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Abstract

The earliest-deadline-first (EDF) scheduling of a sporadic
real-time task system on a multiprocessor may require that
the total utilization of the task system, Usum, not exceed
(m + 1)/2 on m processors if every deadline needs to be met.
In recent work, we considered the alleviation of this under-
utilization for task systems that can tolerate deadline misses
by bounded amounts (i.e., bounded tardiness). We showed
that if Usum ≤ m and tasks are not pinned to processors,
then the tardiness of each task is bounded under both preemp-
tive and non-preemptive EDF. However, the tardiness bounds
derived are applicable to every task in the task system, i.e.,
any task may incur maximum tardiness. In this paper, we con-
sider supporting tasks whose tolerances to tardiness are less
than that known to be possible under EDF. We propose a new
scheduling policy, called EDF-hl, which is a variant of EDF,
and show that under EDF-hl, any tardiness, including zero
tardiness, can be ensured for a limited number of privileged
tasks, and that bounded tardiness can be guaranteed to the
remaining tasks if their utilizations are restricted. EDF-hl re-
duces to EDF in the absence of privileged tasks. The tardiness
bound that we derive is a function of Usum, in addition to in-
dividual task parameters. Hence, tardiness for all tasks can
be lowered by lowering Usum. A simulation-based evaluation
of the tardiness bounds that are possible is provided.

1 Introduction
A real-time system has to meet certain timing constraints to
be correct. Such timing constraints are typically specified as
deadlines for tasks. Tasks in a real-time system are often re-
current in nature. The sporadic task model is one of the most
widely-studied notions of recurrent real-time task execution.
In this model, each task is a sequential program that is invoked
repeatedly; each such invocation is called a job and has an as-
sociated deadline by which it should complete execution.

It is generally required that jobs be scheduled so that they
do not miss their deadlines. However, in a soft real-time
system, deadline misses can sometimes be tolerated, if the
amount by which a deadline is missed is within a specified
per-task tardiness threshold. If δ is the tardiness threshold of
some task, then its job with a deadline at time d should be
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guaranteed to complete execution by time d + δ. Such a guar-
antee would ensure that, in the long run, each task receives a
processor share commensurate with its utilization (see Sec. 2).

In work on real-time systems, multiprocessor platforms
(SMPs) are of growing importance. This is due to both hard-
ware trends such as the emergence of multicore technologies,
and also to the prevalence of computationally-intensive appli-
cations for which single-processor designs are not sufficient.
Examples of such applications include systems that track peo-
ple and machines, many computer-vision systems, and signal-
processing applications such as synthetic aperture imaging.
Timing constraints in several of these applications are pre-
dominantly soft. Given these observations, designing efficient
scheduling algorithms for multiprocessor-based soft real-time
systems and analyzing the traditional algorithms for soft real-
time systems are goals of considerable value and interest.

Sporadic task systems can be scheduled on a multipro-
cessor using either a partitioning or a global-scheduling ap-
proach. Under partitioning, tasks are statically assigned to
processors, and a uniprocessor scheduling algorithm is used
on each processor to schedule its assigned tasks. In contrast,
under global scheduling, a task may execute on any proces-
sor and may migrate across processors. Each approach can be
differentiated further based on the scheduling algorithm that
is used. For instance, the earliest-deadline-first (EDF) [6] or
the rate-monotonic (RM)∗ [10] algorithm could be used as the
per-processor scheduler under partitioning, or as the system-
wide global scheduler.

Pfair scheduling [4], when deployed in a global setting, is
currently the only known way of optimally scheduling spo-
radic task systems on a multiprocessor. † However, Pfair al-
gorithms schedule tasks one quantum at a time, and as a result,
jobs may be preempted and migrate across processors fre-
quently. Such preemption and migration overheads can lower
the amount of useful work that is actually accomplished. On
the other hand, no known non-Pfair-based scheduling algo-
rithm is optimal, and in the worst case, every such algorithm
requires that the total utilization not exceed (m + 1)/2 (i.e.,

∗Under RM scheduling, priorities for jobs are fixed offline and are in-
versely proportional to the periods of their tasks: the jobs of a task with a
shorter period have higher priority than those of another task with a longer
period.

†The term “optimal” means that on m processors, such algorithms are
capable of correctly scheduling (without any deadline misses) any task system
with total utilization at most m.
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the underlying platform be underutilized by roughly 50%), if
every deadline is to be met [9, 11, 3, 2].

Prior work has shown that such restrictions on overall uti-
lization can be eliminated for soft real-time systems. In [1],
Anderson et al. presented a variant of partitioned-EDF that
ensures bounded tardiness with no such restrictions, provided
per-task utilizations are capped at 1/2. In addition, in a re-
cent paper [8], we derived tardiness bounds for both preemp-
tive and non-preemptive global EDF. Tardiness bounds un-
der EDF have also been presented by Valente and Lipari [13].
A precursor to all of the work mentioned here is a paper by
Srinivasan and Anderson [12] in which tardiness bounds are
presented for the earliest-pseudo-deadline first (EPDF) Pfair
scheduling algorithm, which is sub-optimal but more efficient
than optimal algorithms.

Contributions. The tardiness bounds derived by us previ-
ously for preemptive and non-preemptive EDF [8] are depen-
dent on per-task utilizations and execution costs but indepen-
dent of the total system utilization, Usum. Furthermore, any
task may incur maximum tardiness. This may not be accept-
able to applications that are comprised of hard and soft real-
time tasks with different tardiness tolerances. In this paper,
we make an attempt to address this limitation.

Our contributions are twofold. First, we consider guaran-
teeing lower tardiness to some tasks at the expense of oth-
ers. To this end, we propose a new scheduling policy, called
EDF-hl, which is a variant of global EDF. We show that un-
der EDF-hl on m processors, up to m tasks can be accorded
preferential treatment and thereby guaranteed any tardiness,
including zero, and that bounded tardiness can be guaranteed
to the remaining tasks if their utilizations are capped. In the
absence of tasks that require lower tardiness, EDF-hl reduces
to EDF. Simulations involving randomly-generated task sets
presented herein suggest that for many systems, the tardiness
bounds that can be ensured for tasks that do not receive pref-
erential treatment are acceptable.

Unlike in [8], the tardiness bound derived here is a function
of Usum, in addition to individual task parameters. Thus, as a
second contribution, our bound offers the possibility of low-
ering tardiness for all tasks by lowering Usum. To assess the
tardiness-utilization trade-off for EDF (i.e., without special
tasks), we again conducted experiments involving randomly-
generated task sets. We found that, with the improved anal-
ysis, considerable reductions in tardiness are possible even
for reasonable reductions in total system utilization. For in-
stance, in the simulation results for eight processors shown in
Fig. 5(b) in Sec. 4, lowering Usum by around 10% results in
a reduction in maximum tardiness by over 35%, and lowering
Usum by 25% lowers maximum tardiness by close to 50%.

