Integrating heterogeneous information services using JNDI

Dirk Gorissen, Piotr Wendykier, Dawid Kurzyniec, and Vaidy Sunderam

Emory University
Dept. of Math and Computer Science
Atlanta, GA 30322 USA
dgorissen@gmail.com, {wendyk,dawidk,vss}@mathcs.emory.edu

Abstract

The capability to announce and discover resources
is a foundation for heterogeneous computing systems.
Independent projects have adopted custom implementa-
tions of information services, which are not interoper-
able and induce substantial maintenance costs. In this
paper, we propose an alternative methodology. We sug-
gest that it is possible to reuse existing naming service
deployments and combine them into complex, scalable,
hierarchical, distributed federations, by using appropri-
ate client-side integration middleware that unifies ser-
vice access and hides heterogeneity behind a common
API. We investigate a JNDI-based approach, and de-
scribe in detail two newly implemented JNDI service
providers, which enable unified access to 1) Jini lookup
services, and 2) Harness Distributed Naming Services.
We claim that these two technologies, along with others
already accessible through JNDI such as e.g. DNS and
LDAP, offer features suitable for use in hierarchical
heterogeneous information systems.

1. Introduction

Resource information, registration, and discovery
services are of crucial importance in heterogeneous dis-
tributed systems, as they provide the necessary bridge
between resource providers and consumers. Existing
information services, targeting vastly different systems
and addressing diverse requirements, vary greatly in
the update and query capabilities, levels of security
and fault tolerance, genericity, scalability, and respon-
siveness. For instance, DNS provides a name resolution
service which scales world-wide but is specialized, lacks
strong consistency, and has limited query capabilities.
These features make it suitable for managing simple
textual data collections for which updates are rare and

1-4244-0054-6/06/$20.00 ©2006 IEEE

sophisticated queries are unnecessary. On the other
hand, information services targeting more dynamic and
diversified data sets, such as Jini (with its leasing and
event notification mechanisms), are usually less scal-
able. Often, a hybrid approach is required to balance
these conflicting objectives. Independent projects have
developed their own solutions, typically involving com-
plex, distributed, hierarchical information services re-
quiring custom installation, configuration, and mainte-
nance, thus adding to the existing burden of IT soft-
ware support. Moreover, these specific components are
usually not interoperable, which can be a major obsta-
cle to building heterogeneous systems. In this paper,
we argue that hybrid, large-scale, distributed, hierar-
chical information services can be constructed by as-
sembling existing, off-the-shelf, heterogeneous software
components. We claim that access homogeneity can
be achieved at the client-side by using an appropri-
ate integration technology, such as Java Naming and
Directory Interface (JNDI). We demonstrate how the
JNDI model can be used to integrate lookup and dis-
covery mechanisms, such as Jini, HDNS, LDAP, DNS,
and others, to build complex, scalable, and powerful
information services, while potentially reusing existing
middleware deployments, thus promoting evolutionary
development of the IT infrastructure and facilitating
cross-site integration.

2. Related Work

The choice of an information service implementation
depends on a number of factors, including: expected
scope (i.e. number and type of relationships between
collaborating parties), application requirements (e.g.
simple device sharing vs. parallel job submission), ex-
isting infrastructure and deployment environment (e.g.
firewalls and administrative domains), expertise of the
IT personnel, or even the personal preference. Not sur-

prisingly then, different projects have adapted different
solutions to address their particular requirements. Be-
low we list some of the existing grid projects together
with the approach they have chosen to implement ser-
vice discovery and registration. Subsequently, we give
examples of integration efforts that, like ours, try to
tackle the limitations of these projects.

ICENI: The Imperial College e-Science Networked
Infrastructure (ICENI) is a mature, service-oriented,
integrated grid middleware built around Java and Jini.
Its resource discovery and registration tasks are han-
dled mainly through Jini, augmented with higher level
capabilities such as XPath queries and semantic match-
ing. Though predominantly Jini based, it has been
demonstrated [13] that ICENT’s service-oriented archi-
tecture can also be ported to JXTA [17] and OGSA
(albeit with some restrictions).

JGrid [21], JISGA [30] and ALIiCE [26]: these
projects are similar in that all use the Jini framework
for resource information management: Resources are
represented by Jini services that are stored in the Jini
lookup service (LUS). The LUS supports service inter-
face and attribute based matching. In addition JISGA
provides an OGSA-compliant interface, and JGrid has
extended Jini model with a wide-area discovery mech-
anism.

Triana [25]: Created at PPARC as part of the Gri-
dOneD project the Triana aims to be a pluggable grid
middleware implemented as a Grid Application Toolkit
(GAT) which provides a portable set of core services.
Resource registration and discovery component of the
Triana GAT provides bindings to JXTA and OGSA
(experimental).

