
Infiniband Scalability in Open MPI

Galen M. Shipman 1,2, Tim S. Woodall 1, Rich L. Graham 1,
Arthur B. Maccabe 2, and Patrick G. Bridges 2

1Los Alamos National Laboratory 2University of New Mexico
Advanced Computing Laboratory Dept. of Computer Science

Los Alamos, NM USA Albuquerque, NM USA
{gshipman, twoodall, rgraham}@lanl.gov {maccabe, bridges}@cs.unm.edu

Abstract

Infiniband is becoming an important interconnect
technology in high performance computing. Recent ef-
forts in large scale Infiniband deployments are raising
scalability questions in the HPC community. Open
MPI, a new open source implementation of the MPI
standard targeted for production computing, provides
several mechanisms to enhance Infiniband scalability.
Initial comparisons with MVAPICH, the most widely
used Infiniband MPI implementation, show similar per-
formance but with much better scalability characteris-
tics. Specifically, small message latency is improved
by up to 10% in medium/large jobs and memory usage
per host is reduced by as much as 300%. In addition,
Open MPI provides predictable latency that is close to
optimal without sacrificing bandwidth performance.

1 Introduction

High performance computing (HPC) systems are
continuing a trend toward distributed memory clusters
consisting of commodity components. Many of these
systems make use of commodity or ‘near’ commodity
interconnects including Myrinet [16], Quadrics [3], Gi-
gabit Ethernet and, recently, Infiniband [1]. Infiniband
(IB) is increasingly deployed in small to medium sized
commodity clusters. It is IB’s low price/performance
qualities that has made it attractive to the HPC mar-
ket.

Of the available distributed memory programming
models, the Message Passing Interface (MPI) standard
[15] is currently the most widely used. Several MPI im-
plementations support Infiniband including Open MPI
[9], MVAPICH [14], LA-MPI [10] and NCSA MPI [17].

However, there are concerns about the scalability of
Infiniband for MPI applications, partially arising from
the fact that Infiniband was initially developed as a
general I/O fabric technology and not specifically tar-
geted to HPC [5].

In this paper, we describe Open MPI’s scalable sup-
port for Infiniband. In particular, Open MPI makes
use of Infiniband features not currently used by other
MPI/IB implementations, allowing Open MPI to scale
more effectively than current implementations. We il-
lustrate the scalability of Open MPI’s Infiniband sup-
port through comparisons with the widely-used MVA-
PICH implementation, and show that Open MPI uses
less memory and provides better latency than MVA-
PICH on medium/large-scale clusters.

The remainder of this paper is organized as follows.
Section 2 presents a brief overview of the Open MPI
general point-to-point message design. Next, section
3 discusses the Infiniband architecture including cur-
rent limitations of the architecture. MVAPICH is dis-
cussed in section 4 including potential scalability issues
relating to this implementation. Section 5 provides
a detailed description of Infiniband support in Open
MPI. Scalability and performance results are discussed
in section 6, followed by conclusions and future work
in section 7.

2 Open MPI

The Open MPI Project is a collaborative effort by
Los Alamos National Lab, the Open Systems Labo-
ratory at Indiana University, the Innovative Comput-
ing Laboratory at the University of Tennessee and the
High Performance Computing Center at the Univer-
sity of Stuttgart (HLRS). The goal of this project is
to develop a new implementation of the Message Pass-

1

1-4244-0054-6/06/$20.00 ©2006 IEEE

ing Interface. Open MPI draws upon prior work on
LA-MPI, LAM/MPI [18], FT-MPI [8] and PAX-MPI
[12].

Open MPI is based on a Modular Component Ar-
chitecture [19]. This architecture supports the runtime
selection of components that are optimized for a spe-
cific operating environment. Multiple network inter-
connects are supported through this MCA. Currently
there are two Infiniband components in Open MPI.
One supporting the OpenIB Verbs-API and another
supporting the Mellanox Verbs-API. In addition to be-
ing highly optimized for scalability these components
provide a number of performance and scalability pa-
rameters which allow for easy tuning.

The Open MPI point-to-point (p2p) design and im-
plementation is based on multiple MCA frameworks.
These frameworks provide functional isolation with
clearly defined interfaces. Figure 1 illustrates the p2p
framework architecture.

MPI

PML

BML
OpenIB

BTL

Open IB
MPool
Rcache

OpenIB
BTL

Open IB
MPool
Rcache

SM
BTL

SM
MPool

Figure 1. Open MPI p2p framework

As shown in Figure 1 the architecture consists of
four layers. Working from the bottom up these layers
are the Byte Transfer Layer (BTL), BTL Management
Layer (BML), Point-to-Point Messaging Layer (PML)
and the MPI layer. Each of these layers is implemented
as an MCA framework. Other MCA frameworks shown
are the Memory Pool (MPool) and the Registration
Cache (Rcache). While these are illustrated and de-
fined as layers, critical send/receive paths bypass the
BML, as it is used primarily during initialization/BTL
selection.