Organization. The rest of this paper is organized as fol-
lows. Our system model and algorithm EDF-hl are described
in Sec. 2. Tardiness bounds are derived in Sec. 3. Results
of the simulation-based evaluations mentioned above are pre-
sented in Sec. 4. Finally, Sec. 5 concludes.

2 Definitions
In this section, our task model is described and algorithm
EDF-hl is presented.

Task model. A sporadic task system comprised of n ≥ 1
sporadic tasks is to be scheduled on m ≥ 2 processors. The
ith task is denoted Ti(ei, pi), where pi > 0 is the minimum
inter-arrival separation for its successive jobs and ei ≤ pi is
its per-job execution cost. pi is also referred to as the period
of Ti. In the variant of the sporadic model considered here,
pi is also the relative deadline of Ti, i.e., each job of Ti must
complete execution within pi time units of its invocation. The

utilization of Ti is given by ui
def= ei/pi ≤ 1. The total uti-

lization of τ is defined as Usum(τ) def=
∑n

i=1 ui. It is required
that Usum(τ) ≤ m hold. The maximum utilization (resp.,
execution cost) of any task in τ is denoted umax(τ) (resp.,
emax(τ)). The minimum execution cost of any task is denoted
emin(τ). (In this notation, the task system τ is omitted when
unambiguous.)

The kth job of Ti, where k ≥ 1, is denoted Ti,k, and its
release time and absolute deadline (or simply deadline for
short) are denoted ri,k and di,k(= ri,k +pi), respectively. ri,k

denotes the the time at or after which Ti,k can be executed.
ri,k+1− ri,k ≥ pi holds for all k ≥ 1. Each task is sequential,
and hence no job of any task may execute in parallel. Further-
more, no two jobs of any task may execute in parallel.

A sporadic task system τ is said to be concrete if the re-
lease time of every job of each of its tasks is specified, and
non-concrete, otherwise. Note that an infinite number of con-
crete task systems can be specified for every non-concrete task
system. We omit specifying the type of the task system unless
it is necessary. The results in this paper are for non-concrete
task systems, and hence hold for every concrete task system.

The tardiness of a job Ti,j in a schedule S is defined as
tardiness(Ti,j ,S) = max(0, t − di,j), where t is the time at
which Ti,j completes executing in S. If κ is the maximum
tardiness of any task system under A, then A is said to ensure
a tardiness bound of κ. We assume that missed deadlines do
not delay future job releases. That is, even if a job of a task
misses its deadline, the release time of the next job of that
task remains unaltered. Since consecutive jobs of the same
task cannot be scheduled in parallel, a missed deadline effec-
tively reduces the interval over which the next job should be
scheduled in order to meet its deadline.

The sporadic task model described above is augmented
as follows for EDF-hl (described below). Each task in τ is
classified as either a privileged task or an unprivileged task.
The set of all privileged (resp., unprivileged) tasks is denoted
τH (resp., τL). (H and L stand for high and low privilege.)
|τH | ≤ m holds. Each privileged task Th has a maximum tar-
diness parameter ∆h ≥ 0, which denotes the maximum tardi-
ness that any of its jobs can tolerate. dh,j + ∆h is referred to
as the effective deadline of job Th,j and is denoted ρh,j .

To express the tardiness bound derived in this paper easily,
we let εi, εH

i , and εL
i (resp., µi, µH

i , and µL
i ) denote the ith



execution cost (resp., task utilization) in a non-increasing or-
dering of those of tasks in τ , τH , and τL, respectively. Also,
γi denotes the tardiness-utilization product, i.e., ∆i × ui, for
the ith privileged task in a non-increasing ordering for tasks
in τH . Λ is defined as follows.

Λ =

j
Usum(τ) − 1, Usum(τ) is integral
�Usum(τ)�, otherwise

(1)

Algorithm EDF-hl. Our goal is to design an algorithm that
can guarantee a tardiness of ∆h to each privileged task Th

while guaranteeing bounded tardiness to the remaining tasks.
Let the slack of job Th,j of a privileged task Th at time t be
defined as dh,j + ∆h − t − (eh − δh,j), where δh,j denotes
the amount of time that Th,j executed before t. Informally,
the slack of job Th,j at t is the amount of time the job can af-
ford not to execute after t until completion for its tardiness to
be at most ∆h. A tardiness of at most ∆h can be guaranteed
to task Th if each job Th,j is scheduled based on its deadline
until time dh,j +∆h−eh, but is guaranteed continuous execu-
tion from dh,j + ∆h − eh onward. (This is somewhat similar
to the behavior of the earliest-deadline-until-zero-laxity algo-
rithm described in [5].) Job Th,j is said to be urgent at time t,
if t ≥ dh,j + ∆h − eh and Th,j has not completed execution
by t. Note that Th,j is flagged as urgent from dh,j + ∆h − eh

until completion even if its slack is positive. This eliminates
the overhead of updating the urgency for each privileged job at
runtime and may result in fewer preemptions and migrations.

With the above definitions in place, Algorithm EDF-hl can
be described as follows. At any time t, each of the urgent jobs,
if any, of tasks in τH is assigned a unique processor. If not ev-
ery processor is assigned to an urgent job, then the non-urgent
jobs of τH and jobs of tasks in τL are scheduled on the remain-
ing processors on an earliest-deadline-first basis, where ties, if
any, are resolved arbitrarily. A job may be preempted at any
time by a higher priority job and may later resume execution
on a different processor.

Note that EDF-hl reduces to EDF if τH = ∅. Since
|τH | ≤ m holds, EDF-hl clearly ensures the required tar-
diness for each privileged task. Hence, the question to be
addressed is whether bounded tardiness can be guaranteed
for the remaining tasks. The answer turns out to be yes if
there is a cap on the utilizations of the remaining tasks. This
cap depends on the number of privileged tasks and their uti-
lizations. To see that such a cap is necessary, at least in
some cases, consider a task system comprised of four tasks
T1(3, 4), . . . , T3(3, 4), and T4(3i, 4i), where i ≥ 1. Here, if
tasks T1, . . . , T3 require a tardiness of zero, then tardiness for
T4 can grow unboundedly.