Globe [3]: The Globe middleware platform is de-
signed to enable the flexible development of global-
scale Internet applications. It is based on a dis-
tributed shared objects model from which applications
are built. These distributed shared objects are auto-
matically replicated across the network and they are
registered in a two-tier naming service. At the vir-
tual level, each object is assigned a human readable,
globally unique name, stored in DNS. To maintain the
binding between an object replica and its current loca-
tion (IP address), a separate, hierarchical on location
service is used. Object replica servers are located using
the Globe Infrastructure Directory Service which is a
hierarchy of LDAP servers.

As is apparent in these examples, grid information
services are characterized with substantial complexity
and large heterogeneity. The complexity places signif-
icant burden on resource administrators, who are re-
sponsible for configuring and maintaining the middle-
ware. The heterogeneity, on the other hand, hampers

interoperability between grid deployments, and com-
plicates application development. We suggest that it
is possible to overcome those issues via an integration
middleware that would enable interoperability between
service implementations and hiding service heterogene-
ity behind unified, semi-transparent APIs, providing
uniform access to common capabilities while also per-
mitting use of custom, service-specific functionality.

This idea of inserting an extra layer of abstraction
onto which multiple information services are mapped
is not new. Other projects that have taken up this
hourglass model include:

MonALISA [14]: The goal of the MonALISA frame-
work is to provide service information from large, dis-
tributed and heterogeneous systems to a set of loosely
coupled higher level services in a flexible, self describing
way. These higher level services can then be queried
by others and are implemented as Jini services that
fully leverage the Jini framework (security, ServiceUT,
leasing, ...). For non Jini clients a webservice bridge is
available. MonALISA is already in a mature state of
development counting a large number of features such
as support for SNMP and integration with external
monitoring tools like Ganglia.

Globus MDSv4 [12]: standard Web Service inter-
faces form the core abstraction of MDS. Globus cur-
rently uses a WSRF-based Monitoring and Discovery
System (MDS) to provide information about the cur-
rent availability and capability of resources. Service
data is generated by Service Data Provider programs
which are then aggregated into Grid Service instances,
each of which provides information through Service
Data Elements (SDE). A MDS Index service allows
for aggregation capabilities. Data services have their
own special registry called a Grid Data Service Reg-
istry (GDSR). Previous versions of Globus and MDS,
which are still in active use, relied on LDAP-based reg-
istries [7, 8].

R-GMA [11]: The Relational Grid Monitoring Ar-
chitecture provides a service for information, monitor-
ing and logging in a heterogeneous distributed com-
puting environment. R-GMA makes all the informa-
tion appear like one large Relational Database, "the
hourglass neck", that may be queried to find the in-
formation required. It consists of independent Pro-
ducers which publish information into R-GMA, and
Consumers which subscribe. R-GMA uses SOAP mes-
saging over https for all high-level user-to-service and
service-to-service communications. R-GMA was origi-
nally developed under the European DataGrid project
but is now part of the wider European EGEE project.

Hawkeye [2]: Hawkeye was born from the Condor
project and is a custom monitoring and management

tool for distributed systems. Hawkeye adopts plug-
gable architecture, different modules that provide extra
functionality (such as monitoring available disk space)
can be easily plugged in. Though it retains a strong
bias towards Condor it can be used to monitor and
integrate different distributed systems.

While the above mentioned systems provide ade-
quate levels functionality to support their target ap-
plication areas, they are not interoperable, and they
impose substantial setup and maintenance efforts. In
contrast, the approach exploited in this paper empha-
sizes reuse of existing information service deployments,
and offers a possibility to aggregate different, hetero-
geneous, distributed information services into a single
name space that is available to clients via an unified
APIL.

3. JNDI

The JNDI is an application programming interface
(API) that provides naming and directory functional-
ity to applications written using the Java programming
language. It is designed to be independent of any spe-
cific directory service implementation, allowing variety
of directory systems (including new, emerging, and al-
ready deployed) to be accessed in a common way. The
JNDI architecture consists of a client API and a ser-
vice provider interface (SPI). Java applications use the
JNDI API to access a variety of naming and directory
services, while the SPI enables pluggability of directory
service implementations [23]. The JNDI architecture is
illustrated in Figure 1.

Java Application

~JNDIAPI

JNDI SPI

JNDI
£ NI i Implementation
— - Possibilities

‘ ‘ ‘ ‘ ‘ ‘ Source: Sun Website

Figure 1. The JNDI Architecture

Currently, JNDI is used mostly in Enterprise Java
(J2EE) containers to manage information related to
Enterprise Java Beans (EJB). In the grid computing
context, virtually all JNDI use cases are related to ac-

cessing LDAP directories (e.g. MDS used in Globus
v2) or, in some cases, COS naming servers [29]. The
JNDI has also been used in agent frameworks [6]. Spe-
cialized SPIs have been developed for the smart card-
based Personal Naming and Directory Service [19] and
the naming service used in the DREAM distributed
services platform [22].

