo) − 1)+(length (mi) − 1)
end if

As an example, consider the neighbourhood maps from

figure 4. Evaluating distance from a to b, the nodes appear-

ing in both maps are y, w and z. Distances related to paths

passing through them are respectively 5, 5 and 4. The min-

imum distance is thus 4, which will be the outcome of the

algorithm. In order to evaluate distance from a to c, the sum

of the maximal indexes in the two maps will be used, since

no intersection is found. The result is thus 3 + 3 = 6.

The distance estimation algorithm has been tested on the

OpenPGP web of trust and a random network having the

same number of nodes and edges, as discussed in sections

4

5.1 and 5.2.

5.1. Non-empty Intersections

Having a non-empty intersection between the two neigh-

bourhood maps means a path has been found, and thus we

have an upper bound on the distance between the nodes.

The way in which maps are constructed does not, anyway,

guarantee the shortest path has been found4. In this section,

we will analyse how the probability of getting a non-empty

intersection between neighbourhood maps varies in relation

to the map sizes; section 5.2 will give results about the pre-

cision level reached by our approximation.

Expectation in Random Maps In order for neighbour-

hood maps to convey useful information, they need to have

a non-empty intersections with high probability. In order to

do this, we are going to study how this probability behaves

relating to the network size, under the assumption that the

neighbourhood maps are a random selection of nodes in the

network5.

If a value for the distance exists (i.e., the two nodes

are part of the same connected component), the probability

of having one or more intersections in the neighbourhood

maps, when the network is composed by n nodes and maps

have size k is at least

1 −

(
n − k

k

)
(

n

k

) = 1 −
k−1∏
i=0

n − k − i

n − i
≥ 1 −

(
n − k

n

)k

.

(1)

Studying the limit for n → ∞ of the right member of

equation (1):

lim
n→∞

(
n − k

n

)k

= lim
n→∞

((
n − k

n

)n) k
n

=

= lim
n→∞

(
e−k

) k
n = lim

n→∞

e−
k2

n . (2)

Equation (2) tells us that the asymptotic value of equa-

tion (1) depends on limn→∞
k2

n
: if it goes to infinity (that

is, k grows faster than
√

n), then the success probability ex-

pressed in equation (1) goes to 1. Otherwise, if it goes to 0,

success probability goes to 0.

4In graphs where all labels are less or equal to x, the optimal distance

can be shown to be overestimated at most by x. Since in the OpenPGP web

of trust all edges are labelled with 1, the overestimation is thus at most 1.
5This assumption is not true, even for random networks: in fact, nodes

with high degree have higher probability of appearing in a map than those

which do not. Anyway, the graph in figure 5 shows this provides a useful

approximation for random graphs.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

S
uc

ce
ss

 p
er

ce
nt

ag
e

Size of neighbourhood maps (relative to sqrt(n))

Successful meetings - CDF

OpenPGP web of trust
Random graph

Expectation on random maps

Figure 5. Non-empty intersection probability

With k = t
√

n, we get 1 − e−t2 . This means we can

get an arbitrarily low probability of an empty intersection,

keeping map size proportional to
√

n.

Monte Carlo Results The graph in figure 5 shows the

evolution of non-empty intersection probability versus the

neighbourhood maps sizes. We contrasted the behaviour of

the algorithm for the OpenPGP web of trust, our theoretical

predictions for random maps, and the behaviour in a ran-

dom network having the same number of nodes and edges

as the web of trust graph. The neighbourhood map sizes

vary from 0 to 2
√

n, and the experimental data have been

produced by evaluating intersection on 10000 random node

pairs. The map sizes on the x axis have been divided by√
n, for easier referencing against equation (2).

While the curve for the random network and the theoret-

ical prediction for random maps have a similar shape, the

curve for the PGP web of trust significantly deviates from

the other two; we infer this could be motivated by two rea-

sons:

• for low-size maps, having hubs helps us, because it is

more likely that a “famous” node is at a short distance

between source and target, and thus we are more likely

to find a path;

• for larger maps, we are paying for the high cluster-

ing of our network: information in neighbour maps

is more redundant than in other cases, since maps of

close nodes will be very similar and thus will convey

less information.

5.2. Approximation

In order to discuss the accuracy of our method to evalu-

ate distances, we compared the results of our approximation

with the exact distance.