Discussion. Though the tardiness bounds derived in [8]
guarantee that tardiness for each task in the above example
(with i = 1) is at most 4.33 time units under EDF, no task
is immune from incurring maximum tardiness. The bound for
EDF-hl derived here would enable one of the four tasks to
be guaranteed zero tardiness if the remaining tasks can toler-
ate a tardiness of 6 time units (which is only slightly higher

than 4.33). However, if two tasks have a tardiness require-
ment of zero, then tardiness for the remaining tasks may be
as high as 21.0 (which is still bounded). Lower tardiness can
be guaranteed if the utilizations of the unprivileged tasks are
lower. For instance, with two privileged tasks T1(3, 4) and
T2(3, 4) and three unprivileged tasks T3(3, 6), . . . , T5(3, 6),
the unprivileged tasks can be guaranteed a bound of 12.0.

3 Tardiness under EDF-hl
In this section, we determine a tardiness bound for τL. The
approach for doing this is the same as that used in [8]. This
involves comparing the allocations to a concrete task system
τ in a processor sharing (PS) schedule for τ and an actual
EDF-hl schedule of interest for τ , and quantifying the differ-
ence between the two. In a PS schedule, each job of Ti is
allocated a fraction ui of a processor at each instant (or equiv-
alently, a fraction ui of each instant) in the interval between its
release time and its deadline. Because Usum ≤ m holds, the
total demand at any instant will not exceed m in a PS sched-
ule, and hence no deadlines will be missed; in fact, every job
will complete executing exactly at its deadline. We begin by
setting the required machinery in place.

3.1 Definitions and Notation
A time interval [t1, t2), where t2 ≥ t1, consists of all times t,
where t1 ≤ t < t2, and is of length t2 − t1. The system start
time is assumed to be zero. For any time t > 0, t− denotes
the time t − ε in the limit ε → 0+.

Definition 1 (active tasks and active jobs): A task Ti is
said to be active at time t, if there exists a job Ti,j (called Ti’s
active job at t) such that ri,j ≤ t < di,j . By our task model,
every task can have at most one active job at any time.

Definition 2 (pending jobs): Ti,j is said to be pending at t
in a schedule S if ri,j ≤ t and Ti,j has not completed execu-
tion by t in S. Note that a job with a deadline at or before t is
not considered to be active at t even if it is pending at t.

Definition 3 (ready jobs): A pending job Ti,j is said to be
ready at t in a schedule S if all prior jobs of Ti have completed
execution by t in S .

We now quantify the total allocation to τ in an interval
[t1, t2) in a PS schedule for τ , PSτ . Let A(S, Ti, t1, t2) de-
note the total time allocated to Ti in an arbitrary schedule S
for τ in [t1, t2). Then, since in PSτ , Ti is allocated a fraction
ui of each instant at which it is active in [t1, t2), we have

A(PSτ , Ti, t1, t2) ≤ (t2 − t1)ui. (2)

The total allocation to τ in the same interval in PSτ is

A(PSτ , τ, t1, t2) ≤
X
Ti∈τ

(t2 − t1)ui = Usum(τ) · (t2 − t1). (3)

We are now ready to define lag and LAG, which play a pivotal
role in this paper. The lag of task Ti at time t in schedule S,
denoted lag(Ti, t,S), is given by

lag(Ti, t,S) = A(PSτ , Ti, 0, t) − A(S, Ti, 0, t). (4)



In S , less work than in PSτ has been completed by time t
on the jobs of Ti if lag(Ti, t,S) is positive (i.e., Ti is under-
allocated in S), and more work, if lag(Ti, t,S) is negative
(i.e., Ti is over-allocated in S). The total lag of a task sys-
tem τ at t, denoted LAG(τ, t,S), is given by

LAG(τ, t,S) =
X
Ti∈τ

lag(Ti, t,S)

= A(PSτ , τ, 0, t) − A(S, τ, 0, t). (5)

Note that LAG(τ, 0,S) and lag(Ti, 0,S) are both zero, and
that by (4) and (5), we have the following for t2 > t1.

lag(Ti, t2,S) = lag(Ti, t1,S) +

A(PSτ , Ti, t1, t2) − A(S, Ti, t1, t2)

LAG(τ, t2,S) = LAG(τ, t1,S) +

A(PSτ , τ, t1, t2) − A(S, τ, t1, t2) (6)

Lag for jobs. The notion of lag defined above for tasks
and task sets can be applied to jobs and job sets in an
obvious manner. Let τ denote a concrete task system,
and Ψ a subset of jobs in τ . Let A(PSτ , Ti,j , t1, t2) and
A(S, Ti,j , t1, t2) denote the allocations to Ti,j in [t1, t2)
in PSτ and S , respectively. Then, lag(Ti,j , t,S) =
A(PSτ , Ti,j , ri,j , t) − A(S, Ti,j , ri,j , t), and LAG(Ψ, t,S) =∑

Ti,j∈Ψ lag(Ti,j , t,S). The total allocation in [0, t), where
t > 0, to a job that is neither pending at t− in S nor is active
at t− is the same in both S and PSτ , and hence, its lag at t is
zero. Therefore, for t > 0, we have

LAG(Ψ, t,S) =
X

{Ti,j is in Ψ, and is pending
or active at t−}

lag(Ti,j , t,S).

The above expression can be rewritten using task lags as fol-
lows (since no job can be scheduled before its release time and
jobs of Ti that are not in Ψ may be pending at t).

LAG(Ψ, t,S) ≤
X

{Ti ∈ τ : Ti,j is in Ψ, and is
pending or active at t−}

lag(Ti, t,S) (7)

Similarly, the total utilization of Ψ at time t is given by the
sum of the utilizations of tasks with an active job at t in Ψ:

Usum(Ψ, t) =
X

{Ti ∈ τ : Ti,j is in Ψ and is ac-
tive at t}

ui. (8)

Definition 4 (busy interval): A time interval [t1, t2), where
t2 > t1, is said to be busy for τ if all m processors are execut-
ing jobs of tasks in τ throughout the interval, i.e., no processor
is ever idle in the interval or executes a job of a task not in τ .
An interval [t1, t2) that is not busy for τ is said to be non-
busy for τ , and is maximally non-busy if every time instant in
[t1, t2) is non-busy, and either t1 = 0 or t−1 is busy.

If at least Usum(τ) tasks are executing at every instant in
[t1, t2) in a schedule S for τ , then the tasks in τ receive a total
allocation of Usum(τ) · (t2 − t1) time in S in that interval. By
(3), the total allocation to τ in [t1, t2) cannot exceed Usum(τ)·
(t2 − t1) in PSτ . Therefore, by (6), the LAG of τ at t2 cannot
exceed that at t1, and we have the following lemma.

Lemma 1 If LAG(τ, t + δ,S) > LAG(τ, t,S), where δ > 0
and S is a schedule for τ , then [t, t+ δ) is a non-busy interval
for τ . Furthermore, there exists at least one instant in [t, t+δ)
at which fewer than Usum(τ) tasks are executing.

