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Abstract 

High-performance multiprocessor systems built 
around out-of-order processors with aggressive branch 
predictors execute many memory references that turn out 
to be on a mispredicted branch path. Previous work that 
focused on uniprocessors showed that these wrong-path 
memory references may pollute the caches by bringing in 
data that are not needed on the correct execution path and 
by evicting useful data or instructions. Additionally, they 
may also increase the amount of cache and memory 
traffic. On the positive side, however, they may have a 
prefetching effect for memory references on the correct 
path. While computer architects have thoroughly studied 
the impact of wrong-path effects in uniprocessor systems, 
there is no previous work on its effects in multiprocessor 
systems. In this paper, we explore the effects of wrong-
path memory references on the memory system behavior of 
shared-memory multiprocessor (SMP) systems for both 
broadcast and directory-based cache coherence. Our 
results show that these wrong-path memory references can 
increase the amount of cache-to-cache transfers by 32%, 
invalidations by 8% and 20% for broadcast and directory-
based SMPs, respectively, and the number of writebacks 
by up to 67% for both systems. In addition to the extra 
coherence traffic, wrong-path memory references also 
increase the number of cache line state transitions by 21% 
and 32% for broadcast and directory-based SMPs, 
respectively. In order to reduce the performance impact of 
these wrong-path memory references, we introduce two 
simple mechanisms – filtering wrong-path blocks that are 
not likely-to-be-used and wrong-path aware cache 
replacement – that yield speedups of up to 37%. 

1 Introduction 

Shared-memory multiprocessor (SMP) systems are 
typically built around a number of high-performance out-

of-order superscalar processors, each of which employs 
aggressive branch prediction techniques in order to 
achieve high issue rate. During program execution, these 
processors speculatively execute the instructions following 
the target of a predicted branch instruction. When a branch 
is mispredicted, the processor must restore its state to the 
state that existed prior to the mispredicted branch before 
the processor can start executing instructions down the 
correct path. However, during speculative execution, i.e.,
before the branch outcome is known, the processor 
speculatively issues and executes many memory 
references down the wrong-path. Although these wrong-
path memory references are not allowed to change the 
processor’s architectural state, they do change the data and 
instructions that are in the memory system, which can 
affect the processor’s performance. 

Previous work [1, 5, 8, 13-17, 19-22] studied the 
effects that speculatively executed memory references 
have on the performance of out-of-order superscalar 
processors. These papers yield several conclusions. First, 
wrong-path memory references may function as indirect 
prefetches by bringing data into the cache that are needed 
later by instructions on the correct execution path [14, 19, 
20, 21]. Unfortunately, these wrong-path memory 
references also increase the amount of memory traffic (i.e.,
increased bandwidth consumption) and can pollute the 
cache with cache blocks that are not referenced by 
instructions on the correct path [13, 14, 19, 22]. Of these 
two effects, cache pollution – particularly in the L2 cache 
– is the dominant negative effect [13, 14]. The results in 
[14] also show that it is extremely important to model 
wrong-path memory references, since they have a 
significant impact on the estimated performance.  

In this paper, we focus on the effect that wrong-path 
memory references have on the memory system behavior 
of SMP systems, in particular, for both broadcast-based 
and directory-based cache coherence. For these systems, 
not only do the wrong-path memory references affect the 
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performance of the individual processors, they also affect 
the performance of the entire system by increasing the 
number of cache coherence transactions, the number of 
cache line state transitions, the number of writebacks and 
invalidations due to wrong-path coherence transactions, 
and the amount of resource contention (buffer usage, 
bandwidth, etc.).  

In this paper, to minimize the effect that wrong-path 
memory references have on the performance of a SMP 
system, we propose and evaluate a simple mechanism to 
filter out the wrong-path cache blocks that are unlikely to 
be used on the correct-path. Our filtering mechanism uses 
temporal locality and L1 data cache evictions to determine 
if the corresponding cache block should be evicted from 
the L2 cache. In addition to this filtering mechanism, we 
also propose a cache replacement policy that is wrong-
path aware. More specifically, we add a field to each cache 
line to indicate whether or not that cache line was due to 
an instruction on the correct-path or the wrong-path. When 
evicting a cache block from a set, evict the oldest wrong-
path cache block. Our results show that both of these 
simple mechanisms can significantly reduce the negative 
impact that wrong-path memory accesses have on the 
performance of SMP systems. 

