Linyphi: An IPv6-Compatible
Implementation of SSR

Pengfei Di, Massimiliano Marcon, and Thomas Fuhrmann
IBDS Systemarchitektur
Universitdt Karlsruhe (TH), Karlsruhe, Germany
{di,marcon,fuhrmann}@ira.uka.de

Abstract

Scalable Source Routing (SSR) is a self-organizing
routing protocol designed for supporting peer-to-peer
applications. It is especially suited for networks that
do not have a well crafted structure, e.g. ad-hoc and
mesh-networks. SSR is based on the combination of
source routes and a virtual ring structure. This ring
is used in a Chord-like manner to obtain source routes
to destinations that are not yet in the respective router
cache. This approach makes SSR more message ef-
ficient than flooding based ad-hoc routing protocols.
Moreover, it directly provides the semantics of a struc-
tured routing overlay.

In this paper we present Linyphi, an implementa-
tion of SSR for wireless accesses routers. Linyphi com-
bines IPv6 and SSR so that unmodified IPv6 hosts have
transparent connectivity to both the Linyphi mesh net-
work and the IPvj/v6 Internet. We give a basic outline
of the implementation and demonstrate its suitability in
real-world mesh network scenarios. Linyphi is available
for download [1].

1. Introduction

The Internet has faced an enormously growing pop-
ularity during the last decade. Meanwhile, more and
more people are setting up private home networks. Of-
ten, these networks consist of WiFi clouds that do
not only contain several notebook computers but also
an increasing number of consumer electronic devices.
With peer-to-peer applications it seems attractive to
connect neighboring private networks directly, not only
via a publicly operating Internet provider.

This increased and modified use confronts the In-
ternet architecture with important challenges. A well-
known challenge is the depletion of the IPv4 address

1-4244-0054-6/06/$20.00 ©2006 IEEE

space. It has been accounted for by the 128bit address
space of IPv6. Another challenge is that of routing in
such large unstructured networks, i.e. networks where
laypeople connect their private network clouds arbi-
trarily. To our belief this latter problem has not yet
been sufficiently accounted for.

In this paper we present a practical approach to re-
source efficiently support routing in such scenarios, the
Linyphi mesh network router. Linyphi is an implemen-
tation of the recently proposed scalable source rout-
ing (SSR) protocol on a popular embedded DSL/WiFi
home network router, the Linksys WRT54GS. SSR pro-
vides fully self-organizing, efficient routing in large un-
structured networks. Externally, i.e. towards the In-
ternet provider, Linyphi behaves like a regular DSL
router. Internally, Linyphi acts as mixed IPv6 and SSR
router. Among each other, the Linyphi routers use SSR
to efficiently route the (encapsulated) IPv6 traffic.

With Linyphi, unmodified IPv6 capable hosts ob-
tain full IPv6 connectivity, both to the Internet and to
all other IPv6 hosts within the Linyphi mesh network.
This is especially useful for peer-to-peer applications
that need to transfer large amounts of data, but are
not restricted to a particular server on the Internet. If
a suitable peer is available in the local Linyphi mesh
cloud, the traffic can be kept local.

Due to SSR’s self-organizing properties, the Linyphi
mesh network can grow very large. Moreover, local
Linyphi clouds can be arbitrarily connected to other
clouds without any further configuration. This can be
done wired (Ethernet), wirelessly (Wave LAN), or im-
plicitly by tunneling through the Internet. After some
time, we expect the Linyphi cloud to cover e.g. whole
cities, thereby providing a powerful network infrastruc-
ture for most kinds of applications, as well as peer-to-
peer applications.

Let us illustrate this with the following example:
When a user sets up her first Linyphi router, she ob-
tains a private wireless LAN cloud that uses IPv6 inter-

nally, but otherwise provides the very same service as a
regular off-the-shelf wireless LAN home router. When
her neighbor sets up a Linyphi router, too, they can
connect both routers to obtain a small Linyphi mesh
cloud. Any traffic sent to destinations within this cloud
is routed locally. This is especially useful for peer-to-
peer applications where this can lead to a significantly
increased performance. The more neighbors join the
Linyphi cloud, the greater the performance increase.
But even a small local cloud can be worth the little ef-
fort to use Linyphi instead of an off-the-shelf product.

We believe that this property, namely no extra cost
for installing the first device and increased performance
from the second device on, helps to quickly promote the
deployment of Linyphi.