The busy interval in Def. 4 is defined with respect to τ . With
respect to Ψ, [t1, t2) is said to be busy only if every processor
is executing some job of Ψ throughout [t1, t2). The job-set
counterpart of Lemma 1 is as follows.

Lemma 2 If LAG(Ψ, t + δ,S) > LAG(Ψ, t,S), where δ > 0
and S is a schedule for τ , then [t, t+ δ) is a non-busy interval
for Ψ. Furthermore, there exists at least one instant t′ in [t, t+
δ) at which fewer than Usum(Ψ, t′) tasks are executing.

3.2 Deriving a Tardiness Bound

Given an arbitrary non-concrete task system τN , we are in-
terested in determining the highest tardiness of any job of any
task in τN

L in any concrete instantiation of τN . Let τ (resp.,
τH and τL) be a concrete instantiation of τN (resp., τN

H and
τN
L ), T�,j a job in τL, td = d�,j , and S an EDF-hl schedule

for τ with the following property.

(P) The tardiness of every job of every task Tk in τL with
deadline less than td is at most x + ek, where x ≥ 0.

Then, determining the smallest x, independent of the parame-
ters of T�, such that the tardiness of T�,j remains at most x+e�

would by induction imply a tardiness of at most x + ek for all
jobs of tasks in τL. Because τ is arbitrary, the tardiness bound
will hold for every concrete instantiation of τN .

Our proof obligation is easily met if T�,j completes by its
deadline, td, so assume otherwise. The completion time of
T�,j depends on the amount of work that can compete with
T�,j after td. We follow the steps below to determine x.

(S1) Compute an upper bound (UB) on the amount of work
(including that due to T�,j) that can compete with T�,j

after td.

(S2) Determine a lower bound (LB) on the amount of such
work required for the tardiness of T�,j to exceed x + e�.

(S3) Determine the smallest x such that the tardiness of T�,j

is at most x + e� using UB and LB.

Let Ψ denote the set of all jobs with deadlines at most td of
all tasks in τ . Under EDF-hl, no job of a task in τL with a
deadline after td can compete with T�,j . Therefore, competing
work for T�,j is given by (i) the amount of work pending at td
for jobs in Ψ, i.e., LAG(Ψ, td,S), plus (ii) the amount of work
demanded by jobs of tasks in τH that are not in Ψ but can
compete with jobs in Ψ in [td, td+x+e�) . We now determine
an upper bound on these two components (step (S1) above).

(In the analysis that follows, we assume that ∆h � x holds
for all Th in τH . The analysis has to be extended slightly,
otherwise. We have refrained from presenting a more general
analysis in the interest of clarity.)



3.2.1 Upper Bound on LAG(Ψ, td, S)

Let the carry-in job of a task Th in τH be defined as that job,
if any, of Th, with a release time before td and an absolute
deadline afterward. Clearly, at most one such job exists for
each Th. Similarly, let the job, if any, of Th, with a release
time before td +x+ e� and an effective deadline afterward be
defined as its carry-out job. This is illustrated in Fig. 3. The
carry-in job of Th is its only job with an absolute deadline
after td that may preempt (i.e., compete with) jobs in Ψ before
td (i.e., become urgent before td). Let ΨH be the set of all
carry-in jobs of tasks in τH . (For easy reference, descriptions
for these task and job sets are repeated in Fig. 1.)

Task /
Job Set

Description

τH Set of all privileged tasks in τ
τL Set of all unprivileged tasks in τ
Ψ Set of all jobs of all tasks in τ

with deadline at most td
ΨH Set of carry-in jobs of tasks in τH

Figure 1. Task and job sets heavily re-
ferred to.

By Lemma 2,
the LAG of Ψ
can increase
only across a
non-busy in-
terval for Ψ.
Recall that in
a non-busy
interval for Ψ
fewer than m
jobs from Ψ execute. In the case of an EDF-hl schedule,
such a non-busy interval for Ψ can be classified into two
types depending on whether a job from ΨH is executing in
the interval while a ready job from Ψ is waiting. At the risk
of slightly abusing terms, we will refer to the two types as
blocking and non-blocking non-busy intervals. A blocking,
non-busy interval is one in which a job from ΨH is executing
while a ready job from Ψ is waiting, whereas a non-blocking,
non-busy interval is one in which fewer than m jobs from Ψ
are executing, but there does not exist a ready job in Ψ that is
waiting. Note that it is immaterial whether a job from ΨH is
executing in a non-blocking, non-busy interval.

Before determining an upper bound on LAG, we state some
needed properties. In [8], we showed that if a task does not
execute continuously within a non-busy interval in an EDF
schedule, then its lag at the end of the interval is at most zero.
This property can be extended to a non-blocking, non-busy
interval of an EDF-hl schedule, as follows.

Lemma 3 (from [8]) Let [t, t′) be a maximally non-blocking,
non-busy interval in [0, td) in S and let Tk be a task in τ with
a job in Ψ that is active or pending at t′−. If Tk does not
execute continuously in [t, t′), then lag(Tk, t′,S) ≤ 0.

The two lemmas that follow are proved in [7]. The first
lemma bounds the lag of a task in τL at any arbitrary time at
or before td. The second concerns the lags of tasks in τH .

Lemma 4 Let v be an arbitrary time instant at or before td.
Let Tk be a task in τL and Tk,q its earliest pending job at v,
and let δk,q < ek be the amount of time that Tk,q executed for
before v. Then, lag(Tk, v,S) ≤ (v − dk,q) · uk + ek − δk,q.
Furthermore, v − dk,q ≤ x + δk,q . Hence, lag(Tk, v,S) ≤
x · uk + ek.

Lemma 5 Let Tk be a task in τH and Tk,q its earliest pending
job at any arbitrary time v. Then, lag(Tk, v,S) ≤ min(dk,q +
∆k − v, ek) + (v − dk,q) · uk ≤ ek + ∆k · uk.

Symbol Expression

EL
PΛ

k=1 εk

EH
P

Th∈τH
eh(1 − uh)

UL
Pmin(Λ−1,|τL|)

k=1 µL
k

UH
Pmax(0,Λ−1−|τL|)

h=1 γh

U ′
H

P
Th∈τH

uh

E′
H

P
Th∈τH

((eh(1 − uh)+

uh(e� − ∆h) + min(eh · uh, ∆h))

+max(uh(eh − e�), 0))

Figure 2. Frequently referred-to expressions.