MPool The memory pool provides memory alloca-
tion/deallocation and registration/deregistration
services. Infiniband requires memory to be reg-
istered (physical pages present and pinned) be-
fore send/receive or RDMA operations can use
the memory as a source or target. Separating
this functionality from other components allows
the MPool to be shared among various layers. For

example, MPI ALLOC MEM uses these MPools to
register memory with available interconnects.

Rcache The registration cache allows memory pools
to cache registered memory for later operations.
When initialized, MPI message buffers are regis-
tered with the Mpool and cached via the Rcache.
For example, during an MPI SEND the source
buffer is registered with the memory pool and this
registration may be then be cached, depending on
the protocol in use. During subsequent MPI SEND
operations the source buffer is checked against the
Rcache, and if the registration exists the PML may
RDMA the entire buffer in a single operation with-
out incurring the high cost of registration.

BTL The BTL modules expose the underlying se-
mantics of the network interconnect in a consis-
tent form. BTLs expose a set of communication
primitives appropriate for both send/receive and
RDMA interfaces. The BTL is not aware of any
MPI semantics; it simply moves a sequence of
bytes (potentially non-contiguous) across the un-
derlying transport. This simplicity will enable
early adoption of novel network devices and en-
courages vendor support. There are several BTL
modules currently available; including TCP, GM,
Portals, Shared Memory (SM), Mellanox VAPI
and OpenIB VAPI. In the later section we dis-
cusses the Mellanox VAPI and OpenIB VAPI
BTLs.

BML The BML acts as a thin multi-plexing layer, al-
lowing the BTLs to be shared among multiple up-
per layers. Discovery of peer resources is coordi-
nated by the BML and cached for multiple con-
sumers of the BTLs. After resource discovery, the
BML layer may be safely bypassed by upper layers
for performance. The current BML component is
named R2.

PML The PML implements all logic for p2p MPI se-
mantics including standard, buffered, ready, and
synchronous communication modes. MPI mes-
sage transfers are scheduled by the PML based
on a specific policy. This policy incorporates
BTL specific attributes to schedule MPI mes-
sages. Short and long message protocols are im-
plemented within the PML. All control messages
(ACK/NACK/MATCH) are also managed at the
PML. The benefit of this structure is a separa-
tion of transport protocol from the underlying in-
terconnects. This significantly reduces both code
complexity and code redundancy enhancing main-
tainability. There are currently three PMLs avail-

able in the Open MPI code base. This paper dis-
cusses OB1 the latest generation PML in the later
section.

3 Infiniband

The Infiniband specification is published by the In-
finiband Trade Association (ITA) and was originally
proposed as a general I/O technology, allowing for a
single I/O fabric to replace multiple existing fabrics.
This goal has faded and currently Infiniband is tar-
geted as an Inter Process Communication (IPC) and
Storage Area Network (SAN) interconnect technology.

Infiniband, similar to Myrinet and Quadrics, pro-
vides both Remote Direct Memory Access (RDMA)
and Operating System (OS) bypass facilities. RDMA
enables data transfer from the address space of an ap-
plication process to a peer process across the network
fabric without requiring involvement of the host CPU.
Infiniband RDMA operations support both two-sided
send/receive and one-sided put/get semantics. Each of
these operations may be queued from the user level di-
rectly to the host channel adapter (HCA) for execution,
bypassing the OS to minimize latency and processing
requirements on the host CPU.

3.1 Infiniband OS Bypass

To enable OS bypass, Infiniband defines the concept
of a Queue Pair (QP). The Queue Pair mechanism pro-
vides user level processes direct access to the IB HCA.
Unlike traditional stack based protocols, there is no
need to packetize the source buffer or process other
protocol specific messages in the OS or at user level.
Packetization and transport logic is located almost en-
tirely in the HCA.

Each queue pair consists of both a send and receive
work queue, and is additionally associated with a Com-
pletion Queue (CQ). Work Queue Entries (WQEs) are
posted from the user level for processing by the HCA.
Upon completion of a WQE, the HCA posts an entry
to the completion queue, allowing the user level process
to poll and/or wait on the completion queue for events
related to the queue pair.

Two-sided send/receive operations are initiated by
enqueueing a send WQE on a QP’s send queue. The
WQE specifies only the senders local buffer. The re-
mote process must pre-post a receive WQE on the cor-
responding receive queue which specifies a local buffer
address to be used as the destination of the receive.
Send completion indicates the send WQE is completed
locally and results in a sender side CQ entry. When the

transfer actually completes a CQ entry will be posted
to the receivers CQ.

One-sided RDMA operations are likewise initiated
by enqueueing a RDMA WQE on the Send Queue.
However, this WQE specifies both the source and tar-
get virtual addresses along with a protection key for
the remote buffer. Both the protection key and re-
mote buffer address must be obtained by the initiator
of the RDMA read/write prior to submitting the WQE
and as such Infiniband does not provide true one-sided
communication. Completion of the RDMA operation
is local and results in a CQ entry at the initiator. The
operation is one sided in the sense that the remote ap-
plication is not involved in the request and does not
receive notification of its completion.

