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Abstract

We study epidemic schemes in the context of collab-
orative data delivery. In this context, multiple chunks
of data reside at different nodes, and the challenge is
to simultaneously deliver all chunks to all nodes.

Here we explore the inter-operation between the gos-
sip of multiple, simultaneous message-chunks. In this
setting, interacting nodes must select which chunk,
among many, to exchange in every communication
round.

We provide an efficient solution that possesses the
inherent robustness and scalability of gossip. Our ap-
proach maintains the simplicity of gossip, and has low
message, connections and computation overhead. Be-
cause our approach differs from solutions proposed by
network coding, we are able to provide insight into the
tradeoffs and analysis of the problem of collaborative
content distribution. We formally analyze the perfor-
mance of the algorithm, demonstrating its efficiency
with high probability.

1. Introduction

Collaborative content delivery is at the focus of
tremendous recent attention, driven by the growing
need for applications such as file sharing, web cast,
software distribution, etc. A collaborative multicast is
initiated by breaking the content into chunks, each one
sent to a different node (or set of nodes). Subsequently,
the nodes exchange the chunks they hold among them-
selves until each node collects copies of all the chunks.
The advantage of the collaborative approach is obvi-
ous. Because a source may become choked with a flash
crowd of demanding clients, clients at the endpoints
cooperate in delivering the content. This alleviates the

bottleneck at the content distributor, and provides to-
tal bandwidth that scales with the number of partici-
pants.

The most widely deployed content delivery systems
on the Internet today, BitTorrent and Emule, operate
this way. In these systems, as soon as a client obtains
a chunk, it becomes a download source for forwarding
that chunk. In many ways, this distribution process
resembles a randomized gossip process with multiple
origin points: Clients select random partners among
the set of current downloaders and exchange chunks
with them.

However, experience with BitTorrent and similar
systems indicates that the main problem with this ap-
proach is that towards the end of a download, many
peers may be missing the same ‘rare’ chunks, and the
download slows down. In a lot of ways, this core dif-
ficulty resembles that of the famous coupon collector
problem, and in both, much of the complexity results
from the finishing steps.

This paper takes a formal view of collaborative ex-
change of multiple data items in a network of nodes
using gossip techniques. Consider the problem in a
somewhat more formal manner now (precise definitions
are given in Section 2). In (semi-) synchronous rounds,
each node selects a partner uniformly at random, and
exchanges chunks with it. The selection of chunks is
the crucial point of investigation in this paper. In
Emule [16], for example, a node transfers to its part-
ner a chunk selected uniformly at random among those
missed by the partner. It is easy to show that un-
der this strategy, with non-negligible probability some
chunks will initially spread more quickly than others.
This process intensifies itself, since the more sources
there are for a chunk, the faster it spreads. Due to
the exponential nature of spreading, the process may
choke some chunks, leading to very slow, even linear,
dissemination time of these chunks.
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Recently, network coding was suggested as a means
to alleviate this problem. In this approach, rather than
distributing k different chunks of the data over differ-
ent paths, a randomized linear combination of the ini-
tial chunks is sent to each destination. Once a node
obtains these re-encoded chunks, it can generate new
combinations from the ones it has, and send those out
to other nodes. The main benefit is that nodes can
make use of any new chunk if it is linearly independent
from previous ones. It can be shown that indepen-
dence of randomized linear combination is achieved in
most cases. This means that no one node can become
a bottleneck, since no specific combination is more im-
portant than any other. Once a node collects sufficient
independent combination-chunks, it may use them to
reconstruct the whole content.

Several deployments of this idea have already
emerged [12, 9]. A formal analysis of randomized con-
tent exchange using network coding in the case where
the initial set size, k, is Θ(n) was given in [4]. It shows
asymptotically optimal running time of O(n) rounds
with high probability (w.h.p.) 1. One of the drawbacks
of this approach is its relatively high message payload
overhead, namely, O(n lnn) bits per message. A the-
ory is put forward in [4] that in some sense, this cost
is mandatory for efficiency. More concretely, the con-
jecture is that any store-and-forward protocol (without
manipulation of messages) cannot converge in less than
O(n lnn) rounds.