This paper is structured as follows: Section 2 sum-
marizes the state of the art in ad-hoc and mesh routing
and explains why those approaches are inefficient for
peer-to-peer applications. Section 3 briefly introduces
the scalable source routing protocol. (For details and
a general performance evaluation the reader is referred
to [4].) Section 4 describes the design of Linyphi, and
section 5 extends this design to interoperability of the
IPv4 Internet. Section 6 discusses the actual imple-
mentation on the Linksys WRT54GS and evaluates its
performance. Section 7 concludes with an outlook to
future work.

2 The Problems of Ad-Hoc Network
Routing

The progress in wireless technology and the increas-
ing popularity of ad-hoc networks with dynamic topol-
ogy pose new challenges for the design of efficient rout-
ing algorithms. Traditional shortest path routing algo-
rithms like Dijkstra and Bellman-Ford require proac-
tive flooding of topology information through the whole
network. Moreover, each node must be able to identify
the next hop for all the destinations in the network.
Consequently, in a IV nodes network where addresses
are not assigned coherently, the routing table for each
node will have O(N) entries. This is not acceptable
when the number of network nodes is large and the
devices have limited memory capabilities.

On the other hand, hierarchical solutions, as applied
e.g. in the Internet, are little suitable to grass-root
dynamic ad-hoc networks with their frequent topology
changes and lack of administration. For this latter type
of networks, both reactive and proactive solutions have
been proposed. But typically these solutions rely on
flooding and are thus not scalable to large networks.

The ad-hoc on-demand distance wvector routing
(AODV) is perhaps the most widely discussed ad-hoc

routing protocol [15] [2]. It floods the network with
route request messages to find routes to previously un-
known destinations. These routes are stored in the
network so that the nodes know the direction to ac-
tive sources and destinations. Dynamic source routing
(DSR), too, uses flooding [12]. Unlike AODV it builds
source routes between the active sources and destina-
tions. These source routes are cached at the source and
destination in a so-called route cache. [11] details this
caching approach.

So far, there have been only few attempts to ex-
plore the potential interactions between overlay rout-
ing and such an ad-hoc routing protocol. Following an
approach analogous to SSR, [9] and [10] propose an in-
tegration of DSR and Pastry [16] at the network layer
of ad-hoc networks. There, packets are routed with the
same algorithm as in Pastry, but each hop in the over-
lay network is a multi-hop source route. In their imple-
mentation however, an application needs to explicitly
bind to an user-space library, while the infrastructure
provided by Linyphi is completely transparent to its
client hosts.

Other authors suspected that employing a struc-
tured routing overlay like e. g. Chord on top of a mobile
network can lead to severe inefficiencies. As a conse-
quence mobile peer-to-peer applications often combine
infrastructure nodes with mobile nodes, or revert to un-
structured solutions (see [6] and [5]). Scalable source
routing (SSR) [4] is a recent approach to address these
inefficiencies and combine the semantics of a structured
routing overlay with an ad-hoc routing protocol.

In the following section we briefly describe the SSR
protocol upon which we built Linyphi. SSR has re-
cently been proposed as memory and message effi-
cient routing protocol for large self-organizing net-
works. Typically, such networks will be meshes of wire-
less ad-hoc network clouds that are arbitrarily con-
nected by both grass-root wire-line links and public
network infrastructures.

3 Scalable Source Routing

SSR addresses the afore mentioned problems of rout-
ing in large scale ad-hoc networks by a combination
of source routing with ideas from structured overlay
routing, especially the Chord [17] routing overlay. As
with Chord, SSR assumes every node to bear a glob-
ally unique identifier (SSR-ID) from a large circular
identifier space. With SSR each node may randomly
choose its ID, i. e. the node’s position in identifier space
is independent from the underlying network topology.
(For Linyphi we derive the SSR-ID from the node’s
IEEE 802 MAC address; see section IV for details.)

When a node needs to send a packet to another
node, it includes a source route towards the destina-
tion in the packet’s header. This source route can be
a list of the globally unique SSR identifiers of all the
nodes that are to be traversed by the packet. It can
also be a compact version giving only a list of locally
unique peer identifiers (see [4] for details).