3.2 Infiniband Resource Allocation

Infiniband does place some additional constraints
on these operations. As data is moved directly be-
tween the host channel adapter (HCA) and user level
source/destination buffers, these buffers must be reg-
istered with the HCA in advance of their use. Regis-
tration is a relatively expensive operation which locks
the memory pages associated with the request, thereby
preserving the virtual to physical mappings. Addi-
tionally, when supporting send/receive semantics, pre-
posted receive buffers are consumed in order as data
arrives on the host channel adapter (HCA). Since no
attempt is made to match available buffers to the in-
coming message size, the maximum size of a message is
constrained to the minimum size of the posted receive
buffers.

Infiniband additionally defines the concept of a
Shared Receive Queue (SRQ). A single SRQ may be
associated with multiple QPs during their creation.
Receive WQEs that are posted to the SRQ are then
shared resources to all associated QPs. This capability
plays a significant role in improving the scalability of
the connection-oriented transport protocols described
below.

3.3 Infiniband Transport Modes

The Infiniband specification details five modes of
transport, Reliable Connection (RC), Reliable Data-
gram (RD), Unreliable Connection (UC), Unreliable
Datagram (UD) and Raw Datagram.

Reliable Connection provides a connection oriented
transport between two queue pairs. During initializa-
tion of each QP, peers exchange addressing informa-
tion used to bind the QP’s and bring them to a con-
nected state. Work requests posted on each QP’s Send

Queue are implicitly addressed to the remote peer. As
with any connection oriented protocol, scalability may
be a concern as the number of connected peers grows
large, and resources are allocated to each QP. Both
Open MPI and MVAPICH currently use RC transport
modes.

Reliable Datagram allows a single QP to be used
to send and receive messages to/from other RD QPs.
Whereas in RC reliability state is associated with the
QP, RD associates this state with an end-to-end (EE)
context. The intent of the Infiniband specification is
that the EE’s will scale much more effectively with
the number of active peers. Both Reliable Connection
and Reliable Datagram provide acknowledgment and
retransmission. In practice, this portion of the specifi-
cation has yet to be implemented.

Unreliable Connection and Unreliable Datagram are
similar to their reliable counterparts in terms of QP
resources. These transports differ in that they are un-
acknowledged services and do not provide for retrans-
mission of dropped packets. The high cost of user re-
liability relative to the hardware reliability of RC and
RD make these modes of transport inefficient for MPI.

3.4 Infiniband Summary

Infiniband shares many of the architectural features
of VIA (Virtual Interface Architecture). Scalability
limitations of VIA are well known [6] to the HPC com-
munity. These limitations arise from a connection ori-
ented protocol, RDMA semantics and the lack of direct
support for asynchronous progress. While the Infini-
band specification does address scalability of connec-
tion oriented protocols through the RD transport mode
this part of the specification has not been implemented
and while the SRQ mechanism addresses scalability is-
sues associated with the reliable connection oriented
transport, issues related to flow control and resource
management must be considered. MPI implementa-
tions must therefore compensate for these limitations
in order to effectively scale to large clusters.

4 MVAPICH

MVAPICH is currently the most widely used MPI
implementation on Infiniband platforms. A descendent
of MPICH [11], one of the earliest MPI implementa-
tion, as well as MVICH [13], MVAPICH provides sev-
eral novel features for Infiniband support. These fea-
tures include small message RDMA, caching of regis-
tered memory regions and multi-rail IB support.

4.1 Small Message Transfer

The MVAPICH design incorporates a novel ap-
proach to small message transfer. Each peer is pre-
allocated and registered a separate memory region for
small message RDMA operations called a persistent
buffer association. Each of these memory regions is
structured as a circular buffer allowing the remote peer
to RDMA directly into the currently available descrip-
tor. Remote completion is detected by the peer polling
the current descriptor in the persistent buffer associa-
tion. A single bit can indicate completion of the RDMA
as current Mellanox hardware guarantees the last byte
of an RDMA operation will be the last byte delivered to
the application. This design takes advantage of the ex-
tremely low latencies of Infiniband RDMA operations.

Unfortunately, this is not a scalable solution for
small message transfer. As each peer requires a sep-
arate persistent buffer, memory usage grows linearly
with the number of peers. Polling each persistent buffer
for completion also presents scalability problems. As
the number of peers increases the additional overhead
required to poll these buffers quickly erodes the bene-
fits of small message RDMA.

A similar design was attempted earlier on ASCI Blue
Mountain with what later evolved into LA-MPI to sup-
port HIPPI-800. The approach was later abandoned
due to poor scalability and a hybrid approach evolved,
taking advantage of HIPPI-800 firmware for multiplex-
ing. Other alternative approaches to polling persis-
tent buffers for completion have also been discussed
and may prove to be more scalable [4].