This paper makes the following contributions: 

1. It analyzes and quantifies the effect that 
wrong-path memory accesses have on the 
performance of SMP systems, in particular, 
how wrong-path memory accesses affect the 
cache coherence traffic and state transitions, 
and the resource utilization.  

2. It proposes a filtering mechanism and a 
replacement policy that evicts the oldest 
wrong-path cache blocks first to minimize the 
impact that wrong-path memory references 
have on the performance of SMP systems. 

The remainder of the paper is organized as follows – 
Section 2 describes the effects that wrong-path memory 
references can have on the memory system behavior of 
SMP systems. Sections 3 and 4 present the details of the 
simulation environment and the simulation results, 
respectively. Section 5 describes our filtering mechanism 
and the wrong-path aware replacement policy, and how 
they reduce negative effects of wrong-path memory 
references. Section 6 describes some related work, while 
Section 7 concludes and suggests some future work. 

2 Wrong-Path Effects 

When designing a coherent shared-memory 
interconnect, the most important design decision is the 
choice of the cache coherence protocol. Popular protocols 
include: MSI (Modified, Shared, Invalid), MESI 

(Modified, Exclusive, Shared, Invalid), MOSI (Modified, 
Owned, Shared, Invalid), and MOESI (Modified, Owned, 
Exclusive, Shared, Invalid) [9]. Since the cache coherence 
protocol maintains the illusion of sequential consistency 
between processors, when a processor accesses memory, 
the coherence state (i.e., M, O, E, S, or I) of the cache 
lines in the processors’ data caches may change. However, 
although the branch prediction accuracy of modern high-
performance processors is high, when a branch 
misprediction does occur, loads on the mispredicted path 
access the memory subsystem, which generates additional 
coherence traffic (additional communication and state 
transitions). While these extra state transitions do not 
violate the illusion of sequential consistency, they may 
degrade the performance of the cache coherence protocol 
and, subsequently, the performance of the memory 
subsystem, and, finally, the performance of the SMP. In 
the remainder of this section, we discuss the potential 
effects that wrong-path memory references can have for 
each of the aforementioned four cache coherence protocols 
(MSI, MESI, MOSI, and MOESI). 

2.1 Replacements 

A speculatively-executed load instruction that is later 
determined to be on a mispredicted path may bring a cache 
block into data cache that replaces another block that may 
be needed later by a load on the correct-path. As a result of 
these replacements, wrong-path loads pollute the data 
cache [13, 19], which may cause additional cache misses. 
Figure 1, Step 2 shows an example of this situation. In this 
example, Processor 0 speculatively requests Block A, 
which causes the replacement. 

On the other hand, these speculatively accessed 
memory references can potentially hide the memory 
latency for later correct path misses, i.e. prefetching [14, 
19-21], which can improve the processor’s performance. 

2.2 Writebacks 

In contrast to the writebacks caused by the correct-path 
replacements, in a SMP system, the coherence actions 
caused by wrong-path memory references can also cause 
writebacks. For example, if the requested wrong-path 
block has been modified by another processor, i.e., its 
cache coherence state is M, a shared copy of that block is 
sent to the requesting processor’s cache, which 
subsequently may cause a replacement. When the evicted 
block has a cache coherence state of M (exclusive, dirty) 
or O (shared, dirty) state, this causes an additional 
writeback, which would not have occurred if the wrong-
path load had not accessed memory in the first place. Step 
2 in Figure 1illustrates this example. Extra writebacks, in 
addition to what is discussed above, may occur in MSI or 
MESI coherence SMPs. For these two protocols, if the 
requested wrong-path block is in the M state in