Our result is a gossip protocol that provides insight
into the tradeoffs and analysis of spreading any initial
set size of k chunks among all nodes in O(k + lnn)
rounds. This round complexity is asymptotically opti-
mal: The dissemination of a single chunk requires at
least lnn rounds. On the other hand, the dissemination
of k chunks to n nodes, where in each round no more
than n chunks are sent over the network connections,
requires at least kn

n = k rounds. Hence the running
time is lower bounded by max{k, lnn} = Ω(k + ln n).
Furthermore, when k ≥ lnn, our protocol makes use of
a total of O(kn) network connections, which is asymp-
totically optimal. Our protocol serves to disprove the
conjecture by Medard et al. [4]: It is a store-and-
forward protocol that achieves an asymptotically op-
timal running time of O(k + lnn) rounds w.h.p. for
any initial set size k. In particular, it requires O(n)
rounds when k = O(n).

Our work bears significance on the fundamental the-
ory of gossip networks. Gossip is a powerful paradigm
in distributed computing. Gossip protocols spread
messages (chunks) obliviously, without centralized con-

1with high probability (w.h.p.), meaning that the claim holds
with probability of at least 1 − O( 1

n
).

trol or management, with remarkable speed and with
inherent fault tolerance. Epidemic-style gossip tech-
niques for information dissemination are central in nu-
merous distributed systems, e.g., Usenet news [17],
the Grapevine distributed system [2], Ad Hoc rout-
ing [11], distributed failure detectors [22], the Astrolabe
network management system [21], lightweight broad-
cast [7], membership maintenance [8], GosSkip [10], the
CYCLON system [23], and others.

The gossip process of a single message has been in-
vestigated for more than a decade [18, 6, 15, 13]. How-
ever, the investigation of multiple, simultaneous gos-
sip messages dissemination is still in its early stages.
Several previous works addressed multi-source gossip
experimentally, e.g., [1, 7, 19]. From a formal point
of view, if a node could forward all the gossip mes-
sages it has obtained in one step, then multi-messages
gossip can be seen as an immediate extension of single-
message gossip. However, sending large content in this
manner is wasteful, and defies the whole purpose of
breaking the file into chunks in order to avoid repeated
store-and-forward. Our results are the first to shed
light on the simultaneous gossip of multiple messages
under a bandwidth constraint that allows one message
transfer per round.

To summarize, we provide the following contribu-
tion:

1. We present the first formal study of multi-message
store-and-forward gossip protocols under band-
width constraints.

2. We provide a clean multi-message gossip protocol
that exhibits asymptotically optimal behavior un-
der bandwidth constraints. Specifically, the pro-
tocol spreads k initial messages among n partic-
ipants in O(k + lnn) bandwidth-limited rounds,
using O(n(k + lnn)) two-way connections.

3. Our study serves to refute a recent conjecture by
Medard et al. [4] concerning the time lower bound
for store-and-forward spreading of data.

4. An immediate consequence of our gossip protocol
is an efficient, gossip-based collaborative content
delivery mechanism. Our protocol overcomes the
“rarest chunks” problem and avoids unnecessary
delay using simple means and does not employ
coding.

Technical Approach. Our approach stems from the
following key observation: In order to provide efficient
multi-message dissemination, messages must spread
equally wide (roughly). To this end, our protocol em-
ploys a coloring mechanism whereby each node has a



unique color that indicates the message for which it has
primary forwarding responsibility. We devise a simple
distributed aging mechanism that limits the scope of
primary messages dissemination to n/2k nodes. As a
result, the total number of colored nodes does not ex-
ceed n/2, and no color becomes choked. In the final
k rounds of the protocol, we use a message exchange
policy that determines which message to exchange with
a gossip partner based on the nodes’ respective colors,
their ages, and randomization.

Organization. The paper is organized as follows:
System model, definitions and preliminaries are given
in Section 2. Section 3 describes our main gossip
based protocol, which achieves an asymptotically op-
timal running time w.h.p., and its analysis. Section 4
describes a variant of our protocol with reduced pay-
load. Finally, in Section 5 we review related work and
our conclusion is given in Section 6.

2. Definitions and Preliminaries

The system consists of a set V of n processor nodes
interconnected by a complete graph (clique). Each
node has a unique identifier, i ∈ [n]. The general
structure of all the gossip protocols discussed in this
paper is that of the anti-entropy protocol of Demers et
al. [6]. These protocols operate in synchronous rounds,
denoted r = 1, 2, . . .. In each round r, every node
v chooses a communication partner u ∈ V at ran-
dom, and they exchange messages in order to resolve
their differences. With reference to the flow of infor-
mation, [6] has distinguished between push and pull
transmission models. Assume node v calls node u.