We now
turn to de-
termining
an upper
bound on
the LAG of
Ψ at td. By
Lemma 2,
the LAG of Ψ
can increase
only across
a non-busy
interval for
Ψ. Hence,
an upper bound on LAG at the end of the latest non-busy
interval before td across which LAG increases will serve as an
upper bound for that at td. As discussed earlier, a non-busy
interval in an EDF-hl schedule can be either blocking or
non-blocking. We will consider these two cases separately.
Expressions that occur frequently in the analysis are provided
in Fig. 2. The lemma that follows shows how to bound LAG
at the end of a non-blocking, non-busy interval.

Lemma 6 Let [t, t′) be a maximally non-blocking, non-busy
interval in [0, td) in S and let LAG(Ψ, t′,S) > LAG(Ψ, t,S).
Then, LAG(Ψ, t′,S) ≤ x · UL + UH + EL.

Proof: By (7), the LAG of Ψ at t′ is given by the sum of the
lags at t′ of all tasks in τ with at least one job in Ψ that is active
or pending at t′−. By Lemma 3, the lag of such a task that
does not execute continuously in [t, t′) is at most zero. Hence,
to determine an upper bound on LAG at t′, it is sufficient to
determine an upper bound on the lags of such tasks that are
executing continuously in [t, t′). Let Λ′ denote the number of
such tasks. Then, by Lemma 2,

Λ′ < max
t≤t̂<t′

{Usum(Ψ, t̂)} ≤ Usum(τ). (9)

Let αH (resp., αL) denote the subset of all tasks in τH

(resp., τL) that are executing continuously in [t, t′) and have a
job in Ψ that is active or pending at t′−. Then,

|αH | + |αL| = Λ′, (10)

and by the above discussion on bounding LAG,

LAG(Ψ, t′,S)

≤
X

Th∈αH

lag(Th, t′,S) +
X

Tk∈αL

lag(Tk, t′,S)

≤
X

Th∈αH

(∆h · uh + eh) +
X

Tk∈αL

(x · uk + ek)

{by Lemmas 5 and 4}
=

X
Tk∈αL∪αH

ek +
X

Tk∈αL

x · uk +
X

Th∈αH

∆h · uh



≤
Λ′X

k=1

εk +
X

Tk∈αL

x · uk +
X

Th∈αH

∆h · uh {By (10)}

≤
Λ′X

k=1

εk +

min(Λ′,|τL|)X
k=1

x · µL
k +

max(0,Λ′−|τL|)X
h=1

γh

{By (10) and assuming ∆h � x so that

∆h · uh < x · uk for all Th ∈ τH , Tk ∈ τL}
Finally, as in [8], it can be shown that for LAG to increase
across [t, t′), at least one job of Ψ with a deadline at or after t′
should have completed execution before t and that at least one
job executing at t should have a deadline at or after t′. Hence,
the lag for its task Tk at t′ is at most ek. By this argument, the
upper bound on LAG derived above reduces to

LAG(Ψ, t′,S)

≤
Λ′X

k=1

εk +

min(Λ′−1,|τL|)X
k=1

x · µL
k +

max(0,Λ′−1−|τL|)X
h=1

γh.

The lemma follows because, by (1) and (9), Λ′ ≤ Λ. �

The next lemma shows how to bound LAG at the end of a
blocking, non-busy interval.

Lemma 7 Let [t, t′) be a blocking, non-busy interval in [0, td)
in S such that every instant in [t, t′) is a blocking instant and
any job of ΨH that executes in [t, t′) executes continuously in
[t, t′). Then, LAG(Ψ, t′,S) ≤ LAG(Ψ, t,S) +

∑
Th∈αH

(t′ −
t) · (1 − uh), where αH is the subset of all tasks in τH whose
jobs in ΨH execute continuously in [t, t′).

Proof: Let Th be a task in αH , where αH is as defined in the
statement of the lemma. Then, because the job of Th that is
executing in [t, t′) is in ΨH , Th does not have a job in Ψ that
is either active or pending anywhere in [t, t′). Thus, by (8),

(∀t̂ : t ≤ t̂ < t′ :: Usum(Ψ, t̂) ≤ Usum(τ) −
X

Th∈αH

uh), (11)

and since the cumulative allocation at each instant in [t, t′)
in PSτ to jobs in Ψ is at most Usum(τ) − ∑

Th∈αH
uh, the

following holds.

A(PSτ , Ψ, t, t′) ≤ (t′ − t) ·
0
@Usum(τ)−

X
Th∈αH

uh

1
A (12)

Because [t, t′) is continuously blocking, at every instant in
[t, t′), there exists at least one job in Ψ that is ready, but does
not execute. This in turn implies that no processor is idle in
the interval. Hence, we have the following.

A(S, Ψ, t, t′) = (t′ − t) · (m − |αH |) (13)

By (12) and (13), and (6) (with t1 = t and t2 = t′), we have

LAG(Ψ, t′,S)

≤ LAG(Ψ, t,S) +

(t′ − t)

0
@(Usum(τ) −

X
Th∈αH

uh) − (m − |αH |)
1
A

= LAG(Ψ, t,S) +

(t′ − t)

0
@(Usum(τ) − m) + |αH | −

X
Th∈αH

uh)

1
A .

Because Usum(τ) ≤ m, the above implies LAG(Ψ, t′,S) ≤
LAG(Ψ, t,S) + (t′ − t) · ∑Th∈αH

(1 − uh). �

An upper bound on the LAG of Ψ at td can be determined
by combining Lemmas 6 and 7 as follows. (This lemma is
proved in [7].)

Lemma 8 Let δh ≤ eh denote the amount of time that the
carry-in job (i.e., job in ΨH), if any, of task Th in τH executes
for before td. Then, LAG(Ψ, td,S) ≤ x · UL + UH + EL +∑

Th∈τH
δh · (1 − uh).

To complete step (S1), we need to determine an upper
bound on the work due to jobs of tasks in τH that can compete
with jobs in Ψ in [td, td + x + e�). We do this next.

3.2.2 Competing Demand due to Jobs of τH not in Ψ

Let D(Th) denote the amount of work due to the jobs of a task
Th in τH that are not in Ψ and that can compete with jobs of
other tasks in Ψ in [td, td +x+e�). Then, D(Th) is composed
of three parts: (i) Work that needs to be done on a carry-in
job, if any, (ii) mandatory work that needs to be done on a
carry-out job, if any, and (iii) work to be done on all jobs that
lie between the carry-in and carry-out jobs, which is eh times
the number of such jobs. This is illustrated in Fig. 3. (Note
that because the effective deadlines of any two consecutive
jobs of Th are separated by at least ph time units, the latter
of any two such jobs does not become urgent until after the
effective deadline of the former job has elapsed. Hence, no
job released after the carry out job can compete with a job in
Ψ in [td, td + x + e�).)