JNDI exhibits a number of characteristics that
make it suitable for heterogeneous information services.
First, it features a simple and generic “lowest-common-
denominator” base directory interface, so it can sup-
port a wide range of service providers. Moreover, JNDI
provides uniform but flexible APIs for lookup queries
and metadata management. Finally, JNDI provides
support for linking multiple, heterogeneous naming ser-
vices into a single, aggregated name space (federation),
with a simple URL-based naming scheme introduced to
identify data entries.

Obviously, a lowest-common-denominator API uni-
fying vastly different services would suffer from over-
simplification if it was truly flat and opaque. There-
fore, JNDI defines a hierarchy of interfaces, leaving the
provider the choice of the supported conformance level.
The API is designed to balance the genericity with flex-
ibility. Data entries are represented as <name, object,
attributes> tuples. Depending on the underlying ser-
vice provider implementation, the supported “object”
and “attributes” types may be arbitrarily complex; the
JNDI specification allows for flexibility while recom-
mending certain minimum conformance levels that ev-
ery provider should satisfy (e.g. ability to bind any se-
rializable object). Further, JNDI provides APIs for
attribute-based queries. Although the syntax of such
queries is mandated (and biased towards LDAP), ex-
tensions are possible.

The unavoidable tension between genericity and
flexibility results in certain tradeoffs. Some special-
ized capabilities of backend services cannot be easily
represented via the API; an example includes the leas-
ing functionality available in Jini. At the same time,
JNDI does not fully hide backend service heterogene-
ity — for instance, clients are sometimes required to
supply service-specific configuration parameters or cre-
dentials. Finally, since JNDI is a Java technology, the
client libraries are not directly accessible from native
languages, for which analogous APIs have not been
(yet) implemented. Notwithstanding these disadvan-
tages, we feel that they are outweighed by the advan-
tages and can be countered. In particular, we note
that access unification can often be achieved to a larger
extent than immediately apparent, since certain ca-
pabilities missing at the server side can be emulated
at the client side. Also, the service-specific configura-

tion stages can usually be isolated from the application
layer.

4. HDNS

4.1. Overview

HDNS [27] is a fault-tolerant, persistent, dis-
tributed naming service initially developed for the Har-
ness project [20]. While developing JNDI Service
Providers, a completely new version of HDNS (based
on JGroups [4]) has been designed and implemented.
HDNS establishes a group of naming service nodes
which maintain consistent replicas of the registration
data. Read requests can be handled entirely by any of
the nodes, which facilitates load balancing and reduces
access latencies. Write requests, in turn, are propa-
gated to each member of the group, enforcing consis-
tency of the replicas. Each node maintains persistent
view of the registration data on a local disk, synchro-
nized in fixed time intervals and upon process exit. The
service can thus recover the state after a complete shut-
down /restart. To support recovery from partial fail-
ures, mechanisms are provided that enable individual
crashed /restarted nodes to re-join the group. Further-
more, the service is capable of recovering from network
partitions and re-synchronizing the distributed state.
These characteristics make HDNS an adequate choice
in situations where read requests are predominant but
fast update propagation and high failure resilience is
required.

4.2. JGroups

JGroups is a toolkit for reliable multicast group
communication. It can be used to create groups of pro-
cesses whose members can send messages to each other.
Members can join and leave the group at any time;
the toolkit detects membership changes and propagates
them to participants. The most powerful feature of
JGroups is a configurable protocol stack, allowing to
defer quality-of-service decisions regarding fault toler-
ance and scalability until run time. For instance, the
Virtual Synchrony protocol suite guarantees an atomic
broadcast and delivery. However, it comes at the cost
of scalability - the entire group is only as fast as its
slowest member. An alternative protocol suite uses Bi-
modal Multicast [5], which improves scalability, for the
price of probabilistic message delivery reliability. The
latter suite was chosen as the default in HDNS.

4.3. Design choices

HDNS has been implemented as a relatively thin
software library, based on existing, well-established un-
derlying technologies - JGroups as a communication
substrate and H20 [18, 24, 1] as a hosting environ-
ment. Consequently, HDNS exhibits many advanced
features inherited from mentioned projects. Owing to
dynamic deployment features of H20, HDNS service
can be dynamically deployed on participating nodes
from a remote network repository, which is particu-
larly useful during the update or maintenance process.
Furthermore, H20 provides HDNS with security in-
frastructure, allowing to control access via user-defined
security policies and featuring flexible authentication
technologies. Finally, HDNS uses distributed event no-
tification mechanism offered by H20 to implement the
JNDI event notification functionality. Similarly, dis-
tributed communication and synchronization of repli-
cas is achieved by using appropriate mechanisms of
the JGroups toolkit. However, in order to fully sup-
port recovery from network partitioning, we needed
to implement an additional protocol for the JGroups
protocol stack. After a transient network partition,
the PRIMARY PARTITION protocol resolves state
conflicts by uniquely selecting the partition deemed to
have the valid state, and forcing other partitions to
re-synchronize.