Figure 1. Summary of the wrong-path effects on a SMP system for MOSI (Modified, Owned, Shared, Invalid) or 
MOESI (Modified, Owned, Exclusive, Shared, Invalid) coherence protocols. Blocks A and B map to the same cache. 
(1) Initially, block B is in the Modified (M) state in P0’s cache and it is the LRU (Least Recently Used) block in the 
set, while block A is in P1’s cache in the M state. (2) P0 speculatively reads block A. A Shared (S) copy of the block 
replaces block B and causes a writeback. The copy in P1’s cache changes its state to O. (3) Speculation turns out 
to be incorrect. Note the extra cache transactions and state transitions. (4) P1 writes on block A and gets the 
exclusive ownership (state of block A is M now). This causes invalidation to be sent to the caches sharing block A. 

another processor’s cache, a shared copy of that block is 
sent to the requesting processor’s cache and also it is 
written back to the memory. Then the cache coherence 
state of that cache block is demoted from M to S in the 
original owner’s cache. This additional writeback may not 
occur without the wrong-path load.

2.3 Invalidations 

To maintain the illusion of sequential consistency, a 
store instruction cannot write its value to memory until it 
becomes the oldest (i.e., non-speculative) instruction in the 
processor. As a result, store instructions can never cause 
any extra invalidations.1 However, wrong-path loads may 
cause additional invalidations. 

For example, assuming a MOESI protocol, when a 
wrong-path load instruction accesses a cache block that 
another processor has modified, the state of that cache 
block changes from M to O in the owner’s cache and will 
have a cache coherence state of shared, S, in the 
requester’s cache. If the owner of that cache block needs 
to write to it, the owner changes the state of that block 

                                               
1 In this study, we did not consider the multiprocessors based on 
uniprocessors that may speculatively execute store instructions, such as 

the speculative versioning cache of Multiscalar [32], or Levo [34]. 

from O to M and invalidates all other copies of that cache 
block. Therefore, as this example shows, changes in the 
cache coherence state of a cache block due to a wrong-
path load can cause additional invalidations. Figure 1, Step 
4 illustrates this example. 

2.4 Cache Block State Transitions 

In addition to causing additional replacements, 
writebacks, and invalidations, wrong-path memory 
references can also cause transitions in the cache 
coherence state of a cache block. For example, when a 
wrong-path memory reference accesses a modified cache 
block in another processor’s cache, under the MOESI 
protocol, the cache coherence state of that block changes 
from M to O in the owner’s cache. The state of that cache 
block changes back to M when the owner writes to that 
block. These changes in the cache coherence is due solely 
to the wrong-path access. Therefore, in this case, a wrong-
path memory access in another processor results in two 
extra cache state transitions in the owner’s cache (see 
Steps 2 and 4 in Figure 4). 



Table 1. Benchmarks and input data sets 
Benchmark Description Input Data Set 

fft Complex 1-D FFT 64K points 

radix Integer radix sort 2M integers, radix 1024 

ocean 
Simulates large-scale ocean 
movements 

128x128 ocean 

water-spatial 
Simulation of water 
molecules 

512 molecules 

em3d 
Electromagnetic force 
simulation 

400K nodes, degree 2, 
span 5, 15% remote 

Table 2. Broadcast (snoop)-based and directory-based 
SMP system parameters 

Parameter Value 

Processors 16 UltraSPARC III processors 

2 GHz 15-stage pipeline, out-of-order execution 

8-wide dispatch/retirement 

256/128-entry ROB/scheduler 

10 cycle branch misprediction penalty 

GSHARE branch predictor with 4K PHT 

64-entry return address stack 

Processor 

Parameters 

32 Entry CAS and CAS exception table 

Split I/D, 32KB 2-way, 128 Byte Blocks, with 2ns 
access latency L1 Caches 

32 Entry MSHRs 

Unified, 2 MB 2-way, 20ns hit latency 
L2 Caches 

Exclusive L1 and L2s 

Main Memory 4 GByte per bank, 240ns DRAM latency 

Interconnect Hierarchical Switch 

2.5 Data/Bus Traffic and Coherence 

Transactions 

Due to these extra replacements, writebacks, 
invalidations, and changes in the cache coherence state, 
wrong-path memory accesses increase the amount of 
traffic due to L1 and L2 cache accesses, as well as 
increasing the number of snoop and directory requests. 