Optimally, the source node would have the full
source route to the respective destination already in
its route cache. This cache stores source routes to re-
cently contacted nodes on a least recently used (LRU)
basis. It can be efficiently organized into a tree-based
data structure that allows quick access and has only
a low memory footprint. Simulation studies [4] show
that a cache size of about 250 nodes is sufficient in
many cases. (Note that due to the small-world prop-
erty of many networks, the required cache size scales
with O(loglog N), i.e. it is in fact almost independent
from the actual network size N.)

If the source node does not have the destination
node in its cache, it can still prepend a source route to-
wards the requested destination. To this end, the node
employs the metric of the identifier space and looks up
a node in its cache that is virtually closer to the des-
tination than itself. Typically the cache will contain
several such nodes. In such a case the node with the
shortest source route is preferred, i.e. the node that
is physically closest to the node that needs to prepend
the source route. SSR calls such an intermediate node
‘mediator’.

Obviously, the routing process can contain several
such mediators. Nevertheless, it is guaranteed to con-
verge if only each node has the source routes to its vir-
tual neighbors in its cache. SSR takes special care to
obtain and maintain these source routes to the virtual
neighbors. This is done very efficiently, almost always
without flooding.

The basic process is as follows: Each SSR node pe-
riodically broadcasts its SSR_ID to all of its physical
neighbors. Upon reception of such a broadcast, an SSR
node, let’s call it A for future reference, selects its two
virtual neighbors, namely one successor S(A) and one
predecessor P(A), among all the nodes A knows of.
Initially, the virtual neighbors have to be taken from
the set of physical neighbors of A since these are the
only nodes known to A. Later they will be chosen from
the entire route cache.

Now, A sends a successor (or predecessor) notifica-
tion message to S(A) (or P(A) respectively). Upon
reception of such a message the receiving node, let’s
call it B for future reference, checks whether it can
detect an inconsistency. I.e.if A thought B to be its
successor (S(A) = B), B checks whether it agrees with

A being its predecessor (P(B) = A). If not, B sends
A a neighbor update message, that informs A about
the node C' = P(B), i.e. the node that B thinks to
be its predecessor and which is thus a better candidate
for A’s successor. By construction this message will
contain the full source route from A to C.

This process is performed similarly for all the mu-
tual successor and predecessor relations until no node
detects any further inconsistencies. It can be shown
that in practice this process terminates rather quickly
and reaches the globally consistent state. Furthermore,
simulations show that SSR can keep the control mes-
sage overhead very low, even in networks with churn
and node mobility. Moreover, SSR scales well up to
more than 100000 nodes [4] with paths that are on
average only about 20% longer than the globally op-
timal shortest paths. This small overhead is the price
SSR has to pay for its memory and control message
efficiency. However, in scenarios where a peer-to-peer
application requires a structured routing overlay, e. g.
Chord, this overlay also introduces a routing stretch
[7].
This paper demonstrates SSR’s applicability in a
real world scenario. Making the structured routing
overlay semantics accessible directly for a peer-to-peer
application is among our current work.

4 Linyphi Design Issues

Linyphi’s goal is to make SSR compatible with IPv6
such that SSR network clouds are transparent to nor-
mal end-hosts like e. g. Windows, Apple or Linux com-
puters. To this end we differentiate between routers
and hosts. A router is an intermediate node in the
SSR network that communicates with other routers by
means of the SSR protocol. Being a node in the SSR
infrastructure, every router is provided with a unique
SSR-ID. A host implements (only) IPv6. It is attached
to at least one router which has to be its default IPv6
router. This router contains all the functionalities of
a normal IPv6 router, except for the actual routing
mechanism. It acts as a gateway to the SSR infras-
tructure. Note that a host and its associated router
communicate only through standard IPv6, i.e. we do
not need to modify a host for it to be able to join a
Linyphi network.

4.1 Address space mapping

Since SSR and IP are different routing protocols
they operate in different address spaces. By using
IPv6’s stateless address auto-configuration [18] we can
very easily map the SSR address space into an unused

part of the IPv6 address space. In particular, each
router will broadcast a 64 bit IPv6 prefix (identifying
the respective IPv6 subnet) on each of its interfaces.