To address the issues of small message RDMA,
MVAPICH provides a medium and large configura-
tion option. These options limit the resources used for
small message RDMA. As demonstrated in our results
section this configuration option improves the scalabil-
ity of small message latencies but still results in sub-
optimal performance as the number of peers increases.

4.2 Connection Management

MVAPICH uses static connection management, es-
tablishing a fully connected job at startup. In ad-
dition to eagerly establishing QP connections, MVA-
PICH also allocates a persistent buffer association for
each peer. If send/receive is used instead of small mes-
sage RDMA, MVAPICH allocates receive descriptors
on a per QP basis instead of using the shared receive
queue across QP’s. This further increases resource al-
location per peer.

4.3 Caching Registered Buffers

As discussed earlier Infiniband requires all memory
to be registered (pinned) with the HCA. Memory regis-
tration is an expensive operation so MVAPICH caches
memory registrations for later use. This allows sub-
sequent message transfers to queue a single RDMA
operation without paying any registration costs. This
approach to registration assumes that the application
will reuse buffers often in order to amortize the high
cost of a single up front memory registration. For some
applications this is a reasonable assumption.

A potential issue when caching memory registrations
is that the application may free a cached memory re-
gion and then return the associated pages to the OS
1. The application could later allocate another mem-
ory region and obtain the same virtual address as the
previously freed buffer. Subsequent RDMA operations
may use the cached registration but this registration
may now contain incorrect virtual to physical map-
pings. RDMA operation may therefore use an uninten-
tional memory region. In order to avoid this scenario
MVAPICH forces the application to never release pages
to the OS 2 and thereby preserving virtual to physical
mappings. This approach may cause resource exhaus-
tion as the OS can never reclaim physical pages.

5 Design of Open MPI

In this section we discuss Open MPI’s support for
Infiniband, including techniques to enhance scalability.

5.1 The OB1 PML Component

OB1 is the latest point-to-point management layer
for Open MPI. OB1 replaces the previous generation
PML - TEG [20]. The motivation for a new PML was
driven by code complexity at the lower layers. Previ-
ously much of the MPI p2p semantics such as the short
and long protocols were duplicated for each intercon-
nect. This logic as well as RDMA specific protocol
logic was moved up to the PML layer. Initially there
was concern that moving this functionality into an up-
per layer would cause performance degradation. Pre-
liminary performance benchmarks have shown this not
to be the case. This restructuring has substantially
decreased code complexity while maintaining perfor-
mance on par with both previous Open MPI architec-
tures as well as other MPI implementations. Through

1Memory is returned via the sbrk function in UNIX and
Linux.

2The mallopt function in UNIX and Linux prevents pages
from being given back the OS.

the use of device appropriate abstractions we have ex-
posed the underlying architecture to the PML level. As
such the overhead of the p2p architecture in Open MPI
is lower than that of other MPI implementations.

OB1 provides numerous features to support both
send/receive and RDMA read/write operations. The
send/receive protocol uses pre-allocated/registered
buffers to copy in for send and copy out for receive.
This protocol provides good performance for small mes-
sages transfer and is used both for the eager protocol
as well as control messages.

To support RDMA operations, OB1 makes uses of
the Mpool and Rcache components in order to cache
memory regions for later RDMA operations. Both
source and target buffers must be registered prior to
an RDMA read or write of the buffer. Subsequent
RDMA operation can make use of pre-registered mem-
ory in the Mpool/Rcache. While MVAPICH prevents
physical pages from being released to the OS, Open
MPI instead uses memory hooks to intercept deallo-
cation of memory. When memory is deallocated it is
checked against the Rcache and all matching registra-
tions are de-registered. This prevents future use of an
invalid memory registration while allowing memory to
be returned to the host operating system. Intercept-
ing memory allocation operations introduces additional
overhead but is minimized through the use the rcache’s
logarithmic query performance. Additional research
into minimizing this overhead is ongoing.

5.2 The OpenIB and Mvapi BTLs

This section focuses on two BTL components, both
of which support the Infiniband interconnect. These
two components are called Mvapi, based on the Mel-
lanox verbs API, and OpenIB, based on the OpenIB
verbs API. Other than this difference the Mvapi and
OpenIB BTL components are nearly identical. Two ma-
jor goals drove the design and implementation of these
BTL components, performance and scalability. The fol-
lowing details the scalability issues addressed in these
components.

5.2.1 Connection Management

As detailed earlier, connection oriented protocols pose
scaling challenges for larger clusters. In contrast to
the static connection management strategy adopted by
MVAPICH, Open MPI uses dynamic connection man-
agement. When one peer first initiates communica-
tion with another peer, the request is queued at the
BTL layer. The BTL then establishes the connection
through an out of band (OOB) channel. After connec-
tion establishment, queued sends are progressed to the

peer. This results in a shorter startup time and a longer
first message latency time for Infiniband communica-
tion. Resource usage reflects the actual communica-
tion patterns of the application and not the number
of peers in the MPI job. As such, MPI codes with
scalable communication patterns will require fewer re-
sources. Currently connections are opened dynamically
but not closed dynamically future work will address de-
allocating connections at runtime.