2.6 Power Consumption 

In the best case, even if wrong-path memory references 
do not affect the performance of the SMP system, they still 
may increase system’s overall power consumption [23].  

Several previous studies proposed methods to reduce 
the power in snoop-based systems [23-27] by filtering 
unnecessary snoops. In particular, Moshovos et al. [23] 
showed that filtering unnecessary snoops can reduce the 
total L2 cache power by 30%. Accordingly, reducing the 
cache line transitions and cache coherence traffic due to 
wrong-path memory accesses should also reduce the 
power consumption. However, in this paper, we defer a 
detailed examination of the attendant power consumption 
implications to future work. 

2.7 Resource Contention 

Finally, in addition to the aforementioned effects, 

wrong-path memory accesses can also increase the amount 
of resource contention. More specifically, wrong-path 
memory accesses compete with correct-path memory 
accesses for the multiprocessor’s resources, such as 
request and response queues at the communication 
interconnect, and interprocessor bandwidth. The additional 
cache coherence transactions may increase the frequency 
of full service buffers, which increases the chance for 
deadlock. In this paper, however, we assume a sufficient 
network bandwidth to keep the network contention low. 
With the possible exceptions of fft, which uses all-to-all 
communication, and em3d, network contention was not a 
problem for the benchmarks that we studied in this paper. 
However, for other workloads, network contention could 
have a serious performance impact. 

3 Experimental Methodology 

3.1 Benchmarks 

Table 1 lists the five benchmarks that we used in this 
paper. The first four benchmarks are benchmarks from the 
SPLASH-2 benchmark suite [31], while em3d [33] is an 
electromagnetic force simulation benchmark. 

3.2 Simulated System Configurations 

In this paper, we evaluate a 16-processor SPARC v9 
system running an unmodified copy of Solaris 9. We 
simulate both snoop-based and directory-based SMP 
systems with an invalidation-based cache coherence. We 
use the MOSI and MOESI cache coherence protocols, 
respectively, for the snooping-based and directory-based 
SMP systems. Each node includes an aggressive, 
dynamically-scheduled, out-of-order processor core [10], 
two levels of cache, coherence protocol controllers, and a 
memory controller [11]. Table 2 lists the relevant 
parameters of simulated SMP systems. 

3.3 Simulation Methodology 

We collect our simulation results using the GEMS 
[10] extension to Virtutech’s Simics [35], which is a full 
system simulator. GEMS adds cycle-accurate models of an 
out-of-order processor core, cache hierarchy, various 
cache coherence protocols, multibanked memory (unified 
or distributed), and various interconnection networks to 
the base-version of Simics.  
 To avoid measuring the time needed for thread-
forking, we begin our measurements at the start of the 
parallel phase by using Simics’ functional simulation to 
execute the benchmarks until the start of the parallel 
phase. Then, we use first iteration of the loop to warm-up 
the caches and branch predictors. After the first iteration, 
we simulate the benchmark for one iteration to gather our 
simulation results. 
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Figure 2. Percentage of increase in L1 and L2 cache 
traffic for broadcast-based SMPs 
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Figure 3. Percentage increase in L1 and L2 cache 
traffic for directory SMPs 

4 Evaluating the Wrong-Path Effects 

In this section, we evaluate the impact that executing 
wrong-path memory references have on the caches of the 
processors in the SMP, the communication between 
processors due to coherence transactions, and the overall 
performance of SMP. To measure the various wrong-path 
effects, we track the speculatively generated memory 
references and mark them as being on the wrong-path 
when the branch misprediction is known. 

4.1 L1, L2, and Coherence Traffic 

Figure 2 shows the increase in the traffic between 
processor and its L1 data cache due to wrong-path 
memory references, as a percentage of the total number of 
memory references, for both broadcast and directory-based 
SMPs. Figure 3 does the same for the L1 data cache and 
L2 cache traffic. 

Figure 2 shows that wrong-path loads increase the total 
number of memory accesses by an average of 17% and 
14%, for broadcast and directory-based SMPs, 
respectively, while Figure 3 shows that these loads 
increase the percentage of L2 cache accesses by 23% and 
21% for broadcast and directory-based SMP systems, 
respectively. For all benchmarks and for both SMP 
systems, the percentage increase in the number of L2 
references is larger than the percentage increase in the 
number of L1 cache references. For em3d, while this 
increase is negligible for both systems, the number of L1 
misses increases by as much as 30%. 