Linyphi composes this prefix as follows: The first
8 bit of the prefix are set to 0100::/8, a still unused
prefix for global uni-cast addresses [8]. The next 48
bit of the prefix contain the SSR-ID of the router. In
our implementation this is the MAC address of one
of the router’s interfaces. The last 8 bit are set to
the identifier of the router’s interface from which the
prefix is broadcast. (A Linyphi router can have up to
255 interfaces.) Summing up, the prefix of the Linyphi
router advertisement is:

01:SSR-ID:Subnet:: /64

It is important to note that by embedding the SSR-
ID of the respective default router into the IPv6 prefix
we can directly determine the SSR-ID of the destina-
tion router from the destination host’s IPv6 address.
To understand why this is important, consider the fol-
lowing example: When a source host sends a packet
to some destination host it simply forwards this packet
via IPv6 to its default router. This router (we call it
the source router) encapsulates the IPv6 packet into an
SSR packet. (In fact it prepends its SSR header to the
IPv6 packet.) In order to forward the packet it needs
to determine the SSR-ID of the destination router, i.e.
the default router of the destination host. Given the
afore mentioned property of the prefix, this can be done
directly.

Since the identifier of the destination interface is also
contained in the IPv6 address, processing at the des-
tination router is further simplified. Nevertheless, for
those packets, i.e. when the MAC address of the des-
tination host is still unknown, the destination router
needs to perform an IPv6 neighbor discovery before it
can actually deliver the IPv6 packet to the destination
host [13].

4.2 Packet Types and Formats

Linyphi distinguishes between three types of IPv6
packets: on-link, global on-link and off-link. A packet
is on-link if the source and destination host are in the
same subnet, i. e. source and destination address match
with their full 64 bit prefix. A packet is global on-
link when source and destination host are attached to
the same router, but belong to different interfaces (i. e.
subnets). In that case only the leading 56 bit of source
and destination address match. Otherwise, a packet
is off-link, i.e. source and destination router differ.
Only in that case packets need to be encapsulated and
forwarded as SSR packets via the SSR network cloud.

SSR Control Packet

‘MAC Header | SSR Header

Payload ‘

SSR Datagram Packet

SSR Header | IPv6 Header

‘ MAC Header| Payload ‘

‘ Type ‘ Path Length | Source Route | Destination SSR—ID‘

Source SSR-ID | 1st Router’s SSR-ID

2nd Router’s SSR-ID ‘ ‘

Figure 1. SSR Packet Format

Between Linyphi routers such SSR packets are sent
in Ethernet frames with type code Ox8888. (Note that
SSR needs its own type code to differentiate its packets
from those of other routing protocols.) There are two
major types of SSR packets: (1) datagram packets,
containing an encapsulated IPv6 packet and (2) control
messages required e. g. for maintaining the virtual ring.
(See figure 1 for an illustration.) This differentiation
corresponds to the difference between IP and ICMP
packets.

As shown in figure 1, the general SSR header con-
sists of four fields:

e Type (1 byte) indicating the type and subtype of
the SSR packet.

e Path length (1 byte) giving the number of hops in
the subsequent source route.

e Source Route (6 * n bytes, where n is the path
length): A list of the SSR-IDs along which the
packet will be sent hop by hop.

e Destination (6 bytes): The SSR-ID of the desti-
nation router. Note that this can differ from the
last hop in the source route when the sender or
a mediator node could not retrieve the full source
route to the destination from its cache.

Depending on the control message type, the SSR
header will contain further fields. (See the documenta-
tion accompanying the source code for details.)

4.3 Path MTU Discovery

As specified in [3], all IPv6 end-hosts have to sup-
port the so-called path-MTU discovery. If a packet is
too long to be relayed further, the intermediate IPv6
router will send an ICMPv6 packet back to the sender
containing the value of the MTU in which the packet
should fit. The host will then resend an accordingly
fragmented packet. Therefore, our Linyphi routers also

have the functionality of IPv6 path-MTU discovery
with small adjustment: Since a host is completely un-
aware of Linyphi, and has no knowledge of the overhead
introduced by the SSR header, Linyphi must reduce the
MTU value by L, the size of SSR header, before sending
back the ICMPv6 packet.

5 Extension to IPv4 Internet

Although Linyphi aims primarily at providing IPv6
within a mesh network of IPv6 hosts, it is also capa-
ble of inter-operating with the IPv4 Internet. To this
end Linyphi adopts the embedding of IPv4 addresses
into IPv6 addresses and — more importantly — the map-
ping of IPv6 addresses to IPv4 addresses by the help of
network address translation (NAT). Thereby, Linyphi
routers can act (separately or jointly) as gateways to
the IPv4 Internet.