• The message is pushed if v transfers u a message.

• The message is pulled if u transfers v a message.

We enforce a strict connectivity bound as follows. In
one round, a processor may initiate exactly one outgo-
ing connection, and receive at most one. Every connec-
tion may carry at most one message, plus any payload
prescribed by the protocol.

Problem statement. In this paper, we investigate
multiple-message gossip protocols. We note that our
original motivation is to spread chunks belonging to
one data object, but in our formulation, we simply call
them messages. Our problem statement is as follows.
Let I ⊆ V denote the initial set of processors in V
that hold the messages, |I| = k ≤ n, which they wish
to disseminate to all other nodes.

Naturally, the goal is to efficiently disseminate all
the messages among all network nodes. More con-
cretely, efficiency is manifested in the following criteria:

Time Total number of rounds for delivery, as mea-
sured from when the initial messages are gener-
ated and until all the messages are delivered at all
the nodes w.h.p.

Communication complexity The total amount of
data transferred over the network connections.

A node that wishes to disseminate a new message
must do so in a predefined time slot. In other words, we
do not consider continuous injection of new messages
into the system. Additionally, we assume that n and k
are known to the participants, although in Section 3.3
we show that given n, k can be automatically obtained
in O(lnn) initial rounds using the techniques of [14].

Slightly abusing notation, we identify each message
by the processor i ∈ I it was originated from. We de-
note by Mv(r) the set of messages stored by v at the
beginning of round r. When Mv(r) is sent in a message,
this is done by sending an n-bit vector in {0, 1}n, indi-
cating the presence of messages in the set according to
their indices. A node v may obtain during the course
of the protocol a color, denoted cv ∈ I. The color
of a node is the index of the first message v received.
Each colored node stores its color message along with
a time-varying integer value called age, denoted av,
which bears resemblance to the aging technique used
in [1]. For an origin processor i ∈ I, the initial color
equals to ci = i along with initial age ai = 0. Color
messages may be gossiped; we will demonstrate in the
protocol below the rules for maintaining and gossiping
the message age. For a colored node v ∈ V , we use
the notation 〈cv, av〉 to denote the message cv along
with its age av. A node with no color message is un-
colored. Last, we denote by C(i, r) the set of nodes
with color i ∈ I at the beginning of round r, and by
c(i, r) = |C(i, r)| its size.

3. A Time Optimal Multi-Message Gos-
sip Protocol

In this section, we present the main result of this pa-
per, a gossip protocol whose time complexity is asymp-
totically optimal. The protocol employs a pull-based
strategy, with several key components. First, we in-
troduce a coloring mechanism, whereby each node has
a unique color that indicates the message for which
it has primary forwarding responsibility. Second, we
devise an aging mechanism that limits the scope of
primary message dissemination. Finally, we devise a



message exchange policy that determines which mes-
sage to exchange with a gossip partner based on the
nodes’ respective colors, their ages, the messages they
hold and randomization.

3.1. The Protocol

In each round r > 0, every node u pulls a gossip
partner v uniformly at random. Node u sends v a pull
request, which contains the bit-vector Mu(r), and an
indication whether it has a color or not. Node v acts
as follows:

1. If v has color cv, u does not have a color, and cv’s
age, av, satisfies av < log n

2k , then v increments
cv’s age to av + 1, and sends the color message
along with its updated age, 〈cv, av〉, to u.

2. Otherwise, if node v’s color message cv ∈ Mv(r) \
Mu(r), then v sends cv to u.

3. Otherwise, v selects a message from Mv(r)\Mu(r)
at random and sends it to u.

When u gets the response from v, it stores it locally.
If this is a color message with an age, then u becomes
colored with color cv and stores its age along with it.

3.2. Protocol Analysis

Our analysis shows a sharp termination in O(lnn +
k) rounds. That is, throughout the analysis we con-
centrate on demonstrating that our results hold with
high probability (w.h.p.), namely, with probably at least
1− 1

n . Before going into the details of the proof and the
related analysis, we provide the key intuition behind
our protocol analysis. We have divided our analysis
into three distinct chronological phases, each is repre-
sented by one case in the protocol’s exchange policy.