Figure 4 shows that wrong-path memory accesses 
increase the number of coherence transactions by an 
average of 32% and 33% for broadcast and directory-
based SMPs, respectively, while for em3d, the coherence 
traffic increases by over 60%.  

4.2 Cache Line Replacements 

Wrong-path memory references can have both a 
positive and negative effect on the processor’s 
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Figure 4. Percentage of increase in coherence traffic 
for SMPs  

performance by either prefetching data into the caches or 
by polluting them [13, 14, 19, 20], respectively. To 
determine their performance impact, we categorize the 
misses caused by wrong-path loads into four groups: 
unused, used, direct miss, and indirect miss. We classify a 
wrong-path cache block as unused when it is evicted 
before being used or is never used by a load on the 
correct-path. Conversely, we classify a wrong-path cache 
block as used when a correct-path memory access 
references it. A direct miss cache block replaces a cache 
block that will be referenced later by a correct-path load, 
which has a very large performance impact, but is itself 
evicted before being used. 

Finally, one side-effect that unused wrong-path cache 
blocks have is that they change the LRU state of the other 
cache blocks in that set, which may eventually cause 
correct-path misses. We call these misses indirect misses.
For example, assume that: 1) Cache blocks A, B, C, and D
all map to the same set, 2) We have a two-way associative 
set that contains blocks A and B, 3) B is the LRU block, 
and 4) C is the only cache block on the wrong-path. In this 
situation, the sequence of operations is as follows: Wrong-
path block C replaces B, D replaces A, and, after a cache 
miss, A replaces C. If the wrong-path reference for block 
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Figure 7. Servicing coherence transactions for 
directory-based SMPs for the correct-path (CP) and the 
wrong-path (WP). 

C did not occur, then the correct-path reference for block 
A would have been a cache hit. 

Figure 5 classifies the wrong-path-caused cache misses 
into the aforementioned four categories. The results show 
that 55% to 67% of the wrong-path replacements in the L1 
data cache and 12% to 36% of the wrong-path 
replacements in the L2 are used in broadcast-based 

systems. Direct misses account for 5% to 62% of all 
wrong-path replacements and account for a higher 
percentage of wrong-path misses in broadcast-based SMP 
systems than for directory-based. Finally, indirect misses
account for less than 5% of all wrong-path misses for most 
of the benchmarks and systems tested. 

It is important to note that direct and indirect misses 
are responsible for the pollution caused by the wrong-path 
memory references. While they have similar effect on the 
L1 data cache for both broadcast and directory systems, 
their effects on L2 cache are different between the two 
SMP systems. For directory-based, almost all of the L2 
replacements are used, while the opposite is true for 
broadcast-based. This suggests that wrong-path memory 
references have a greater effect on broadcast-based 
systems. However, a small number of remote misses 
caused by wrong-path loads may have a disproportionately 
large performance impact in a directory-based system, as 
compared to a broadcast-based system. 

4.3 Servicing Cache Coherence Transactions 

Broadcast-based cache coherence provides the lowest 
possible latency to retrieve data since misses can either be 
served by remote caches or shared memory. In contrast, in 
a directory-based SMP, misses can be served locally 
(including the local directory), at a remote home node, or 
by using both the home node and the remote node that is 
caching an exclusive copy, i.e., a three-hop miss. The 
latter case has a higher cost because it requires 
interrogating both the home directory and a remote cache. 
Coherence misses account for most of the remote misses.  

Figures 6 and 7 show how the correct-path and wrong-
path cache coherence transactions are serviced for 
broadcast and directory-based SMP systems, respectively. 
The figures show that the results are similar for both SMP 
systems. Namely, remote caches service a greater 
percentage of the wrong-path misses than for correct-path 
misses for all benchmarks except em3d. For those 
benchmarks, the percentage of misses serviced by remote 
caches varies from 12% to 80% for correct-path loads and 
55% to 96% for wrong-path loads. For the directory-based 
SMP, in all benchmarks, local memory services only a 
very small percentage of both correct-path and wrong-path 
memory references. 