5.1 NAT Gateways

Linyphi’s NAT functionality is based on an IPv4-to-
IPv6 translation mechanism that has been specified in
[19]. Its core idea is to send packets that are destined
to the IPv4 Internet via SSR datagram messages to a
gateway that can translate the IPv6 packets into IPv4
packets, and vice versa.

Since each SSR router needs to be able to determine
a gateway, each Linyphi router is provided with a gate-
way table, i.e. a list of the SSR-IDs of the Linyphi gate-
ways that are available to the respective router. When
an off-network packet arrives at the source router it
chooses a gateway from the table and encapsulates the
packet so that it can be forwarded via SSR to that gate-
way. The gateway will decapsulate the packet, trans-
late it into an IPv4 packet, and store the respective
state required for translating potential IPv4 traffic des-
tined back into the Linyphi network.

Note that the NAT mechanism itself (performed by
the gateways) is identical to the NAT as described in
[19]. This also means that gateways need to treat NAT
incompatible application layer protocols (e.g. DNS,
FTP, etc.) by an additional NAT application layer
gateway (ALG) mechanism. Our Linyphi implemen-
tation provides treatment for some popular protocols,
but it is far from being exhaustive. Moreover, our im-
plementation does not yet include cryptographic pro-
tection of gateways against unauthorized use. Hence
Linyphi is currently only recommended for users with
unrestricted flat rate Internet access.

5.2 Fragmentation Problem

As described above, path MTU discovery is manda-
tory for IPv6, but not for IPv4. Today, some IPv4
hosts perform path MTU discovery by setting the DF
(don’t fragment) flag in the IPv4 header. But others
rely on the intermediate IPv4 routers to fragment the
packets on their behalf.

In order to be interoperable with both types of IPv4
hosts, the Linyphi gateway fragments the too-long in-
coming IPv4 packets without a DF flag, or sends back
an ICMPv4 packet indicating the appropriate MTU
for those with the DF flag set (see [14]). Because of
the varying length of the SSR header, each Linyphi
router has the ability to perform IPv6 fragmentation,
although they are encapsulated. Note that this is only
utilized for those packets from the Internet.

5.3 DNS Service

Linyphi supports not only the use of DNS servers
that reside within the Linyphi network. A host may
also choose any DNS server from Internet using an IPv4
embedded IPv6 address format. Linyphi accomplishes
this by a DNS ALG [19] on the gateway, performing
DNSv4/6 translation.

6 Implementation and Evaluation

We used the Linksys wireless LAN router WRT54GS
for our implementation of Linyphi. This is a popular
Linux based MIPS device with five 10/100 Ethernet
ports and an IEEE 802.11g interface. For testing we
also used a SuSE 9.3 Linux desktop and WindowsXP
notebook. Note that Linyphi does not require any
modifications of the latter devices. All the function-
ality is contained in the router.

The Linksys router was equipped with OpenWrt,
a Linux distribution particularly for the WRT54G/S
routers. The initial version of OpenWrt was based
on the original Linksys code for the firmware of
the WRT54G router. This code was released under
the GNU General Public License (GPL). Meanwhile,
OpenWrt has developed into a fully-featured Linux sys-
tem with the 2.4.30 kernel.

6.1 Architectural Overview

Linyphi has been implemented in C++. There are
two main modules inside a router: the SSR kernel and
the InterfaceKeeper (cf. fig 2). The SSR kernel exe-
cutes the core algorithms for the SSR protocol, e.g.
maintenance of the virtual ring, discovery of source

IF1 InterfaceK 7] sSSR _kern
. nterfaceKeeper %

. Neighbor Table

IF2

—

SSR_kern::ssrNodeUp
SSR_kern::ssrNodeDown
SSR_kern::handlelPv6Packet
SSR_kern::handleSSRPacket

InterfaceKeeper::sendSSRPacket
IF3 ‘ InterfaceKeeper::deliverIPv6Packet
InterfaceKeeper::sendICMPv6DestUnreach

Figure 2. Overview of a Linyphi router

routes, etc. . The InterfaceKeeper is responsible for the
interaction with the Linux network stack, e.g. packet
delivery and reception. Furthermore, it implements
the required tasks of a normal IPv6router, like sending
router advertisements, performing neighbor discovery,
etc.