5

 0.001

 0.01

 0.1

 1

 10

 100

 0 1 2 3 4 5 6 7

P
er

ce
nt

ag
e

Size of neighbourhood maps (relative to sqrt(n))

Relative error on distance for OpenPGP web of trust

Figure 6. Relative error plot

The graph in figure 6 shows (with logarithmic scale on

the y axis) how the relative average error is, compared to

the map size. The test graph is, as usual, the OpenPGP web

of trust. The behaviour of error seems to suggest that the

approximation given by our method increases exponentially

with the map size.

The irregular behaviour on the right hand of the graph is

motivated by the fact that the sample having an error when

the map size is large is very low; in our 10000 sample pairs

we could not find errors for a map size greater than 938 ∼=
5.67

√
n.

Our experimental results appear to confirm our theoreti-

cal prediction that maps having sizes equal to k
√

n can be

used in order to calculate our desired value. The k value can

be adjusted depending on the desired precision level.

6. Approximating PageRank

As shown in the previous section, the shortest path length

can be efficiently approximated using neighbourhood maps.

The most significant weakness of this approach, though, is

that only one path between a pair of node on the LRV net-

work is taken into consideration; thus, the resulting ranking

conveys little information.

Algorithms based on link analysis can lead to more sig-

nificant results. PageRank [21] is probably the most widely

known of them, being used to rank results in the Google

web search engine.

6.1. About PageRank

In PageRank, a random walk on the LRV graph is per-

formed, with a probability α of stopping at each step. The

result of PageRank is the probability that each node has of

being the end point of such a walk6. Nodes having a higher

probability in such distribution get a higher ranking. In the

final asymptotic result, all paths of all lengths from the start-

ing nodes are taken into account, with a decreasing weight

for longer paths.

When PageRank is used for web page ranking, and in

EigenTrust [17], the starting point is a random distribution

over many or all the nodes in the graph; in our approach, the

starting point is the evaluating node. This results in a sub-
jective (i.e., depending on the node evaluating it) reputation

evaluation. As [13] argues, this provides security against

collusive attacks, without requiring any kind of centralisa-

tion.

The α parameter is relevant to the speed of convergence

of the algorithm, since all paths of length n have a total

weight of α(1 − α)n. For the standard value α = 0.15, this

means that 83.3% of the total weight attributed by PageR-

ank is constituted by paths up to 10 in length, 96.7% by

paths of length up to 20, and 99.4% up to 30.

While this algorithm can be influenced by Sybil attacks,

it can be easily shown that rankings can not be boosted by

a factor exceeding 1
α

7. Since PageRank values typically fit

on a power law [22], we can assume such an attack would

have only a limited impact on the resulting ranking.

6.2. Constructing Neighbourhood Maps

Let pa,b be the probability that a random walk starting

from node a ends at node b8. If N(n) is the set of neigh-

bours (outgoing links) of n, and #N(n) its cardinality, the

following equations hold:

pa,b =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α +
(1 − α)

#N(a)

∑
n∈N(a)

pn,b if a = b

(1 − α)

#N(a)

∑
n∈N(a)

pn,b otherwise

. (3)

Equation (3) is used in order to create algorithm 3, which

calculates all values of p (each node n calculates all values

pn,m for all other nodes m).

We use this algorithm to create a neighbourhood map

that contains the k highest ranked nodes by each node (“out-

going” map). In order to put a bound on computational re-

quirements, at the end of each iteration we can reset to 0 all

values pa,b where b is not in the k nodes that received the

highest ranking from a, and iterate only on nodes that ap-

pear in neighbours’ maps (i.e., nodes m such that it exists a

6This is equivalent, although more fit to our explanation, to the usual

definition of a probability α of reverting back to a starting point, and eval-

uating the stationary distribution of such an infinite random walk.
7The attack consists in creating loops that never escape from the set of

malicious nodes.
8In other words, pa,b is the ranking of b which is calculated by a.

6

Algorithm 3 Neighbourhood maps for PageRank

on each node a do:

for all node b do
pa,b ← 0

end for
while values have not converged do

for all node b do
if a = b then

pa,b ← α + 1−α
#N(a)

∑
n∈N(a) pn,b

else
pa,b ← 1−α

#N(a)

∑
n∈N(a) pn,b

end if
end for

end while

neighbour n having pn,m > 0). We will denote the result-

ing maps as Oa, where Oa[b] will denote our approximation

for pa,b. As a shortcut, we will write b ∈ Oa to mean that

Oa contains a value for b.