1. By the end of the first phase the number of colored
nodes of every colored message is exactly n

2k − 1
w.h.p.

2. By the end of the second phase the probability
that each node has obtained any specific color mes-
sage is at least 1

2 .

3. Last, all the messages are delivered to all the nodes
w.h.p.

We begin with a technical lemma that contains the
effect of bounded connectivity. We say that a round r
is a collision-free round for a node v if during round r,
v pulls a node that is not pulled by any other node in
round r.

Lemma 3.1 For every t ≥ 48 ln n consecutive rounds
there are at least t/6 rounds that are free of collisions
for all nodes v ∈ V w.h.p.

Proof. Fix any v ∈ V . Let zv(r) be an independent
Bernoulli trial that equals 1 if round r is a collision-free
round for node v, 0 otherwise. The probability zv(r)
satisfies:

p(zv(r) = 1) =
(

1 − 1
n

)(n−1)

≥ 1
e

.

Let Zv =
∑

r=r0...r0+t zv(r) be the number of
collision-free rounds for v. Then µ = E[Zv] ≥ t

e . Ap-
plying a Chernoff bound, we obtain with an appropri-
ate choice of constants:

Pr[Zv ≤ t/6] < Pr[Zv ≤ (1 − δ)µ]

≤ exp (
−µδ2

2
)

< n−2

Where t ≥ 48 ln n, µ ≥ t/e > t/3, and δ = 1/2.

Applying union bound, we conclude that there are
at least t/6 rounds that are collision-free for all nodes
v ∈ V w.h.p.

Lemma 3.2 (Phase 1) For any given run R of
O(lnn) rounds of our gossip algorithm, the number of
colored nodes of every colored message is exactly n

2k −1
w.h.p.

Proof. (Sketch) Since every color message must
branch once in order for its age to increase, we ob-
tain from this an upper bound of n

2k − 1 on the total
number of nodes with the same color in the system. In
order to complete our proof, we show that after O(lnn)
rounds the size of each color set is n

2k − 1 nodes w.h.p.
Let p(r) denote the probability that a colored node is
pulled by an uncolored one during round r. Since half
the nodes are uncolored at any time, p(r) is always
lower bounded by 1

3 :

p(r) ≥ 1 − (1 − 1
n

)
n
2 ≥ 1 − e−

1
2 >

1
3
.

As before, since every color message must branch
once in order for its age to be increased, obtain that
after r = 3 log n

2k rounds the expectation of a color-
age av stored at any colored node v is log n

2k . Ob-
taining this as a high probability result is considerably
more involved, and is deferred to the appendix. Conse-
quently, each color set C(i, r) corresponds to a disjoint
tree rooted at i ∈ I of n

2k nodes as required.



Lemma 3.3 (Phase 2) For every node v ∈ V and
for all colors i ∈ I, round r = 18 lnn + 48 ln n + 12k
satisfies Pr[i ∈ Mv(r)] > 1

2 .

Proof. Following our discussion after 18 lnn rounds
we can lower bound the probability of pulling a node
with any color i ∈ I by

n
2k−1

n ≈ 1
2k . By Lemma

3.1, for all v ∈ V , among additional 48 lnn + 12k
rounds, at least 2k are collision-free rounds for v. Dur-
ing these additional 2k collision-free rounds for v, we
obtain Pr[i /∈ Mv(r)] ≤ (1 − 1

2k )2k ≤ e−1, therefore
Pr[i ∈ Mv(r)] > 1

2 . Note that, according to Lemma 3.2
during those additional rounds all colored nodes have
obtained their maximal age w.h.p., hence, the effective
cases of our exchange policy 3.1 are the last two.

Theorem 3.4 (Phase 3) The protocol spreads all mes-
sages among all nodes in O(k + lnn) rounds w.h.p.

Proof. Denote t = 24k + 192 lnn and r0 = 66 lnn +
12k. According to Lemma 3.1, for all v ∈ V there
are t/6 collision-free rounds for v between round r0

and r0 + t. Let yv(r) be a random variable indicating
if v succeeds in pulling a new message in a collision-
free round r. According to Lemma 3.3, ∀u ∈ V the
independent probability that in any collision-free round
r > r0 u obtains any specific message i ∈ I is at least 1

2 .
Let Yv denote the sum of yv(r) over the t/6 collision-
free rounds r for v. We obtain that E[Yv] ≥ t/12.
Applying again a Chernoff bound we obtain:

Pr[|Mv(t)| < k] ≤ Pr[Yv < k]
= Pr[Yv < (1 − δ)µ]

≤ exp (
−µδ2

2
)

<
1
n2

where µ = 2k + 16 lnn, δ = 1
2 . From this, the high

probability result follows by a union bound.