We now derive a bound on D(Th).

Lemma 9 Let Th be any task in τH . Then, D(Th) ≤ eh −
δh + uh · (x + e� − ∆h) + min(0,∆h − (eh − δh)uh) +
max(0, uh(eh − e�)), where δh ≤ eh is the amount of time
that the carry-in job, if any, of Th executes before td.

Proof: If no job of Th has its effective deadline in [td, td+x+
e�), then at most one job of Th executes in the interval, and
the maximum amount of time it executes for cannot exceed
eh−δh. Therefore, D(Th) ≤ eh−δh holds. Assuming ∆h �
x, it can be shown that uh ·(x+e�−∆h)+min(0,∆h−(eh−
δh)uh) + max(0, uh(eh − e�)) ≥ 0 holds. Hence, D(Th) ≤
eh − δh + uh · (x + e� −∆h) + min(0,∆h − (eh − δh)uh) +
max(0, uh(eh − e�)), which proves the lemma.

Hence, for the rest of the proof assume that at least one job
of Th has its effective deadline in [td, td + x + e�). Let Th,ci

and Th,co
denote the carry-in and carry-out jobs, if any, of Th.

Let ξh = ρh,ci
− td and let φh denote the offset from td +

x+e� of the last effective deadline in [td, td+x+e�) of a job of
Th. Refer to Fig. 3. We now determine the three components
of D(Th) mentioned above.
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Figure 3. Competing demand due to task Th in τH in the interval
[td, td + x + e�). Competing demand due to the carry-in job Th,ci

(Th,c here) is at most min(eh − δh, ξh) and that due to the carry-out
job Th,co (Th,c+3 here) is at most max(0, eh − (ph − φh)).

Work due to Th,ci
. Since Th,ci

completes executing by
ρh,ci

, the amount of time that Th,ci
can execute for after td

is at most ρh,ci
− td = ξh time units. Because Th,ci

executes
for δh time units before td, it cannot execute for more than
eh − δh time units after td. Thus, the amount of work to be
done on Th,ci

after td is at most min(eh − δh, ξh).

Work due to Th,co
. The effective deadline of Th,co

is
separated from the previous effective deadline of Th by at
least ph time units. Since the last effective deadline within
[td, td + x + e�) is φh time units before td + x + e�, ρh,co

is at least ph − φh time units after td + x + e�. Therefore,
min(eh, ph − φh) units of work due to Th,co

does not com-
pete with jobs in Ψ before td + x + e�. Hence, the competing
work in [td, td + x + e�) due to the carry-out job is at most
max(0, eh − (ph − φh)).

Work due to jobs between Th,ci
and Th,co

. The effective
deadlines of successive jobs of Th are separated by at least
ph time units. Therefore, the number of jobs of Th that lie
between ρh,ci

and td+x+e�−φh is at most �x+e�−ξh−φh

ph
� ≤

x+e�−ξh−φh

ph
.

Combining the three components above, we have

D(Th)

≤
„

x + e� − ξh − φh

ph

«
· eh +

max(0, eh − (ph − φh)) + min(eh − δh, ξh)

= max((x + e� − ξh − φh)uh, (x + e� − ξh − φh)uh

+eh − (ph − φh)) + min(eh − δh, ξh)

{Because eh/ph = uh}
≤ uh(x + e� − ξh) + min(eh − δh, ξh)

{Because 0 ≤ φh ≤ ph and uh ≤ 1}
= uh(x + e� − ∆h − χh) + min(eh − δh, ∆h + χh)

{Letting ξh = ∆h + χh; because dh,ci > td, χh > 0}
= min(eh − δh + uh(x + e� − ∆h − χh),

χh(1 − uh) + ∆h + uh(x + e� − ∆h))

= min(eh − δh + uh(x + e� − ∆h − χh),

(eh − δh)(1 − uh) + ∆h + uh(x + e� − ∆h))

{Because χh + ∆h < eh − δh ⇒ χh < eh − δh}
≤ min(eh − δh + uh(x + e� − ∆h),

(eh − δh)(1 − uh) + ∆h + uh(x + e� − ∆h))

{Because χh > 0}
≤ eh − δh + uh(x + e� − ∆h) + min(0, ∆h − (eh − δh)uh).

≤ eh − δh + uh(x + e� − ∆h) +

min(0, ∆h − (eh − δh)uh) + max(0, uh(eh − e�)). �

Using Lemmas 8 and 9, a bound, as given below, on the
sum of the LAG of Ψ and the competing work due to tasks in
τH can be obtained. This lemma is proved in [7].

Lemma 10 LAG(Ψ, td,S) +
∑

Th∈τH
D(Th) ≤ L +∑

Th∈τH
(eh ·(1−uh)+uh ·(x+e�−∆h)+min(eh ·uh,∆h)+

max(0, uh(eh − e�))), where L = x · UL + UH + EL.

That completes step (S1). The next step is to determine a
lower bound on the amount of such work required for tardi-
ness of T�,j to exceed a certain amount, which we do next.

3.3 Lower Bound on LAG + D

Lemma 11 If (i) LAG(Ψ, td,S) ≤ (m − |τH |) · x + e� and
|τH | < m or (ii) LAG(Ψ, td,S) +

∑
Th∈τH

D(Th) ≤ (m −
max(|τH | − 1, 0) · u�) · x + e�, then the tardiness of T�,j in S
is at most x + e�.

Proof: To prove the lemma, we show that T�,j completes ex-
ecuting by td + x + e�. If j > 1, then d�,j−1 ≤ td − p� holds,
and by (P), we have the following.

(R) T�,j−1 completes executing by td+x+e�−p�, for j > 1.

We consider the two conditions stated in the lemma in two
separate cases below. In what follows, let H = |τH |. Also,
without loss of generality, assume that the jobs in Ψ are the
only jobs of τL (or, equivalently, jobs with deadlines beyond
td have been discarded).