If N−1(n) is the set of incoming links to b, the following

equation is also satisfied:

pa,b =

⎧⎪⎪⎨
⎪⎪⎩

α + (1 − α)
∑

n∈N−1(b)

pa,n

#N(n)
if a = b

(1 − α)
∑

n∈N−1(b)

pa,n

#N(n)
otherwise

.

(4)

This allows us to write an algorithm that uses the same

approach as before in order to build a neighbourhood map

(“incoming” map) of the k nodes that give the highest rank-

ing to b. Using the same notation as before, we will call the

resulting map Ib for each node b.

6.3. Using Neighbourhood Maps to Approximate
PageRank

Let us say that peer a wants to evaluate peer b’s PageR-

ank value (i.e., pa,b).

Let Xa,b be the set of nodes in both a’s outgoing map and

b’s incoming one, that is x ∈ Xa,b ⇐⇒ x ∈ Oa ∧ x ∈ Ib.

For each x ∈ Xa,b, we have then calculated a probability

Oa[x] that a random walk starting from a will stop at x, and

a Ib[x] probability that a walk starting from n will arrive at

b. Given the fact that the probability that a walk stops is α,

the probability of having a random walk getting from a to b

passing through x is then

1 − α

α
Oa[x] · Ib[x].

Since, as seen before, shorter paths are the most impor-

tant ones in constructing rankings, and most of the shorter

paths are found using neighbourhood maps, this means that

using this approach we can hope to capture most of them.

As an estimation of ranking, we then use the following for-

mula, ignoring the 1−α
α

constant which is not going to affect

the ranking: ∑
x∈Xa,b

Oa[x] · Ib[x]

An important point in evaluating the accuracy of this ap-

proach is that if a path passes through more than one ele-

ments of X , then it is likely that it is accounted more than

once. This fact is going to introduce some noise in our cal-

culation.

6.4. Avoiding “spam” attacks

An attacker could attack the “incoming” neighbourhood

map for a node by creating a high number of fake nodes,

and making them give a high ranking to the attacked node.

In this way, that map would become full of references to

insignificant nodes, and thus useless.

In order to avoid this kind of attack, nodes constructing

the maps for incoming links can decide to give precedence

to nodes that appear in their own “outgoing” map. In order

to reach this goal, we added a priority value P (a, b) defined

for each pair of nodes (a, b) such that b ∈ Ia, which has this

value:

P (a, b) =

{
Ob[a] · Ib[a] if a ∈ Ob

minx∈Ob
(Ob[x]) · Ia[b] otherwise

.

Each node constructs its Ix map putting the first k nodes

according to this priority value.

6.5. Experimental Results

We evaluated the similarity of ranking between our

method and the PageRank evaluation, using Kendall’s tau

distance as metrics. It consists in evaluating the probability

that, given two rankings and a pair of random nodes, the two

rankings agree on which one is ranked higher. The graph in

figure 7 on the following page shows how the neighbour-

hood map size is related to this probability. The test graph

is always the OpenPGP web-of-trust described in Section 3.

We can see that the “secure” method described in sec-

tion 6.4 provides better results than the original one. This

is probably due to the fact that, using that criterion, more

relevant nodes are taken into account.

7. Further Work

Other kinds of metrics (such as, for instance, maximal

flow) could be approximated using neighbourhood maps.

The high clustering presented by this kind of real-world

networks reduces the precision we can reach. A plausible

7

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

K
en

da
ll

si
m

ila
rit

y

Size of neighbourhood maps (relative to sqrt(n))

Original method
Secure method

Figure 7. Kendall’s tau distance for PageRank

way of increasing the effectiveness of this method is trying

to differentiate neighbourhood maps of close nodes, giving

a higher priority (as seen in Section 6.4) to nodes that appear

to be outside the cluster a node belongs to.

In order to quantify the incentive to cooperation given to

nodes, we plan to do an “evolutionary-game” analysis sim-

ilar to the one used in [13], contrasting the payoffs received

with selfish and cooperative behaviour.