5.2.2 Small Message Transfer

Open MPI currently avoids scalability problems of
small message RDMA transfer by using Infiniband’s
send/receive interface for small messages. In an MPI
job with 64 nodes, instead of polling 64 preallocated
memory regions for remote RDMA completion, Open
MPI polls a single completion queue. Instead of preal-
locating 64 separate memory regions for RDMA oper-
ations, Open MPI will optionally post receive descrip-
tors to the SRQ. Unfortunately, Infiniband does not
support flow control when the SRQ is used. As such
Open MPI provides a simple user level flow control
mechanism. As demonstrated in our results, this mech-
anism is probabilistic and may result in retransmission
under certain communication patterns and may require
further analysis.

Open MPI’s resource allocation scheme is detailed
in the Figure 2. Per peer resources include 2 Reli-
able Connection QP’s, one for High Priority transfers
and one for Low Priority transfers. High priority QP’s
share a single Shared Receive Queue and Completion
Queue as do low priority QP’s. Receive descriptors are
posted to the SRQ on demand. The number of receive
descriptors posted to the SRQ is calculated using the
following method:

x = log2(n) ∗ k + b
x Number of Receive Descriptors to post
n Number of peers in cluster
k per peer scaling factor for number

of Receive Descriptors to post
b base number of

Receive Descriptors to post
The high priority QP is for small control messages

and any data sent eagerly to the peer. The low prior-
ity QP is for larger MPI level messages as well as all
RDMA operations. Using two QP’s allows Open MPI
to maintain two sizes of receive descriptors, an eager
size for the high priority QP and a maximum send size
for the low priority QP. Ordering of messages is guar-
anteed by Open MPI’s matching logic which supports
out-of-order fragments. While this framework requires
an additional QP per peer, we gain a finer grained con-
trol over receive descriptor memory usage. In addition,

using two QPs allows us to exploit parallelism available
in the HCA hardware [7].

Peer

RC
QP

RC
QP

High
Priority

Low
Priority

CQ SRQ

RD
RD

RD
RD

(eager limit)

CQ SRQ

RD
RD

RD
RD

(max-send size)

Peer

RC
QP

RC
QP

High
Priority

Low
Priority

Established Dynamically (as needed)

Shared Resources

Figure 2. Open MPI Resource Allocation

6 Results

This section presents a comparison of our work.
First we present scalability results in terms of per node
resource allocation. Next we examine performance re-
sults, showing that while Open MPI is highly scalable
it also provides excellent performance in the NAS Par-
allel benchmark (NPB) [2].

6.1 Scalability

Open MPI establishes connections dynamically on
the first send to a peer. This allows resource alloca-
tion to reflect the communication pattern of the MPI
application. Second, Open MPI optionally makes use
of the Infiniband SRQ so that receive resources (pre-
registered memory) can be shared among multiple end-
points. As demonstrated earlier, the memory footprint
of a pure RDMA protocol as used in MVAPICH in-
creases linearly with the number of peers. This is par-
tially due to lack of dynamic connection management
as well as per peer resource allocation for the small
RDMA protocol. As the number of peers increases this
memory allocation scheme becomes intractable.

To examine memory usage of the MPI library we
have used three different benchmarks. The first is a
simple “hello world” application that does not commu-
nicate with any of its peers. This benchmark estab-
lishes a baseline of memory usage for an application.
Figure 3 demonstrates that Open MPI’s memory usage
is constant as no connections are established and there-
fore no resources are allocated for other peers. MVA-
PICH on the other hand preallocates resources for each

peer at startup so memory resources increase as the
number of peers increases. Both MVAPICH small and
medium configurations consume more resources.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

K
B

yt
es

)

Number of peers

Open MPI, MVAPICH Memory Utilization - Hello World

MVAPICH - Small
MVAPICH - Medium

Open MPI - SRQ

Figure 3. Hello World Memory Usage

Our next benchmark is a pairwise ping-pong, where
peer’s of neighbor rank ping each other, that is rank
0 pings rank 1 and rank 2 pings rank 3 and so on.
As Figure 4 demonstrates, Open MPI memory usage
is constant. This is due to dynamic connection man-
agement, only peers participating in communication
are allocated resources. Again we see that MVAPICH
memory usage ramps up with the number of peers.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

K
B

yt
es

)