Case 1: LAG(Ψ, td, S) ≤ (m − |τH |) · x + e� and
|τH | < m. Let δ�,j denote the amount of time that T�,j

executed before td. By the conditions of this case, the amount
of work pending at td for jobs in Ψ, and hence for those of
τL in Ψ, is at most (m − H) · x + e�. We first consider the
case where at least m − H tasks of τL are executing at any
instant in [td, td +x+ δ�,j

m−H ) and let td +x+ δ�,j

m−H +ε, where
ε ≥ 0, denote the earliest instant after td at which fewer than
m − H tasks of τL are executing. Then, the amount of work
done in the interval from td to td + x + δ�,j

m−H + ε on jobs

of τL in Ψ is at least (m − H)(x + ε + δ�,j

m−H ). Therefore,

the amount of work pending at td + x + δ�,j

m−H + ε for those
jobs, and hence for T�,j , is at most (m − H) · x + e� − (m −
H)(x + ε + δ�,j

m−H ) = e� − (m − H) · ε − δ�,j . Hence, the

latest time that T�,j completes executing is td + x + δ�,j

m−H +
ε + e� − (m − H) · ε − δ�,j ≤ td + x + e�. (Note that T�,j

can execute uninterruptedly after td + x + δ�,j

m−H + ε until
completion.) On the other hand, if fewer than m−H tasks are
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executing at some time t′ < td + x + δ�,j

m−H , then fewer than
m − H tasks of τL have pending work at t′. Because tasks
of τH can execute on at most H processors at any instant,
T� can execute uninterruptedly from t′ until T�,j completes
execution. Suppose the job of T� executing at t′ is T�,j . Then,
since t′ < td + x + δ�,j

m−H holds, and the amount of work
pending for T�,j is at most e� − δ�,j , T�,j completes executing
before td+x+e�. So, assume that a prior job of T� is executing
at t′. In this case, T�,j could not have executed before td, and
hence, δ�,j = 0, which implies (from the definition of t′) that
t′ < td + x. Furthermore, j ≥ 2 holds, and by (R), T�,j−1

completes executing by td + x, and hence, the latest time that
T�,j commences execution is at or before td + x, and so the
latest time that T�,j completes execution is td + x + e�.

Case 2: LAG(Ψ, td, S)+
∑

Th∈τH
D(Th) ≤ (m−|τH | ·

u�) · x + e�. At the risk of some abuse in terminology, let
a time interval (resp., instant) in [td, td + x + e�) in which all
m processors are executing a job of Ψ or that part of a task in
τH that can compete with Ψ be referred to as a busy interval
(resp., instant). Then, if pending, task T� can execute in every
non-busy instant. If the latest busy instant in [td, td + x + e�)
is at or before td + x, then because, by (R), T�,j−1, if it exists,
completes execution at or before td + x, the latest time that
T�,j completes execution is td + x + e�.

So, for the rest of this proof we assume that the latest busy
instant is after td+x. Let the total lengths of the busy intervals
in [td +x, td +x+e�) be δ ≤ e�. (Refer to Fig. 4.) Therefore,
T� can execute for at least e� − δ time in that interval. If fewer
than m−H +1 tasks are executing at any non-busy instant tn
at or before td +x, then at most m−H tasks of τL have pend-
ing work at or after tn. Hence, since tasks in τH can execute
on at most H processors at any instant, T� is guaranteed unin-
terrupted execution from tn until T�,j completes. Hence, since
by (R), T�,j−1 (if it exists) completes execution by td +x, T�,j

would complete execution no later than td+x+e�. Therefore,
for the rest of this case, assume the following.

(N) At least min(m−H +1,m) tasks are executing at every
non-busy instant in [td, td + x).

Let B denote the total length of all the busy intervals in
[td, td + x + e�). (Refer to Fig. 4.) If B ≤ x− x · u�, then T�

can execute for at least x · u� + e� time in [td, td + x + e�).
By Lemma 4, lag(T�, td,S) ≤ x · u� + e�, and hence, T�,j

would complete executing at or before td +x+e�. So, assume
B = x − x · u� + δ1, where δ1 > 0. With this assumption,
we now compute the total amount of work done in [td, td +
x+e�). The total amount of work done in all busy intervals in
[td, td +x+e�) is m ·B. By (N), at least min(m−H +1,m)
tasks are executing at every non-busy instant in [td, td + x).
The total length of all the non-busy intervals in [td, td + x) is
x − (B − δ). Therefore, the amount of work done in all the
non-busy intervals in [td, td + x) is at least min(m − H +
1,m) · (x − B + δ). The total length of all the non-busy
intervals in [td + x, td + x + e�) is e� − δ, and at least task
T� of τL has pending jobs in Ψ until td + x + e�, and hence,
executes in every non-busy instant in [td + x, td + x + e�).
(Otherwise, it would imply that T�,j has completed executing
before td + x + e�, completing the proof, as well). Hence,
the total amount of work done in [td, td + x + e�) is at least
mB + min(m−H + 1,m) · (x−B + δ) + (e� − δ), which,
on substituting x − x · u� + δ1 for B, simplifies to mx − H ·
x · u� + (m−H) · δ + x · u� + H · δ1 + (e� − δ1), for H > 0
and m · (x + δ) + e� − δ, for H = 0.

By the condition of this case, the amount of work that needs
to be done in [td, td + x + e�) for jobs in Ψ and of tasks in τH

that can compete with Ψ is at most mx−max(H − 1, 0) · x ·
u� +e�. Therefore, the amount of work pending at td +x+e�

is at most −(H − 1) · δ1 − (m − H) · δ, for 1 ≤ H ≤ m,
and is at most −(m− 1) · δ, for H = 0. Because δ and δ1 are
positive, both the above bounds are negative. Thus, no work
of jobs in Ψ, and in particular, that of T�,j , can be pending at
td + x + e�. �

This completes step (S2). We are left with determining a
value for x for which the tardiness of T�,j is at most x + e�.

3.4 Finishing Up

Solving for x using Lemma 8 and the first condition in
Lemma 11, i.e., solving for x in x · UL + UH + EL + EH ≤
(m − |τH |)x + e�, yields

x ≥ EL + UH + EH − e�

(m − |τH |) − UL
, (14)

where EH is as in Fig. 2. Solving using Lemma 10 and the
second condition of Lemma 11, i.e., using

∑
Th∈τH

(eh · (1 −
uh)+uh ·(x+e�−∆h)+min(eh ·uh,∆h)+max(0, uh ·(eh−
e�)))+x·UL+UH +EL ≤ mx−max(|τH |−1, 0)·x·u�+e�,
yields

x ≥ EL + UH + E′
H − e�

m − max(|τH | − 1, 0) · u� − UL − U ′
H

, (15)

where E′
H and U ′

H are as in Fig. 2. Hence, if x is smaller
of the two values that are on the right-hand sides of (14) and
(15), then the tardiness of T�,j would not exceed x + e�. A
value of x that is independent of the parameters of T� is ob-
tained by replacing e� by emin and u� by umax(τL) in (14)
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and (15). Similarly, the e� term in the expression for E′
H has

to be replaced by emax(τL). By inducting over the jobs of
τL in the non-decreasing order of their deadlines, we have the
following.