4.4 Replacements and Writebacks 

As described in Section 2.2, wrong-path replacements 
may cause extra writebacks that would not occur 
otherwise. Figures 8 and 9 show the percentage increase in 
the number of replacements and writebacks due to wrong-
path memory references. Figure 8 shows the percentage 
increase in the number of E (for directory MOESI) and S 
line replacements. E I transitions – which increased by 
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2% to 63% – are particularly important since the processor 
loses the ownership of a block and, more importantly, the 
ability to silently upgrade its value, which can 
significantly increase the number of invalidations needed 
for write upgrades. For broadcast-based SMPs, the number 
of S line replacements account for a significant fraction of 
the total number of the replacements due to wrong-path 
references, while they are relatively insignificant for 
directory-based. For em3d, there is a large increase in both 
the replacements and writebacks. 

Figure 9 shows that wrong-path memory accesses 
increase the number of writebacks from 4% to 67%. It is 
important to note that writebacks may result in additional 
stall cycles when an L2 cache miss occurs after the 
processor starts to perform a writeback, since it cannot 
begin to service the miss until the writeback completes. 

4.5 Cache Line State Transitions 

Figure 10 shows the impact that wrong-path memory 
references have on the number of cache line state 
transitions. The results show that the number of cache line 
state transitions increase by 20% to 24% for a broadcast-

based SMPs and by 27% to 44% for directory-based. 
Although the percentage increase is smaller for the 
broadcast-based system, the number of cache line state 
transitions is much higher to begin with. 

A processor loses ownership of an exclusive cache 
block (M or clean E) when another processor references it. 
In order to regain ownership, that processor has to first 
invalidate all other copies of that cache block, i.e., S I, 
for all other processors. Section 2.4 describes this situation 
in more detail. Figure 11 shows that there is 8% to 11% 
increase in the number of write misses – each of which 
subsequently causes an invalidation – for broadcast-based 
SMPs; this percentage is higher, 15% to 26%, for the 
directory-based SMPs. 

5 Filtering and replacement policies for 

wrong-path memory references 

In Section 4, we described the effects that wrong-path 
memory references can have on the memory subsystem 
behavior of broadcast and directory-based SMP systems. 
In this section, we evaluate two enhancements that try to 



minimize the negative effects of wrong-path memory 
references, while retaining their positive effects (i.e.,
prefetching), to improve the performance of an SMP 
system without significantly increasing the complexity of 
the memory subsystem.  

5.1 Reducing Cache Pollution via Filtering 

Based on the results in Section 4, we propose a 
filtering mechanism that reduces the cache pollution due 
by direct and indirect miss wrong-path references, and by 
evicting the unused wrong-path blocks early. We apply 
our filtering mechanism to the L2 cache due to the long 
latency of L2 instructions.  

We base our filtering mechanism on the observation 
that if a speculatively-fetched cache block is not used 
while it resides in the L1 cache, then it is likely that that 
block will not be used at all or will not be used before 
being evicted from the L2 cache [13]. 

In this paper, we evaluate exclusive L1 and L2 caches. 
A block that misses both in L1 and L2 allocates a line only 
in the L1 cache. Then, when a block is evicted from the L1 
cache, it is written to L2.  

Our filtering mechanism works as follows: If a wrong-
path block is evicted from the L1 cache before being used 
by a correct-path memory reference, it is allocated to the 
L2 cache only if its L2 set has an empty way, i.e., at least 
one cache way is invalid.  If not, then that cache block is 
discarded, i.e., not allocated to the L2 cache, but written to 
memory only. A wrong-path block that services a correct-
path reference is handled in the same way as a correct-path 
block. 