Theorem 3.5 Let m denote the size of the initial mes-
sages input to any processor i ∈ I. The total number
of communication bits employed by the protocol is

knm + O(n2 lnn + kn2) .

Proof. Since the protocol uses the pull model, each
node is a recipient of a single message in each round.
Since each node updates its message set every round,
there are no redundant message transmissions executed
by the protocol. The communication costs are there-
fore comprised of the following two parts:

1. knm communication associated with data trans-
ferred.

2. O(n2 lnn + kn2) communication associated with
pull requests.

3.3. Learning k

Thus far, our protocol relied on prior knowledge of
the number of processor nodes, n, and the initial mes-
sage set size, k. This served both in the aging mecha-
nism (e.g. log n

2k ) , and in order for a node to locally
terminate the protocol (i.e., to stop pulling when it had
obtained k messages).

In this section, we present a simple bootstrap pro-
tocol through which nodes learn the message set size,
k given the number of processor nodes, n. The pro-
posed procedure is based on the push-sum protocol
introduced in [14], additionally [3] undertakes an in-
depth study of the design and analysis for averaging
in an arbitrarily connected network of nodes, however
since our system model assumes full connectivity the
simplified version presented in [14] suffice. In the pa-
per, the authors investigate the problem of computing
aggregates (e.g. sums and averages) with gossip-style
protocols. The protocol analysis shows that the values
at all nodes converge exponentially fast to the true sum
within O(log n) rounds w.h.p. and with message com-
plexity of O(n log2 n). Once this protocol completes,
every node has obtained the size of k w.h.p. and can
carry the multiple message mongering protocol.

4. Reducing the Message Payload

In the protocol above, u sends at every round to its
gossip partner the vector Mu(r). This incurs an over-
head of n bits associated with each and every communi-
cation. When n is large, especially if n > m, this cost
may become prohibitive. Interestingly, a more care-
ful investigation of the protocol’s analysis allows us to
reduce this overhead, albeit at increased data trans-
fer costs. In this section, we describe a variant of our
protocol, which uses only log n bits payload associated
with each communication.

The reduced-payload protocol employs a similar
pull-based framework, where in each round r > 0, every
node u chooses a gossip partner v uniformly at random.
Node u sends v a message index i ∈ I \ Mu(r) and an
indication whether it has color or not. Node v acts as
follows:

1. When v has color cv, u does not have a color, and
cv’s age, av, satisfies av < log n

2k , v increments cv’s
age to av + 1, and sends 〈cv, av〉 to u.



2. Otherwise, if r < 18 ln n+2k then v sends its color
message cv.

3. Otherwise, if i ∈ Mv(r) then v sends the message
i.

When u gets the response from v, it stores it locally.
If this is a color message with an age, then u becomes
colored with color cv and stores its age along with it.

The time analysis in Section 3.2 above carries over
to the reduced-payload protocol. Hence, we do not
repeat the proofs, and only briefly comment on the
relationship here.

By the end of the first phase, according to
Lemma 3.2, every message color set includes n

2k − 1
nodes w.h.p. In order to implement this phase the pro-
tocol relies on a single bit indicating whether the pull
request came from a colored node or uncolored one.

In the second phase, Lemma 3.3, the analysis rests
on the fact that a colored node always prefers to propa-
gate its own message color. Hence, there is no need for
message information exchange between communicating
nodes.

The third phase is addressed in Theorem 3.4. The
proof relies on the fact (Lemma 3.3) that the probabil-
ity that a node has acquired any particular message is
at least 1

2 . Accordingly, the only information required
for a successful message exchange to occur with prob-
ability 1

2 is an index of any selected missing message.
We remark that although the reduced-payload protocol
has the same asymptotic completion time as the first
protocol version, the first protocol clearly dominates it.
That is, whenever a node obtains a new message in the
reduced-payload protocol, it also obtains it in the first
version. However, the reverse may not hold.

The message complexity of the reduced-payload pro-
tocol is given by the following theorem.