The interface between these two modules consists of
the following seven methods:

e void SSR_kern::ssrNodeUp(struct ssr_addr addr)
The InterfaceKeeper informs the SSR kernel of the
presence of a newly attached SSR router.

o void SSR_kern::ssrNodeDown(struct ssr_addr addr)
InterfaceKeeper informs the SSR kernel that a
neighboring SSR router is no longer reachable.

e void SSR_kern::handleIPv6Packet
(struct ssr-_addr addr, unsigned char *ipv6_packet,
int len)
After reception of an IPv6 packet from an attached
host, the InterfaceKeeper uses this method to pass
the packet to the SSR kernel for encapsulation.
Note that it provides the SSR address of the desti-
nation router, i. e. the router to which the packet’s
destination host is attached.

e void SSR_kern::handleSSRPacket

(const unsigned char* ssr_packet, int len)

After reception of an SSR message from a neigh-
boring router, the InterfaceKeeper passes the
packet to the SSR kernel for processing, including
forwarding or decapsulation in case of datagram
messages. In the latter case the SSR kernel will
call sendSSRPacket or deliverIPv6Packet respec-
tively.

e void InterfaceKeeper::deliverIPv6Packet
(const unsigned char* buf, int len)
When an SSR datagram message arrives at its des-
tination router, the SSR kernel extracts the origi-
nal IPv6 packet and calls this method to pass it to
the InterfaceKeeper for delivery to the destination
host.

81

7£ 28

Figure 3. Example with six Linksys routers

e void InterfaceKeeper::sendSSRPacket
(struct ssr_addr addr, const unsigned char® buf,
int len, int ip_offset)
The SSR kernel passes an SSR message to the In-
terfaceKeeper for forwarding it to the neighbor-
ing router identified by the given SSR-ID. Note
that optionally the kernel can inform the Inter-
faceKeeper about the length of the SSR header.
This is required for some IPv6 interoperability
mechanisms, like changing the TTL value, send-
ing ICMPv6 messages indicating the local MTU
value, etc.

void InterfaceKeeper::sendlCMPuv6DestUnreach
(const unsigned char* ipv6_packet, int len)

When the SSR kernel is unable to determine a
route to the requested destination router, it calls
this method. The InterfaceKeeper will then send
an ICMPv6 destination unreachable packet back
to the packet source.

The InterfaceKeeper also contains the so-called
neighbor table that associates SSR-ID, MAC address
and interface identifier of all neighboring Linyphi
routers. With this table the InterfaceKeeper is able
to send SSR messages via Ethernet frames when it is
given the SSR-ID of the respective neighboring router.
The InterfaceKeeper retrieves the SSR-ID of neighbor-
ing routers from their router advertisements. (As de-
scribed above IPv6 router advertisements contain the
SSR-ID of the respective router, thus they are also used
as SSR hello messages in this implementation.) In or-
der to detect the loss of a neighboring router, each
entry in the neighbor table is associated with a timer
that is reset upon reception of a router advertisement.
When the timer expires, ssrNodeDown is called.

6.2 Experimental Evaluation

We tested our implementation with the network
topology shown in fig 3. The notebook communi-
cates with the server through a Linyphi network of
six routers. The numbers depicted above each Linyphi
router are the last bytes of the respective SSR-IDs.
(Remember that Linyphi simply takes the MAC ad-
dress of one of the router’s network cards as the router’s
SSR-ID.)

About three seconds after the routers have been
switched on, SSR has established its virtual ring, i.e.
each router has found its virtual neighbors. (Note that
this time corresponds to the time interval between SSR
hello messages.)

When the notebook sends an IPv6 packet to the
server, the default router of the notebook Rsg needs to
find a source route to the default router of the server
R7g. At the beginning, Rss does not know a path to
R7g. It therefore sends the packet to Rg1, its predeces-
sor on the ring. (Note that routing direction depends
on virtual distance.)

Since R7g is a predecessor of Rgi, the latter has
cached a source route to Rrg, namely 81-28-69-7E.
Using this source route, Rg; forwards the packet to
Rog. Upon reception of the packet, the Rog detects
that there exists a source route from itself to Rrg.
Hence it stores this new route 28-69-TE in its cache
and subsequently uses this new route, which is actu-
ally the globally shortest. (Note that the latter is not
always the case with SSR.)