Theorem 1 EDF-hl ensures a tardiness of at most
min(X1, X2) + ek to every task Tk of τL if |τH | ≤ m

and Usum(τ) ≤ m, where X1 = EL+UH+EH−emin(τL)
(m−|τH |)−UL

and

X2 = EL+UH+E′
H−emin(τL)

m−max(|τH |−1,0)·umax(τL)−UL−U ′
H

.

Conditions for bounded tardiness. Since the derivation
was based on the assumption that x ≥ 0, X1 and X2 are
valid only if their denominators are non-negative. X1 and
X2 are bounded only if their denominators are greater than
zero. Hence, if the sum of the utilizations of the Λ − 1 heav-
iest tasks in τL is less than m − |τH |, then X1 is bounded.
Similarly, X2 is bounded only if the sum of the utilizations of
the heaviest Λ − 1 tasks in τL is less than m − max(|τH | −
1, 0)·umax(τL)−U ′

H . Hence, if either of the above conditions
holds, then bounded tardiness is guaranteed to tasks in τL.

4 Performance Evaluation

In this section, we present the results of a simulation-based
evaluation of (i) the tardiness-utilization trade-off possible in
the absence of privileged tasks and (ii) the range of the tar-
diness bound guaranteed by EDF-hl on an average. Due to
space constraints, only a subset of the results is presented here.

Tardiness-utilization trade-off. As mentioned earlier,
EDF-hl reduces to EDF in the absence of privileged tasks.
Hence, in this case, the tardiness bound given in Thm. 1
applies to every task in τ . Note that the tardiness bound is
expressed in terms of Usum(τ) in addition to individual task
parameters. Hence, an alternative to EDF-hl for guaranteeing
lower tardiness is to lower Usum. This approach may be
preferable if a majority of the tasks require lower tardiness
and the gains are reasonable for slight decreases in Usum.

In the absence of privileged tasks, using a slightly different,
but more complicated, analysis than that used in Sec. 3 or in

[8], it can be shown that

UL ≤
Λ−1X
k=1

u2
k(m − Λ)

(m − Usum) + uk(Usum − Λ)
, (16)

which when used in the expression for the tardiness bound in
Thm. 1 results in slightly lower values. We will refer to the
bound given in Thm. 1 as BASIC and the bound obtained by
using (16) as IMPR.

We evaluated the tardiness-utilization trade-off that is pos-
sible by generating random task sets with varying values for
Usum and computing the BASIC and IMPR bounds for each
and comparing these bounds with those obtained from our ear-
lier work, when Usum = m [8]. Simulation experiments were
conducted for four, eight, 16, and 32 processors, with Usum

varying between 3m/4 and m in increments of 0.1. 600,000
task sets, with at least m + 1 tasks in each, were generated
for each (Usum,m) pair. The maximum utilization of any
task in a task set varied uniformly from 0.5 to 1.0. The task
sets generated were grouped based on uavg and eavg , where
uavg and eavg are the averages of the highest �Usum� task uti-
lizations and execution costs, respectively. The variation in
tardiness (mean of the maximum tardiness for all task sets in
a group) with Usum for m = 16, when 0.4 < uavg ≤ 0.5
and 19.0 < eavg ≤ 20.0, and m = 8 and m = 32, when
0.7 < uavg ≤ 0.8 and 14.0 < eavg ≤ 15.0, are presented
in Fig. 5. Note that the rate at which tardiness drops with de-
creasing Usum is higher when uavg is higher (in the (0.7, 0.8]
range). Furthermore, the rate at which tardiness drops with
Usum decreases with decreasing Usum. For instance, in in-
set (c), reducing Usum to 31.0 (which is 96.8% of m(= 32))
lowers tardiness to less than 50.0 from over 60.0, which is
a drop of over 20%, whereas to lower tardiness to less than
40.0, Usum has to be decreased to approximately 27.0 (which
is 84.3% of m). Hence, setting Usum to a value slightly lower
than m may be appropriate when high utilization tasks are
present in the task system. At this point, we would like to note
that these characteristics should be attributed to the bounds de-
rived (and to the analysis) and not to the algorithm per se.

Tardiness bounds for EDF-hl. We also evaluated the tar-
diness bounds that can be guaranteed to unprivileged tasks
on an average under EDF-hl for m = 4 and m = 16, with
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Figure 6. Experimental evaluation of the tardiness bounds guaranteed by Thm. 1 under EDF-hl for tasks in |τL|. LU with (a) m = 4 and
(b) m = 16. HU with (c) m = 4 and (d) m = 16. The different curves in each inset correspond to different values of |τH |. |τH | = 0 for the
bottom-most curve and is greater by one for each curve higher up.

Usum = m. The task sets generated were grouped based on
the average of the m highest task utilizations and the utiliza-
tions of the tasks in τH , denoted uavg. (eavg is with respect
to execution costs, analogously.) For each task set generated,
the number of tasks in τH was varied from zero to m, and for
each |τH |, the members of τH were chosen in two different
ways: first, as tasks with the lowest |τH | utilizations in the
generated task set (denoted LU), and then, as tasks with the
highest |τH | utilizations (denoted HU). The variation in tardi-
ness with uavg as the number of privileged tasks is increased
is plotted in Fig. 6 for both LU and HU. As expected, tardi-
ness increases with |τH | and uavg, and the increase is higher
for HU than for LU. The tardiness bounds computed grew to
unbounded values for certain task sets at high values of |τH |,
with the percentage of such task sets increasing with increas-
ing uavg. Further details on such task sets can be found in [7].

5 Conclusion
We have addressed the issue of supporting tasks whose tol-
erance to tardiness is lower than that currently known to be
possible under EDF. We have proposed a new scheduling pol-
icy called EDF-hl, which is based on EDF, and have shown
that under EDF-hl, a limited number of privileged tasks can
be guaranteed any tardiness, including zero tardiness, and that
bounded tardiness can be guaranteed to the remaining tasks
if their utilizations are restricted. The tardiness bound de-
rived is a function of Usum, in addition to individual task
parameters, and hence, tardiness for all tasks can be low-
ered by slightly lowering Usum. We have, through simula-
tions, assessed the impact of privileged tasks on the tardiness
bounds that can be guaranteed to the remaining tasks, and the
tardiness-utilization trade-off that is possible in the absence of
privileged tasks.

This problem of supporting sporadic tasks with different
tardiness requirements may alternatively be viewed as one of
supporting tasks with relative deadlines at least periods. The
EDF schedulability tests available for task systems with rel-
ative deadlines equal to periods on a multiprocessor, though
applicable when deadlines may exceed periods also, are pes-
simistic and tend to under-utililize the underlying platform.
The work presented in this paper is an attempt towards reme-
dying this limitation.
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