8. Conclusion

In this paper we have shown a generic method for calcu-

lating metrics about relationships between nodes in a graph.

We have shown how to use this method to give an estimation

of graph distance and of PageRank. Our results imply that

using on each node data structures needing a storage space

proportional to
√

n, where n is the size of the network, can

yield useful results.

We believe that our idea can be fruitfully exploited in

large-scale peer-to-peer networks in order to create a scal-

able and efficient way of giving incentives to cooperation

and thus helping solve the “free-riding” problem.

Acknowledgements The author wishes to thank Prof.

Giovanni Chiola and Prof. Marina Ribaudo for their kind

suggestions and support, and the anonymous reviewers for

their insightful remarks.

References

[1] Edonkey2000. http://www.endonkey2000.com.

[2] Gnutella - A Protocol for a Revolution. http://rfc-

gnutella.sourceforge.net.

[3] A. Marcozzi, D. Hales, G. Jesi, S. Arteconi, and O.

Babaoglu. Tag-Based Cooperation in Peer-to-Peer Networks

with Newscast. Technical Report UBLCS-2005-15, Univer-

sity of Bologna, Dept. of Computer Science, May 2005.

[4] E. Adar and B. A. Huberman. Free riding on gnutella. First

Monday, 5(10), 2 Oct. 2000.

[5] Alice Cheng and Eric Friedman. Sybilproof Reputation

Mechanisms. In Third Workshop on Economics of Peer-to-

Peer Systems, Philadelphia, PA., 22 Aug. 2005.

[6] R. Axelrod. The Evolution of Cooperation. Basic Books,

New York, 1984.

[7] A. L. Barabási. Linked. (Perseus, Cambridge, Mas-

sachusetts), 2002.

[8] Borodin, Roberts, Rosenthal, and Tsaparas. Link analysis

ranking: Algorithms, theory, and experiments. ACMTIT:

ACM Transactions on Internet Technology, 5, 2005.

[9] CacheLogic. Peer-to-Peer in 2005.

http://www.cachelogic.com/research/p2p2005.php, 2005.

[10] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer.

OpenPGP message format. Internet Request for Comment

RFC 2440, Internet Engineering Task Force, Nov. 1998.

[11] B. Cohen. Incentives build robustness in bittorrent. In Pro-

ceedings of the Workshop on Economics of Peer-to-Peer Sys-

tems, Berkeley, CA, USA, 2003.

[12] J. R. Douceur. The sybil attack. In First International Work-

shop on Peer-to-Peer Systems (IPTPS ’02), Mar. 2002.

[13] Feldman, Lai, Stoica, and Chuang. Robust incentive tech-

niques for peer-to-peer networks. In CECOMM: ACM Con-

ference on Electronic Commerce, 2004.

[14] E. J. Friedman and P. Resnick. The Social Cost of Cheap

Pseudonyms. Journal of Economics & Management Strat-

egy, Aug. 17 2001.

[15] Henk P. Penning. PGP pathfinder and key statistics.

http://www.cs.uu.nl/people/henkp/henkp/pgp/pathfinder/.

[16] Jörgen Cederlöf. Wotsap.

http://www.lysator.liu.se/ jc/wotsap/index.html.

[17] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The

eigentrust algorithm for reputation management in P2P net-

works. In WWW, pages 640–651, 2003.

[18] J. Kleinberg. Authoritative sources in a hyperlinked envi-

ronment. JACM: Journal of the ACM, 46, 1999.

[19] Lik Mui. Computational Models of Trust and Reputation:

Agents, Evolutionary Games, and Social Networks. PhD

thesis, Massachusetts Institute of Technology, 2003.

[20] Njål T. Borch. Improving semantic routing efficiency. In

Second International Workshop on Hot Topics in Peer-to-

Peer Systems, 21 July 2005.

[21] Page and Lawrence. PageRank: Bringing order to the web.

Stanford Digital Libraries Working Paper 1997-0072, Stan-

ford University, 1997.

[22] G. Pandurangan, P. Raghavan, and E. Upfal. Using pagerank

to characterize web structure. In COCOON, pages 330–339,

2002.

[23] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and

H. Balakrishnan. Chord: A scalable peer-to-peer lookup

service for internet applications. In SIGCOMM, pages 149–

160, 2001.

8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