5. JNDI Service Providers

The pluggable architecture and genericity of JNDI,
coupled with logical and well-documented APIs, en-
ables relatively easy implementation of custom service
providers. This section contains a description of two
new service providers: Jini-based and HDNS-based,
the choice of which was motivated in part by their po-
tential usefulness in building hierarchical information
systems.

5.1. The Jini Provider

Jini [16, 9, 28] is a technology developed by Sun
Microsystems, providing an environment for building
scalable, self-healing and flexible distributed resource
sharing systems. Jini enables Java Dynamic Network-
ing, where clients bind dynamically to any network
service that is capable of providing needed functional-
ity, regardless of the name, location, wire protocol, or
other implementation details of the particular service
instance [9].

Mapping of Jini functionality onto the JNDI ab-
stractions has proven to be a non-trivial task, due to

differences in philosophy between the two technologies.
In particular, problems arise due to the narrower focus
of Jini which is specifically designed to manage ser-
vices, characterized by capabilities expressed by Java
remote interfaces, and not as a general purpose infor-
mation storage facility. Below we list specific encoun-
tered problems and their solutions.

State and Object Factories. To be able to store
generic name-value mappings in the Jini registry, a
translation mechanism is needed to convert them into
fake Jini service stubs upon registration, and back to
the original form upon retrieval. We have accomplished
this by using the JNDI abstractions of object and state
factories, which perform the necessary translations au-
tomatically when the appropriate API methods are in-
voked.

Handling leases. To avoid stale references, Jini
adopts a notion of leasing [15]. Validity of a data entry
in a naming service has to be continuously renewed,
typically by the service itself, or else it expires and the
entry is removed. No such abstraction exists in the
JNDI API, which does not specify any explicit data
expiration policy. Hence, Jini leases cannot be eas-
ily passed upward to the application layer through the
JNDI API. Therefore, we decided to handle Jini leases
entirely in the service provider implementation layer:
the provider automatically renews leases of all entries
that it has previously bound, until they are explicitly
removed, or until the Java VM exits.

Atomicity and consistency. One of the
biggest and most unexpected Jini-JNDI mapping is-
sues emerges from the implementation of a bind prim-
itive. The JNDI bind has atomic semantics: the op-
eration should succeed if there was no entry bound to
the specified name, and otherwise fail throwing an ex-
ception. Unfortunately, the Jini LUS does not provide
any such primitive that could be used to implement
this functionality strictly; aiming at achieving idempo-
tency, Jini registration methods always overwrite the
previous value. Hence, in order to ensure atomic consis-
tency in concurrent setups, resort to distributed lock-
ing was needed. This forced us to adopt Eisenberg and
McGuire’s algorithm [10], which depends only on the
basic read and write primitives, but which is rather
costly: it takes 3 reads and 5 writes to enter and leave
a critical section in the uncontended case. This means
that our strictly compliant implementation of JNDI
bind on top of Jini induces at least an eight-fold in-
crease in latency in comparison to the basic Jini prim-
itive, which may or may not be a problem, depending
on whether the application is latency-bound. We note
however, that in many applications, binding/unbinding
of a given named entry is performed only by a single

writer (or the “owner”), in which case the semantics
of bind can be safely relaxed. We thus provide appli-
cations with an option to disable the strict semantics,
removing the performance penalty by sacrificing the
atomicity.

5.2. HDNS Provider

The control over the source code of HDNS allowed us
to avoid certain problems encountered in the context
of Jini. HDNS was designed in a way that mapping
through JNDI was simple. As a result, a distributed
locking algorithm was not needed to implement an
atomic bind for HDNS. In fact, all methods from JNDI
DirContext interface are atomic in the HDNS service
provider. Besides this difference, there is a close affin-
ity between two described providers. HDNS, analogous
to Jini utilizes the concept of object and state factories,
both of the providers also have a very similar mecha-
nism for handling leases.

6. Federation

Federation is the process of "hooking" together mul-
tiple, distributed, and possibly heterogeneous naming
systems so that the composite behaves as a single, pos-
sibly hierarchical, aggregate naming service. In JNDI,
resources in a naming service federation are identified
by composite URL names, which can span multiple
substrate naming services [23]. For instance, the URL:

ldap://host.domain/n=jiniServer/jxtaGroup/myObject

links together LDAP, Jini and JXTA services. From
the end-user’s perspective, accessing an object through
federation is fully transparent, and reduces to passing
the composite URL to the appropriate API function:

Object val = new InitialDirContext().lookup(
"ldap://host/n=jiniServer/jxtaGroup/name");

Behind the scenes, JNDI parses the URL, recognizes it
as an LDAP reference, and passes it to the LDAP ser-
vice provider. That provider, in turn, performs lookup
on the string “n=jiniServer”, and retrieves a value that
is, in this case, interpreted as a reference to the Jini
service previously bound to the LDAP service. The re-
quest is thus further propagated to the Jini SPI, which
performs a lookup on the “jxtaGroup” segment, and
identifies it as a reference to the JXTA naming service.
Finally, the request is delegated to the JXTA service
provider, which retrieves the target object data bound
to “name”.