When we break the link between Rag and Rgg, pack-
ets from Rog to Ryp are queued and finally dropped at
Rog. After about four seconds the entry in the neigh-
bor table has timed out and Rsg will delete the source
route 28-69-7E. (Note that this delay is determined by
the frequence of the IPv6 router advertisements. If Rog
knew that the link was broken and not only temporarily
unavailable, it could immediately delete the respective
source route.)

Once the broken source route has been deleted, Rag
sends the packets again to its predecessor Rg; who tries
to forward it again via the source route 81-28-69-7E,
i. e. sends it back to Rog. Upon reception of that packet
Rog immediately sends back a link broken message to
Rg1 who now regards R7g as unavailable. Rg; selects
a new predecessor from its route cache, in our example
R32, and sends a predecessor notification. Rgs replies
with a predecessor update, pointing Rg; to Rgg. After
the exchange of another notification-update pair, Rg;
has again a source route to R7g, namely 81-32-69-7E.
The whole cascade from detection of the broken link to
its repair takes in our setup less than 50 milliseconds.

3-hop (10Mb) Ping6 HTTP FTP SCP

Static Routing | 2.120 ms | 858 KB/s | 888 KB/s | 947 KB/s

SSR 1.052 ms | 751 KB/s | 778 KB/s | 760 KB/s

7-hop (10Mb) Ping6 HTTP FTP SCP

Static Routing | 4.571 ms | 865 KB/s | 909 KB/s | 912 KB/s

SSR 10.94 ms | 664 KB/s | 687 KB/s | 665 KB/s
[Ping [SCP (up) [SCP (down) |

Home DSL | 48.7 ms | 60,6 KB/s | 292 KB/s |

Table 1. Performance comparison between
Linyphi and static IP routing

Note that the packets now follow the source route 28-
81-32-69-7TE. The shortest path 28-75-69-7E has not
(yet) been detected.

6.3 Performance Results

Although our implementation did not aim at high
performance, we nevertheless compared Linyphi’s per-
formance to that of the unmodified Linksys routers.
In particular, we tested four protocols (HTTP, FTP,
SCP and Ping6) that can give a realistic impression of
the performance as experienced by a Linyphi user. Ta-
ble 1 gives the round trip time (RTT) and throughput
results of that experiments. (The given numbers are
average values of six runs each.)

The results show that Linyphi increases the RTT by
almost a factor of 3, but the throughput is reduced only
by about 10%-25%. Thus, we conclude that Linyphi is
already useful for many bulk-data oriented peer-to-peer
applications. This is especially true when we consider
that with Linyphi peer-to-peer applications can keep
their traffic in the local mesh cloud instead of always
traversing e.g. a DSL connection. To illustrate that
benefit, table 1 also gives typical values for a 6 MBit/s
WiFi/DSL home access connecting to a machine at the
local university.

We are confident that Linyphi’s performance can be
further increased in the near future. (Note that the cur-
rent bottleneck of the Linyphi is the processor time.)
One step is to integrate Linyphi into the routing sub-
system of the Linux kernel. Especially packets already
containing the full source route can thus be quickly
processed on the "fast path”. Another step is the re-
duction of the SSR overhead. This can be achieved by
replacing the 6 byte SSR-IDs in the source routes with
short labels that locally denote the next hop router.
(See [4] for details.) With these improvements we ex-
pect Linyphi to achieve the performance of the regular
Linksys router.

7 Conclusion and Future Work

In this paper, we presented Linyphi, a novel rout-
ing infrastructure that is based on the SSR proto-
col. Linyphi allows users to create large self-organizing
meshes of wireless LAN clouds that are fully transpar-
ent to unmodified IPv6 hosts. Thereby, peer-to-peer
applications running on these hosts have an increased
likelihood to find peers locally, e.g. within the same
block of flats, the same street, or the same neighbor-
hood community.

We demonstrated that our current Linyphi imple-
mentation is within a factor of 1-2 of the performance
of a state-of-the-art Linux router. Since the under-
lying routing protocol is self-organizing, Linyphi can
be deployed even in large-scale settings almost without
any configuration. Moreover, when compared to the
currently most widely employed scenario where home
networks are separately connected to the Internet via a
DSL router, Linyphi already has a performance benefit
of more than a factor of 2—-3.