Theorem 4.1 Let m denote the size of the initial mes-
sages input to any processor i ∈ I. The total number
of communication bits employed by the protocol is

O((k + lnn)n(m + log n)) .

Proof. The protocol works in O(k + lnn) rounds. In
each round, every node sends at most m bits of message
data, as well as O(log n) control data.

5. Related Work

In early stages, gossip protocols investigation has
mainly focused on single source gossip. Notably, De-
mers et al. [6] performed a detailed study of epidemic
algorithms, in which a message (update) is initially

known at a single processor and must be diffused to all
processors with minimal traffic overhead. One of the
algorithms they studied, called anti-entropy and ap-
parently initially proposed in [2], was adopted in Xe-
rox’s Clearinghouse project (see [6]) and MUSE (for
USENET News propagation) [17]. Similar ideas also
proposed as message loss detection and recovery tech-
niques in multicast protocols [5, 1, 19, 7, 20]. The
protocols are generally composed of two sub-protocols.
The first is an unreliable hierarchical broadcast that
makes a best-effort attempt to efficiently deliver each
message to its destinations. The second is an anti-
entropy protocol that operates in a series of unsyn-
chronized rounds. During each round, the first phase
detects message loss; the second phase corrects such
losses and runs only if needed. This approach was
proved to scale better than the traditional determin-
istic techniques by using simulations and non formal
analysis.

Recent work [4] considers the problem of multiple
rumors mongering only for the case that the initial set
size, k, is Θ(n). It proposes a scheme based on ran-
dom network coding. The protocol achieves an asymp-
totically optimal running time of O(n) rounds w.h.p.
Compared with our approach, their solution does not
address the case where k = o(n). Additionally, it has
a prohibitive computation cost of creating linear com-
bination in each round and a payload of n log n bits
associated with each message. A conjecture is made in
[4] that any store and forward protocol, in other words,
a protocol that does not allow the messages to be ma-
nipulated, can do no better than O(k lnn). Our proto-
col serves to disprove this conjecture. It is a store and
forward that achieves an asymptotically optimal run-
ning time of O(k+lnn) rounds w.h.p. for any initial set
size k (in particular, O(n) rounds when k = O(n)), and
sends the original messages un-altered with payload of
log n bits associated with each message. In addition to
simplicity, our approach makes parts of the data avail-
able for the downloading participant as soon as they
arrive. This can be quite useful in the case of large
images and even in some videocasts. With network
coding, a participant has to retrieve most, or all of the
chunks, in order to decode any of the pieces. Thus, no
content is available until the final stages of the proto-
col. In the case of large images, it is beneficial to be
able to view partial data as soon as it is available.

Karp et al. [13] show that any address-oblivious al-
gorithm (i.e., an algorithm that does not use the initia-
tor’s address in determining communication partners)
needs to establish Ω(n ln lnn) connections for each ru-
mor regardless of the number of rounds. This result
helps emphasize the dramatic effect of interleaving on



the overall performance in multi-message gossip: The
total connections employed by our scheme for k mes-
sages gossip is O(n(k + lnn)). When k is large, this
is better than repeating k times O(n ln lnn) connec-
tions. It is left open to find whether techniques from
[13] may be employed to reduce our connection costs
to O(n(k + ln lnn)).

Gossip algorithms that compute certain aggregate
functions of information from the network are stud-
ied in [14], and extended to arbitrary network topolo-
gies in [3]. For complete graphs, convergence occurs in
O(log n) rounds w.h.p. and with message complexity
of O(n log2 n).

6. Conclusions

As internets become increasingly used for the wide-
scale broadcast of information, the ability to send pack-
ets to large fractions of the internet at near-optimal
cost may be the vital step that will allow the internet
to replace traditional broadcast media. For large mul-
ticast groups, there are substantial inefficiencies that
result from using a multicast tree to send messages
to many recipients, both from the standpoint of the
sender, and from the standpoint of wasted aggregate
bandwidth.

Our work contributes to the understanding of col-
laborative content dissemination. The advantages of
collaborative delivery lie in its robustness, in its total
bandwidth scaling, and the improved overall comple-
tion time. We investigate the power of randomized gos-
sip for shared download. We present a simple and clean
solution with promising behavior. It achieves asymp-
totically optimal delivery time while incurring minimal
payload overhead and connection set-up costs.