From the API perspective, linking naming services
into federation is straightforward, and reduces to bind-
ing the context interface of one naming service to an-
other naming service:

DirContext intCxt = new InitialDirContext();
DirContext jiniCxt =
initCxt.lookup("jini://hosti");

DirContext hdnsCtxt =
initCxt.lookup("hdns://host2");
hdnsCxt.bind("jiniCxt", jiniCxt);

// now, the URL: hdns://host2/jiniCxt refers
// to the embedded Jini directory

We have implemented the necessary programmatic
support for federations in both providers described in
this paper, allowing them to be federated with informa-
tion services such as DNS, LDAP, or a local filesystem
storage, for which the appropriate JNDI providers al-
ready exist.

In a wide-scale, hierarchical, distributed information
service, the requests originate at the root naming ser-
vice and are propagated downwards, to be eventually
handled by the “leaf” information services. The root
naming service thus receives a massive load of requests,
necessitating extremely scalable approaches, with DNS
being a good candidate. On the other hand, the “leaf”
naming services (e.g. LDAP servers or Jini registries at
the department level) can be expected to encounter fre-
quent updates and computationally intensive queries,
and require rapid state propagation and event notifi-
cations. Suitable technologies for both those extreme
cases already exist. The biggest research challenge is
related to the intermediate layer, since it has to bal-
ance both: (1) distribution and high scalability require-
ments, to ensure high system throughput and minimize
latencies by matching requesters to local nodes, and
(2) rapid propagation of updates, with the capability
to handle moderate to high update frequencies. We
argue that HDNS can be a viable technology to sat-
isfy these requirements. On one hand, state replication
allows it to achieve high scalability, whereas its error
recovery mechanisms ensure high failure resilience. On
the other hand, its state synchronization methodology
ensures fast update propagation with configurable con-
sistency levels (examples including bimodal multicast
or virtual synchrony).

We thus envision the following, JNDI-based method-
ology for composing individual, department-level, ex-
isting and operational information services, into larger,
aggregated name spaces. We propose that a collection
of HDNS nodes is deployed into the distributed system,
so that a HDNS node can be found in the proximity
of any large group of users. Additional nodes can be
deployed dynamically at a later stage as well, while the

system is already in operation. The replicated informa-
tion shared by all HDNS nodes is the set of references
to all department-level naming services (e.g. LDAP
servers or Jini registries) present in the entire com-
posite system. Since deployment or discontinuation of
an information service is a rare occurrence, we expect
relatively small update frequency at the HDNS level,
unless the managed network is very substantial in size.
Finally, in order to hide the aspects of distribution,
we propose to anchor the federated naming system in
DNS, so that a common, well-known service name is
resolved to a nearest HDNS node. For instance, when
querying the status of an object referred to by the URL
“dns://global /emory /mathcs/dcl/mokey”, JNDI client
would contact DNS to find the address of a nearest
HDNS node belonging to the “global” federation, then
it would use HDNS to query for the address of the
“emory/mathcs/dcl” LDAP server, and finally, it would
issue the “mokey” object query to that LDAP server.
In the next section, we present our preliminary exper-
iments and small-scale stress tests, aiming to evalu-
ate performance of HDNS and Jini providers alongside
DNS and LDAP, and to assess viability of the proposed
federation scenario.

7. Experimental evaluation

While adding an additional abstraction or adapta-
tion layer may be elegant and appropriate from the
design point of view, care must be taken that the per-
formance penalty is not too large. To quantify the over-
head introduced by the JNDI provider layer, we have
run a preliminary series of benchmarks on a local Gi-
gabit Ethernet network. The Jini LUS service, used in
the benchmarks, has been running on a Pentium 4 2.4
GHz machine with Mandriva Linux 2005 and 1 GB of
RAM. Similarly, the HDNS service has been installed
on two identical dedicated machines. In addition to the
Jini and HDNS tests, we have run the benchmarks for
the DNS and LDAP JNDI providers, using the Bind
and OpenLDAP servers installed on similar dedicated
machines in the same LAN. In the throughput experi-
ments, a single client machine (2.6 GHz Intel Celeron
with 1 GB RAM, running Microsoft Windows XP) is-
sues a series of requests from an increasing number
of client threads (between 1 and 100). Each client
thread issues consecutive requests (lookup requests for
the read test and rebind requests for the write test)
with 50 ms pauses between requests (i.e. with the fre-
quency of up to 20 Hz). We measured the ability of the
service to withstand the increasing load as a number
of requests per second that have been successfully han-
dled. In the ideal case (if the request processing time is

negligible), the request frequency is 20 Hz per thread,
and the number of completed operations per second is
20 times the number of client threads.