In the future, we expect to increase Linyphi’s se-
curity and performance further. Concerning secu-
rity we are investigating extensions to SSR that al-
low the introduction of SSR firewalls that can help to
identify and filter malicious traffic. Such mechanisms
would also support authentication, authorization and
accounting, and e.g. control the use of the gateway
connecting Linyphi to the Internet. Performance-wise
we are currently optimizing the implementation, e.g.
by streamlining the code, integrating a ’fast-path’ into
the kernel, and by reducing the protocol overhead in
the packet header.

We are also planning an implementation that brings
SSR. directly to the host. Thereby, a host could ben-
efit from SSR’s support for node mobility, too. More-
over, since SSR can directly provide the semantics of a
structured routing overlay, this would allow high per-
formance mobile peer-to-peer applications.

References

[1] www.linyphi.net.

[2] E. M. Belding-Royer and C. E. Perkins. Evolution and
Future Directions of the Ad hoc On-Demand Distance
Vector Routing Protocol. Ad hoc Networks Journal,
1(1):125-150, July 2003.

[3] S. Deering and R. Hinden. Internet Protocol, Version
6 (IPv6) Specification. RFC 2460, Dec 1998.

[4] T. Fuhrmann. Scalable routing for networked sensors
and actuators. In Proc. of the 2nd Annual IEEE Com-
munications Society Conference on Sensor and Ad Hoc
Commumnications and Networks, Sept. 2005.

[5] I. Gruber, R. Schollmeier, and W. Kellerer. Perfor-
mance evaluation of the mobile peer-to-peer service. In
2004 IEEEFE International Symposium on Cluster Com-
puting and the Grid, The Drake Hotel, Chicago, Illi-
nois, USA, Apr. 2004.

[6] 1. Gruber, R. Schollmeier, and F. Niethammer. Pro-
tocol for peer-to-peer networking in mobile environ-
ments. In Proc. of the IEEE Workshop on Wireless Lo-
cal Networks (WLN’03), Bonn, Germany, Oct. 2003.

[7] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The Impact of DHT Routing
Geometry on Resilience and Proximity. In Proceed-
ings of the SIGCOMM 2008 conference, pages 381—
394. ACM Press, 2003.

[8] R. Hinden and S. Deering. Internet protocol version 6
(IPv6) addressing architecture. RFC 3513, Dec 2003.

[9] Y. C. Hu, S. M. Das, and H. Pucha. Exploiting the
synergy between peer-to-peer and mobile ad hoc net-
works. In Proceedings of HotOS-1X: Ninth Workshop
on Hot Topics in Operating Systems, Lihue, Kauai,
Hawaii, May 2003.

[10] Y. C. Hu, S. M. Das, and H. Pucha. Ekta: An efficient
dht substrate for distributed applications in mobile ad
hoc networks. In Proceedings of the 6th IEEE Work-
shop on Mobile Computing Systems and Applications
(WMCSA), English Lake District, UK, Dec. 2004.

[11] Y.-C. Hu and D. B. Johnson. Caching Strategies in
On-Demand Routing Protocols for Wireless Ad Hoc
Networks. In Proceedings of the 6th Annual Inter-
national Conference on Mobile Computing and Net-
working (MobiCom ’00), pages 231-242, Boston, MA,
USA, 2000.

[12] D. B. Johnson and D. A. Maltz. Dynamic Source
Routing in Ad Hoc Wireless Networks. Mobile Com-
puting, 353:153-181, Feb. 1996.

[13] T. Narten, E. Nordmark, and W. Simpson. Neighbor
discovery for ip version 6 (IPv6). RFC 2461, Dec 1998.

[14] E. Nordmark. Stateless IP/ICMP Translation Algo-
rithm (SIIT). RFC 2765, Feb 2000.

[15] C. E. Perkins and E. M. Royer. Ad hoc On-Demand
Distance Vector Routing. In Proceedings of the 2nd
IEEE Workshop on Mobile Computing Systems and
Applications, pages 90-100, New Orleans, LA, USA,
Feb. 1999.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems. In Proc. of the IFIP/ACM In-
ternational Conference on Distributed Systems Plat-
forms, Heidelberg, Germany, Nov. 2001.

[17] 1. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In Proceed-
ings of the SIGCOMM 2001 conference, pages 149—
160. ACM Press, 2001.

[18] S. Thomson and T. Narten. IPv6 Stateless Address
Autoconfiguration. RFC 2462, Dec 1998.

[19] G. Tsirtsis and P. Srisuresh. Network Address Trans-
lation - Protocol Translation (NAT-PT). RFC 2766,
Feb 2000.