Number of peers

Open MPI, MVAPICH Memory Utilization - Ping-Pong 0 bytes

MVAPICH - Small
MVAPICH - Medium

Open MPI - SRQ
Open MPI - No SRQ

Figure 4. Pairwise Ping-Pong Memory Usage

Our final memory usage benchmark is a worst case
for Open MPI, each peer communicates with every
other peer. As can be seen in Figure 5 Open MPI
SRQ memory usage does increase as the number of
peers increases, but at a much smaller rate than that
of MVAPICH. This is due to the use of the SRQ for
resource allocation. Open MPI without SRQ scales

slightly worse than the MVAPICH medium configura-
tion, this is due to Open MPI’s use of two QPs per
peer.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

K
B

yt
es

)

Number of peers

Open MPI, MVAPICH Memory Utilization - Alltoall communication

MVAPICH - Small
Open MPI - NO SRQ
MVAPICH - Medium

Open MPI - SRQ

Figure 5. All-to-all Memory Usage

6.2 Performance

To verify the performance of our MPI implementa-
tion we present both micro benchmarks as well as the
NAS Parallel Benchmarks

6.2.1 Latency

Ping-pong latency is a standard benchmark of MPI
libraries. As with any micro-benchmark, ping-pong
provides only part of the true representation of per-
formance. Most ping-pong results are presented using
two nodes involved in communication. While this num-
ber provides a lower bound on communication latency,
multi-node ping-pong is more representative of commu-
nication patterns in anything but trivial applications.
As such, we present ping-pong latencies for a varying
number of nodes in which N nodes perform the pre-
viously discussed pair-wise ping-pong. This enhance-
ment to the ping-pong benchmark helps to demonstrate
scalability of small message transfers because in larger
MPI jobs the number of peers communicating at the
same time often increases.

In this test, the latency of a zero byte message is
measured for each pair of peers. We have then plot-
ted the average with error bars for each of these runs.
As can be seen in Figure 6, the small message RDMA
mechanisms provided in MVAPICH provides a bene-
fit with a small number of peers. Unfortunately, the
polling of memory regions is not a scalable architec-
ture as can be seen when the number of peers partic-
ipating in the latency benchmark increases. For each

additional peer involved in the benchmark, every other
peer must allocate and poll an additional memory re-
gion. Costs of polling quickly erode any improvements
in latency. Memory usage is also higher on a per peer
and aggregate basis. This trend occurs in both small
and medium MVAPICH configurations. Open MPI
provides much more predictable latencies and outper-
forms MVAPICH latencies as the number of peers in-
creases. Open MPI - SRQ latencies are a bit higher
than Open MPI - No SRQ latencies as the SRQ path
under Mellanox HCAs is more costly.

The following Table 1 shows the Open MPI
send/receive latencies trail MVAPICH small mes-
sage RDMA latencies but are better than MVAPICH
send/receive latencies. This is an important result
as larger MVAPICH clusters will make more use of
send/receive and not small message RDMA.

Average Latency

Open MPI - Optimized 5.64

Open MPI - Default 5.94

MVAPICH - RDMA 4.19

MVAPICH - Send/Receive 6.51

Table 1. Two node Ping-Pong latency in µ-
sec. Optimized - Limits the number of WQE
on the RQ Defaults - Default number of WQE
on the RQ

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

La
te

nc
y

(u
S

ec
)

Number of peers

Open MPI, MVAPICH - Latency - Multiple peers

Open MPI - SRQ
Open MPI - No SRQ

MVAPICH - Small
MVAPICH - Medium

Figure 6. Multi-Node Zero Byte Latency

6.2.2 NPB

To demonstrate the performance of our implementation
outside of micro benchmarks we used the NAS Parallel
Benchmarks [2]. NPB is a set of benchmarks derived

from computational fluid dynamics applications. All
NPB benchmarks were run using the class C size of
problem and all results are given in run-time (seconds).
The results of these benchmarks are summarized in
Table 2. Open MPI was run using 3 configurations,
with SRQ, SRQ with simple flow control and without
SRQ. MVAPICH was run in both small and medium
cluster configurations. Open MPI without SRQ and
MVAPICH performance is similar. With SRQ, Open
MPI performance is similar for the BT, CG, and EP
benchmarks. BT, FT and IS performance is lower with
SRQ as receive resources are quickly consumed in col-
lective operations. Our current flow control mechanism
addresses this issue for the BT benchmark but both
the FT and IS benchmarks are still effected. Table 3
demonstrates that by using Open MPI’s tuned collec-
tive framework overall performance improves and SRQ
performance improves dramatically for the FT bench-
mark. It should be noted that only 128 nodes were
available at the time of this benchmark. Further re-
search into SRQ flow control techniques are ongoing.

6.3 Experimental Setup

Our experiments were performed on two different
machine configurations. Two node ping-pong bench-
marks were performed on dual Intel Xeon X86-64 3.2
GHz processors with 2GB of RAM, and Mellanox PCI-
Express Lion-Cub adapters connected via a Voltair
9288 switch. The Operating System is Linux 2.6.13.2
with Open MPI pre-release 1.0 and MVAPICH 0.9.5-
118. All other benchmarks were performed on a 256
node cluster consisting of dual Intel Xeon X86-64 3.4
GHz processors with a minimum 6GB of RAM, Mel-
lanox PCI-Express Lion Cub adapters also connected
via a Voltair switch. The Operating System is Linux
2.6.9-11 with Open MPI pre-release 1.0 and MVAPICH
0.9.5-118.