7. Appendix

We detail here the proof outlined in Section 3.2 of
Lemma 3.2.

Lemma 7.1 For all colors i ∈ I and all rounds r, at
most n

2k − 1 nodes are colored with color i.

Proof. According to our exchange policy 3.1(1) a
colored message age, ai, cannot exceed log n

2k . Conse-
quently, ∀i ∈ I, the number of colored nodes with the
same color c(i, r), can be bounded by:

∑log n
2k−1

ai=0 2ai =
2log n

2k − 1 = n
2k − 1.

Lemma 7.2 For all colors i ∈ I and all rounds r >
18 ln n, at least n

2k − 1 nodes are colored with color i
w.h.p.

Proof. Let p(r) denote the probability that a col-
ored node is pulled by an uncolored one during round
r. Since half the nodes are uncolored at any time by
Lemma 7.1, p(r) is always lower bounded by 1

3 .

p(r) ≥ 1 − (1 − 1
n

)
n
2 ≥ 1 − e−

1
2 >

1
3

Fix any node v, and as usual, denote by cv ∈ I its
color. Denote by av,0 the initial age of the color mes-
sage cv when obtained by v, 0 ≤ av,0 ≤ log n

2k . Given
the round in which the colored node was first colored,
r0 ≤ r, and its initial age, av,0, the age av,r of the
color message cv at node v in the r’th round is lower
bounded by the following binomially distributed ran-
dom variable in stochastic ordering sense.

av,r 	 Bin(r − r0,
1
3
) + av,0

Let rv,0 be a random variable that indicates the
round in which v obtained its color. We first show
that for any given av,0, E[rv,0 | av,0] ≤ 3av,0.

The proof is by induction on the initial age av,0.
In the initial step when av,0 = 1, the color message
was the first to be pulled directly from the node i ∈ I
where i = cv(note that here we use i ∈ I to uniquely
indicate the origin node in I that initiated this mes-
sage). Therefore, rv,0 is a geometric random variable
with probability greater than 1

3 , which indicates the
sequence of rounds until node cv is pulled, with expec-
tation E[rv,0 | av0 = 1] ≤ 3.

Assume that, for an arbitrary k, av,0 ≤ k is also
true, we now derive av,0 = k +1 from this assumption.
Consider the node u from which v obtains its color
cv = cu during round rv,0 with an initial age av,0 =
k + 1. Since the initial age of u satisfies au,0 ≤ k,
the inductive assumption holds, E[ru,0 | au,0 ≤ k] ≤
3au,0. Furthermore, u has succeeded in increasing its
age av,0 − au,0 times. The number of rounds rv,0 −
ru,0 for u to succeed av,0 − au,0 times is a negative
binomial distribution random variable, E[rv,0 − ru,0 |
av,0 − au,0] ≤ 3(av,0 − au,0). Luckily, we can get rid
of the dependency on au,0 by considering the following
expected sum:

E[rv,0 | au,0, av,0] = E[ru,0 + (rv,0 − ru,0) | au,0, av,0]
≤ 3au,0 + 3(av,0 − au,0)
= 3av,0

Since av,r 	 Bin(r − r0,
1
3 ) + av,0, we can define a

conditional distribution

ψ(av,0) = E[av,r | av,0] ≥ av,0 + (r − E[rv,0 | av,0])
1
3



We can compute the following expectation:

E[av,r] = E[ψ(av,0)]

≥ E[av,0 + (r − E[rv,0 | av,0])
1
3
]

≥ E[av,0 + (r − 3av,0)
1
3
]

=
r

3

Conclude that all colored nodes have the same age ex-
pectation:

∀av,0 ∈ [log
n

2k
] E[av,r] ≥ r

3
.

Since the pull events at different rounds are inde-
pendent, we may apply Chernoff bounds to obtain:

Pr[av,r ≤ lnn] = Pr[av,r ≤ (1 − δ)µ]

≤ exp (
−µδ2

2
)

< n−2

Where r = 18 ln n, hence rp = µ ≥ 6 ln n, and δ =
5/6.

The lower bound on the age of all nodes v with
color cv = i ∈ I indicates that the color-set satisfies
c(i, 18 ln n) ≥ n

2k − 1. By a union bound, the probabil-
ity that all colors i ∈ I satisfy c(i, 18 ln n) = n

2k − 1 is
at least 1 − 1/n, which completes the proof.
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