Figure 2 shows “lookup” results for standalone Jini,
and for JNDI-Jini provider with (1) strict and (2) re-
laxed bind semantics. It can be seen that the stan-
dalone Jini can handle up to about 400 requests per sec-
ond, and its throughput starts decreasing afterwards.
The serialization layer introduced by the JNDI-Jini
provider reduces the performance by about 25%, yield-
ing the peek throughput of about 300 requests per sec-
ond. The “strict” versus “relaxed” semantics, which ap-
ply only to write operations, did not affect the “lookup”
results. The output for “rebind” is shown in Figure 3.
The peek Jini write throughput has been measured
at about 140 operations/s. The Jini-JNDI provider
throughput approaches 80 operations/s for the relaxed
semantics, and 20 operations/s for the strict semantics.
This 7-fold decrease, caused by the need for extra com-
munication, indicates that strict bind semantics should
be disabled whenever possible, and otherwise a proxy-
based solutions should be adapted so that the necessary
locking is performed locally (near the Jini LUS, e.g. on
the same host), exposing the atomic interface to the
client.

Figure 4 presents “lookup” tests for HDNS and JNDI
HDNS provider. In this test, all lookup requests are
sent to the same HDNS node, so the results show
a per-node throughput. As it can be seen, HDNS
demonstrates excellent scalability; we have not been
able to identify the peak throughput as it exceeds 1800
read operations per second. The HDNS JNDI provider
layer does not introduce a noticeable overhead (due
to the fact that HDNS server has been implemented
with the JNDI support in mind). The “rebind” re-
sults for HDNS are shown in Figure 5. Write oper-
ations in HDNS impose a substantial overhead, due to
the necessity to propagate the distributed state to all
HDNS nodes. In our experiments, we have observed
the peak write throughput at about 200 operations/s.
The tests exposed an issue with the HDNS implementa-
tion: the service response time does not degrade grace-
fully as the number of clients increases; we observe a
rapid throughput decline (instead of levelling off) for
number of clients exceeding 20. We have traced the
problem to the buffer management in the underlying
JGroups implementation; flooding the server with re-
quests cause internal JGroups message queues to grow
without bounds, eventually causing memory exhaus-
tion and server crash. We are currently investigating
possible approaches to address this issue.

Figures 6 and 7 show throughput of Bind (DNS)
and OpenLDAP services, respectively, when accessed via

standard JNDI providers. As could be expected, DNS
exhibits excellent scalability, with peak throughput per
node exceeding 1800 lookup operations/s. Similarly,
very good write throughput has been observed for the
LDAP server. Surprisingly, the read throughput of
OpenLDAP plateaus at about 800 operations per second,
leaving server resources (CPU, network, memory) un-
saturated. We are currently investigating causes of this
phenomenon; we suspect that the anomaly is due to
some automatic slowdown mechanism, such as a coun-
termeasure against Denial-of-Service attacks.

These preliminary experiments lead us to conclude
that the proposed HDNS service is a viable technol-
ogy for implementing very scalable distributed lookup
services, which — unlike DNS — support remote up-
dates and ensure their rapid propagation. However,
the implementation needs improvement to be able to
gracefully handle update overload. Also, we note that
OpenLDAP service exhibits excellent responsiveness to
update requests, and is therefore feasible for manage-
ment of dynamic data sets. The scalability of Jini
scores somewhat lower; yet, in the environments with
Jini already deployed, the JNDI interface can provide
standardized access to it for the cost of some extra
overhead.

Our preliminary tests indicate that the individ-
ual performance characteristics of the discussed JNDI
providers are preserved when they are combined into
a federated name space. We thus believe that HDNS
is a promising technology for implementing interme-
diate layers in the large scale federated information
service, given its excellent lookup scalability and fast
update propagation. Further research and experimen-
tation is required to validate feasibility of the proposed
approach in large-scale network settings.

8. Conclusions

In this paper, we suggested a JNDI-based method-
ology of merging individual naming services into aggre-
gate, hierarchical information systems. We described
two new implementations of JNDI service providers,
enabling seamless access to Jini lookup services, and
to the fault tolerant Harness Distributed Naming Ser-
vice. Extrapolating from these two cases, we argue
that unification of the naming service access methodol-
ogy is indeed possible and beneficial, despite the differ-
ences in design models and implementation strategies.
We present our preliminary experimental results that
suggest that HDNS may be a viable candidate for or-
ganizing isolated information service deployments into
a DNS-anchored, aggregated name space. We believe
that the approach enabling API standardization and

Number of read operations per second

— Jini
50 -+ Jini SPI Relaxed | 1
—— Jini SPI Strict
0 . . . :

0 20 40 60 80 100
Number of clients

Figure 2. Throughput of Jini and JNDI Jini
provider, lookup operations (read)