7 Future Work - Conclusions

Open MPI addresses many of the concerns regard-
ing the scalability and use of Infiniband in HPC. In
this section we summarize the results of this paper and
provide directions for future work.

7.1 Conclusions

Open MPI’s Infiniband support provides several
techniques to improve scalability. Dynamic connec-
tion management allows per peer resource usage to re-
flect the applications chosen communication pattern,

BT CG EP

Nodes 64 256 32 64 128 256 32 64 128 256

Open MPI - No SRQ 100.03 25.03 20.17 12.74 7.39 5.56 38.89 19.84 9.95 5.11

Open MPI - SRQ 114.92 26.92 20.45 12.86 7.49 5.61 38.85 19.72 10.04 5.26

Open MPI - SRQ FC 100.13 25.33 21.13 12.83 7.38 5.63 39.10 19.76 12.88 5.12

MVAPICH - Small 98.78 27.40 20.33 12.96 7.84 6.11 39.15 19.65 10.02 5.32

MVAPICH - Large 99.22 27.58 20.24 13.15 7.83 6.09 39.10 19.59 9.89 5.31

SP FT IS

Nodes 64 256 32 64 128 256 32 64 128 256

Open MPI - No SRQ 54.39 16.08 36.64 18.28 9.39 4.81 2.23 1.62 0.97 0.52

Open MPI - SRQ 140.81 22.53 75.48 68.36 56.92 26.96 32.21 33.29 25.06 21.97

Open MPI - SRQ FC 54.90 14.61 54.81 35.87 19.39 24.54 5.32 4.38 12.35 11.12

MVAPICH - Small 53.66 15.16 37.59 19.42 10.17 4.84 2.19 1.55 0.87 0.42

MVAPICH - Large 53.87 15.84 37.91 19.51 9.85 4.88 2.20 1.56 0.87 0.50

Table 2. NPB Results - Each benchmark uses the class C option with a varying number of nodes, 1
process per node. Results are given in seconds.

BT CG EP

Nodes 64 32 64 128 32 64 128

Open MPI - No SRQ 101.03 19.83 15.50 9.37 41.99 19.89 10.16

Open MPI - SRQ 100.92 19.81 15.54 9.37 39.00 22.57 10.49

Open MPI - SRQ FC 101.11 19.84 15.64 9.50 38.99 20.13 13.43

MVAPICH - Small 99.76 20.11 17.76 10.73 38.75 19.37 10.06

MVAPICH - Large 99.96 20.14 17.76 10.73 38.79 19.39 10.07

SP FT IS

Nodes 64 32 64 128 32 64 128

Open MPI - No SRQ 56.76 36.63 20.14 10.25 2.25 1.75 1.06

Open MPI - SRQ 56.51 36.57 19.80 10.42 13.00 1.76 11.68

Open MPI - SRQ FC 56.39 36.55 19.78 11.21 3.26 1.83 11.10

MVAPICH - Small 56.26 37.66 22.31 11.35 2.23 1.71 0.93

MVAPICH - Large 56.28 37.64 22.39 11.33 2.22 1.72 0.93

Table 3. NPB Results (With tuned collectives) - 256 Nodes not available at time of benchmark.

thereby allowing scalable MPI codes to preserve re-
sources. Per peer memory usage in these types of
applications will be significantly less in Open MPI
when compared to other MPI implementations which
lack this feature. Shared resource allocation scales
much more effectively than per peer resource alloca-
tion through the use of the Infiniband Shared Receive
Queue (SRQ). This should allow even fully connected
applications to scale to a much higher level.

7.2 Future work

This work has identified additional areas for im-
provement. As the NAS parallel benchmarks illus-
trated, there are concerns regarding the SRQ case that
require further consideration. Preliminary results in-

dicate that an effective flow control and/or resource
replacement policy must be implemented, as resource
exhaustion results in significant performance degrada-
tion.

Additionally, Open MPI currently utilizes an OOB
communication channel for connection establishment,
which is based on TCP/IP. Using an OOB channel
based on the unreliable datagram protocol will decrease
first message latency and potentially improve the per-
formance of the Open MPI run-time environment.

While connections are established dynamically, once
opened, all connections are persistent. Some MPI
codes which randomly communicate with peers may
experience high resource usage even if communication
with the peer is infrequent. For these types of applica-
tions, dynamic connection tear down may be beneficial.