2000 T T T T

l | — HDNS
1800 - — HDNS SPI

— — - —_

o n B (o2

o o o o

o o o o
T

©

o

o
T

Number of read operations per second
(o2
o
o
T

IN

o

s}
T

0 20 40 60 80 100
Number of clients

Figure 4. Throughput of HDNS and JNDI
HDNS provider, lookup operations (read)

2000
1800 |
< 1600 |
=
o
o
S 1400 |
g
S 1200
c
S
T 1000}
[}
Q
S 800f
o
o}
S 600f
>
Z 400}
200 |
0
0 20 40 60 80 100

Number of clients

Figure 6. Throughput of JNDI-DNS, lookup
operations (read)

180 T T T T

L — Jini i
160) -~ Jini SP! Relaxed
! — Jini SPI Strict

op)

[L I
L o] A (I o]
120 :)\ \ I\ \‘/v ool

100 [

80

sl | A]

Number of write operations per second

40 1

20 |

0
0 20 40 60 80 100

Number of clients

Figure 3. Throughput of Jini and JNDI Jini
provider, rebind operations (write)

250 T T T T

— HDNS
- — HDNS SPI

n
o
o

—
u
o

Number of write operations per second

0 L L L L
0 20 40 60 80 100

Number of clients

Figure 5. Throughput of HDNS and JNDI
HDNS provider, rebind operations (write)

1600 T T T T

— lookup NTR
1400 LA

-

n

o

o
T
!

o
o
s}
o
T
8
L

D
o
o

N
o
o

Number of operations per second
[e:]
o
o

N
o
o

0
0 20 40 60 80 100

Number of clients

Figure 7. Throughput of JNDI-LDAP (OpenL-
DAP), read/write

seamless service federations, can result in a substan-
tial decrease of deployment and maintenance costs, and
in improved scalability and interoperability, without a
significant sacrifice in functionality.

Even though our initial results are promising, fur-
ther investigation and larger scale experiments are nec-
essary to validate feasibility of the proposed approach
in real-world settings. Building a large scale informa-
tion service federation, and its thorough experimental
evaluation, will therefore be the focus of our future

work.
References
[1] Harness framework hompage.
http://www.mathcs.emory.edu/dcl/harness.
[2] Hawkeye, a monitoring and manage-
ment tool for distributed systems.

3]

[4]

(5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

http://www.cs.wisc.edu/condor /hawkeye/.

A. Bakker, I. Kuz, M. van Steen, A. Tanenbaum, and
P. Verkaik. Design and implementation of the globe
middleware. Technical Report IR-CS-003, Vrije Uni-
versiteit Amsterdam, June 2003.

B. Ban. Design and implementation of a reliable group
communication toolkit for Java, 1998.

K. Birman, M. Hayden, O. Ozkasap, M. Budiu, and
Y. Minsky. Bimodal multicast. Technical Report 98-
1665, Cornell University, 1998.

K.-F. Blixt and R. Oberg. Software agent framework
technology (SAFT). Master’s thesis, Linkping Univer-
sity, 2000.

K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kessel-
man. Grid information services for distributed re-
source sharing. In Proceedings of the Tenth IEEE
International Symposium on High-Performance Dis-
tributed Computing (HPDC-10). IEEE Press, August
2001.

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, and S. Tuecke. A resource man-
agement architecture for metacomputing systems. In
Proc. IPPS/SPDP 98 Workshop on Job Scheduling
Strategies for Parallel Processing, pages 62-82, 1998.

K. W. Edwards. Core Jini. Prentice Hall, 2 edition,
2001.

M. A. Eisenberg and M. R. McGuire. Further com-
ments on Dijkstra’s concurrent programming control
problem. Communications of the ACM, 15(11):999,
November 1972.

A. et al. The relational grid monitoring architecture:
Mediating information about the grid. Journal of Grid
Computing, 2(4), 2004.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
physiology of the grid: An open grid services architec-
ture for distributed systems integration, 2002.

N. Furmento, J. Hau, W. Lee, S. Newhouse, and
J. Darlington. Implementations of a service-oriented
architecture on top of Jini, JXTA and OGSI. In

[14]

[15]

[16]

[17]
[18]

[19]

[20]

21]

22]

23]

24]

[25]

[26]

27]

28]

29]

2nd European AcrossGrids Conference (AzGrids), vol-
ume 3165 of LNCS, pages 90-99, Nicosia, Cyprus, Jan
2004.

P. G. R. V. H. B. Newman, I.C.Legrand and
C. Cirstoiu. Monalisa : A distributed monitoring ser-
vice architecture. In Proceedings of the 2003 Comput-
ing in High Energy and Nuclear Physics, 2003.

P. Jain and M. Kircher. Leasing pattern. In 7th
Pattern Languages of Programs Conference, Allerton
Park, Illinois, 2000.

Jini homepage. http://www.sun.com/jini/.

Project JXTA. http://www.jxta.org.