Acknowledgments

The authors would like too thank Kurt Ferreira of
UNM and Jeff Squyres and Brian Barrett of IU for
comments and feedback on early versions of this pa-
per. This material is based upon work supported by
Subcontract No. 12783-001-05 49 issued to Rice Uni-
versity from the Regents of the University of California
(Los Alamos National Laboratory). Los Alamos Na-
tional Laboratory is operated by the University of Cal-
ifornia for the National Nuclear Security Administra-
tion of the United States Department of Energy under
contract W-7405-ENG-36. Project support was pro-
vided through ASC/PSE and ASC/S&CS programs.
LA-UR-06-0465.

References

[1] I. T. Association. Infiniband architecture specification
vol 1. release 1.2, 2004.

[2] Bailey, Barszcz, Barton, Browning, Carter, Dagum,
Fatoohi, Fineberg, Frederickson, Lasinski, Schreiber,
Simon, Venkatakrishnan, and Weeratunga. NAS par-
allel benchmarks, 1994.

[3] J. Beecroft, D. Addison, F. Petrini, and M. McLaren.
QsNetII: An interconnect for supercomputing applica-
tions, 2003.

[4] R. Brightwell. A new MPI implementation for cray
SHMEM. In PVM/MPI, pages 122–130, 2004.

[5] R. Brightwell, D. Doerfler, and K. Underwood. A
comparison of 4x infiniband and quadrics elan-4 tech-
nologies. In Proceedings of 2004 IEEE International
Conference on Cluster Computing, pages 193–204,
September 2004.

[6] R. Brightwell and A. Maccabe. Scalability limitations
of VIA-based technologies in supporting MPI. In Pro-
ceedings of the Fourth MPI Developer’s and User’s
Conference, March 2000.

[7] V. V. et al. Programming the infiniband network ar-
chitecture for high performance message passing sys-
tems. In Proceedings of The 16th IASTED Interna-
tional Conference on Parallel and Distributed Com-
puting and Systems, 2004.

[8] G. E. Fagg, A. Bukovsky, and J. J. Dongarra. HAR-
NESS and fault tolerant MPI. Parallel Computing,
27:1479–1496, 2001.

[9] E. Garbriel, G. Fagg, G. Bosilica, T. Angskun, J. J.
D. J. Squyres, V. Sahay, P. Kambadur, B. Barrett,
A. Lumsdaine, R. Castain, D. Daniel, R. Graham, and
T. Woodall. Open MPI: goals, concept, and design of
a next generation MPI implementation. In Proceed-
ings, 11th European PVM/MPI Users’ Group Meet-
ing, 2004.

[10] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai,
R. G. Minnich, C. E. Rasmussen, L. D. Risinger, and

M. W. Sukalksi. A network-failure-tolerant message-
passing system for terascale clusters. International
Journal of Parallel Programming, 31(4), August 2003.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI
message passing interface standard. Parallel Comput-
ing, 22(6):789–828, Sept. 1996.

[12] R. Keller, E. Gabriel, B. Krammer, M. S. Mueller, and
M. M. Resch. Towards efficient execution of MPI ap-
plications on the grid: porting and optimization issues.
Journal of Grid Computing, 1:133–149, 2003.

[13] L. B. N. Laboratory. Mvich: Mpi for virtual interface
architecture, August 2001.

[14] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K.
Panda. High performance RDMA-based MPI imple-
mentation over infiniband. In ICS ’03: Proceedings
of the 17th annual international conference on Super-
computing, pages 295–304, New York, NY, USA, 2003.
ACM Press.

[15] Message Passing Interface Forum. MPI: A Message
Passing Interface. In Proc. of Supercomputing ’93,
pages 878–883. IEEE Computer Society Press, Novem-
ber 1993.

[16] Myricom. Myrinet-on-VME protocol specification.
[17] S. Pakin and A. Pant. . In Proceedings of The 8th

International Symposium on High Performance Com-
puter Architecture (HPCA-8), Cambridge, MA, Febru-
ary 2002.

[18] J. Squyres and A. Lumsdaine. A Component Archi-
tecture for LAM/MPI. In Proceedings, 10th Euro-
pean PVM/MPI Users’ Group Meeting, number 2840
in Lecture Notes in Computer Science, Venice, Italy,
September / October 2003. Springer-Verlag.

[19] J. M. Squyres and A. Lumsdaine. The component
architecture of open MPI: Enabling third-party col-
lective algorithms. In V. Getov and T. Kielmann, edi-
tors, Proceedings, 18th ACM International Conference
on Supercomputing, Workshop on Component Models
and Systems for Grid Applications, pages 167–185, St.
Malo, France, July 2004. Springer.

[20] T. Woodall, R. Graham, R. Castain, D. Daniel,
M. Sukalsi, G. Fagg, E. Garbriel, G. Bosilica,
T. Angskun, J. J. Dongarra, J. Squyres, V. Sahay,
P. Kambadur, B. Barrett, and A. Lumsdaine. Open
MPI’s TEG point-to-point communications method-
ology : Comparison to existing implementations. In
Proceedings, 11th European PVM/MPI Users’ Group
Meeting, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