D. Kurzyniec, T. Wrzosek, D. Drzewiecki, and V. Sun-
deram. Towards self-organizing distributed computing
frameworks: The H20 approach. Parallel Processing
Letters, 2(13):273 290, 2003.

A. Macaire. An open terminal infrastructure for host-
ing personal services. Technology of Object-Oriented
Languages and Systems (TOOLS 33), 33:10-21, 2000.
M. Migliardi and V. Sunderam. The Harness Meta-
computing Framework. In The Ninth SIAM Confer-
ence on Parallel Processing for Scientic Computing, S.
Antonio (TX), 1999.

S. Pota, K. Kuntner, and Z. Juhasz. Jini network
technology and grid systems. In MIPRO 2003, Hy-
permedia and Grid Systems, Opatija, Croatia, pages
144 147, May 2003.

V. Quema, R. Lachaize, and E. Cecchet. An asyn-
chronous middleware for grid resource monitoring.
Concurrency and Computation: Practice and Ezperi-
ence, special issue on Middleware for Grid Computing,
16(5), 2004.

Sun Microsystems. The JNDI tutorial. http://java.
sun.com/products/jndi/tutorial/.

V. Sunderam and D. Kurzyniec. Lightweight self-
organizing frameworks for metacomputing. In Proc.
of 11 th IEEE International Symposium on High
Performance Distributed Computing HPDC-11 20002
(HPDC’02), Edinburgh, Scotland, pages 119 122,
2002.

I. Taylor, M. Shields, I. Wang, and R. Philp. Dis-
tributed P2P computing within Triana: A galaxy vi-
sualization test case. In IPDPS 20038 Conference, April
2003.

Y. Teo and X. Wang. Alice: A scalable runtime in-
frastructure for high performance grid computing. In
Proc. of IFIP International Conference on Network
and Parallel Computing. Springer-Verlag, 2004.

T. Tyrakowski, V. Sunderam, and M. Migliardi. Dis-
tributed name service in Harness. In The 2001
International Conference on Computational Science
(ICCS), San Francisco, USA, 2001.

U. Varshney and R. Jain. Jini home networking: A
Step Towards Pervasive Computing. IEEE Computer,
pages 34-40, 2002.

S. Verma, J. Gawor, G. Laszewski, and M. Parashar.
A CORBA Commodity Grid Kit. In 2nd Interna-
tional Workshop on Grid Computing, Denver, Col-
orado, 2001.

[30] Y.Huang. JISGA: A Jini-based Service-oriented Grid
Architecture. The International Journal of High
Performance Computing Applications, 17(3):317 327,
2003. ISSN 1094-3420.

Biographies

Dirk Gorissen received his M.Sc. degree in Com-
puter Science from the University of Antwerp (UA),
Belgium in 2004. In 2005 he worked as a PhD stu-
dent in the Computational Modeling and Programming
research group (CoMP), at UA, researching resource
management within Jini-based lightweight grids. Cur-
rently he is active in the research group Computer
Modeling and Simulation (COMS), also at UA, while
simultaneously taking a Masters course in Artificial In-
telligence at the Catholic University of Leuven. His
research interests lie at the intersection of metamodel-
ing (adaptive sampling and modeling techniques), dis-
tributed computing (Nimrod, Globus, ...) and artificial
intelligence (Self Organizing Maps, evolutionary algo-
rithms, ...).

Piotr Wendykier is a Ph.D. student in Mathemat-
ics at Emory University, USA. He received a Masters
in Computer Science from Adam Mickiewicz Univer-
sity, Poland in 2003. After graduation, he spent one
year in a commercial company where he developed Ge-
ographic Information Systems. At the same time, he
was also involved in the cryptology program conducted
by the Department of Discrete Mathematics at Adam
Mickiewicz University. Since May 2004 he has been
worked at Emory University in group lead by Profes-
sor Vaidy Sunderam. His research interests focus on
a cryptology (Internet Banking) and distributed com-
puting (H20, HDNS).

Dawid Kurzyniec received MS degree in Computer
Science from AGH University in Krakéw, Poland, in
2000. He is currently a Ph. D. student in the depart-
ment of Math and Computer Science at Emory Univer-
sity, Atlanta. His research interests include heteroge-
neous distributed systems, concurrent processing, and
security. He is the author of over 20 conference and
journal publications related to distributed metacom-
puting, and the main architect of the H20 metacom-
puting system.

Vaidy Sunderam is a professor of Computer Sci-
ence at Emory University. His research interests are
in wireless networks and mobile computing systems,
parallel and distributed processing systems, and in-
frastructures for collaborative computing. His prior

and current research efforts have focused on system
architectures and implementations for mobile comput-
ing middleware, collaboration tools, and heterogeneous
metacomputing, including the PVM system and sev-
eral other frameworks such as IceT, H20, and Harness.
Professor Sunderam teaches computer science at the
beginning, advanced, and graduate levels, and advises
graduate theses in the area of computer systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