We can further filter wrong-path blocks from being 
placed in L2 cache by canceling the wrong-path references 
in the L2 cache request queue as soon as the misprediction 
is known. For example, if a requested block is an L1 cache 
miss, a request is sent to the L2 cache controller and 
placed in a request queue. At the time that the L2 cache 
controller processes this request, if it is known that the 
load instruction was on a mispredicted branch path, then 
this request is simply discarded without being serviced. (If 
this request were not discarded, it would cause an L2 miss 
and could possibly replace a valid block in the L2 cache.) 
However, if there is an invalid line the set, the L2 cache 
controller services that wrong-path memory reference and 
overwrites the invalid line. Otherwise, the L2 cache 
controller processes this request as usual.  

5.2 A Wrong-Path Aware Replacement Policy 

Our second proposed enhancement is to make the 
cache replacement policy wrong-path aware. To 
accomplish this, when a block is brought into the cache, it 
is marked as being either on the correct-path or on the 
wrong-path. (There are several possible ways to design 
such a mechanism, but they are beyond the scope of this 

paper.) Later, when a block needs to be evicted from that 
set in the cache, assuming that all cache blocks are valid 
(if not, an invalid block is “replaced” first), wrong-path 
blocks are evicted first, on a LRU basis if there are 
multiple wrong-path blocks. However, a wrong-path block 
that services a correct path reference is marked as if it was 
on the correct-path, thus excluding it from the wrong-path 
replacement policy. If all cache blocks originated from a 
correct-path reference, then the LRU block in that set is 
chosen for eviction.  

5.3 Performance Evaluation 

Figure 12 shows the speedup results for the 
enhancements described in Sections 5.1 and 5.2. In this 
figure, there are a total of three enhancements: 
replacement, filter, and their combination, i.e.,
filter+replacement.
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Figure 12. Percentage speedup in execution time for 
wrong-path aware replacement, L2 wrong-path filter, 
and for combination of both, i.e., filter+replacement.  

The results in Figure 12 show that a simple wrong-path 
aware replacement policy may perform very well for some 
benchmarks. For example, for water, all three 
enhancements yield speedups over 30% for the broadcast-
based SMPs. Overall, the performance of the 
enhancements varies across benchmarks and systems. On 
average, filtering yields higher speedups than wrong-path 
aware replacement, while also outperforming replacement 
for all benchmarks for directory-based SMPs. For 
broadcast-based SMPs, filter performs better than 
replacement for radix, water and em3d. Employing a 
simple wrong-path replacement policy does not 
significantly improve the performance of ocean and fft.

6 Related work 

To best of our knowledge, no previous work examined 
the effects that wrong-path memory references have on 
SMPs. However, several papers examined the effect that 
speculative execution had on the performance of 



uniprocessor systems. Mutlu et al. [14, 15] analyzed the 
performance impact that wrong-path references have for 
different memory latencies and instruction window sizes. 
Their results showed that the major reason for 
performance degradation due to wrong-path memory 
references is L2 cache pollution. 

Sendag et al. [19] proposed using the fully-associative 
Wrong-Path Cache (WPC) to eliminate the cache 
pollution caused by wrong-path references. The WPC 
stores data brought into the processor by wrong-path load 
instructions and evicted from the L1 cache. The processor 
accesses the WPC and the L1 data cache in parallel. 
Hence, the WPC functions both as a victim cache [8] and a 
buffer to store data fetched by wrong-path references. This 
approach eliminates the pollution caused by wrong-path 
references in the L1 cache. Sendag et al. [20] also studied 
the effects of incorrect speculation on the performance of a 
concurrent multithreaded architecture. They analyzed how 
wrongly-forked threads affected the memory system 
performance in addition to the known effects by the 
wrong-path load instructions in a uniprocessor. 

Mutlu et al. proposed using the L1 caches as filters to 
reduce the pollution in the L2 cache caused by speculative 
memory references, including both wrong-path and 
prefetched references [13]. Their mechanism takes 
advantage of the observation that pollution in the L1 cache 
caused by speculative references has less impact on the 
performance than pollution in the L2 cache. Their 
approach reduces the L2 cache pollution due to 
speculative references for both for out-of-order and 
runahead processors, without requiring extra storage to 
hold the data fetched by the speculative references. 

Finally, Pierce and Mudge studied the effect of wrong-
path memory references on cache performance [16]. Their 
study used trace-driven simulation, where they injected a 
fixed number of instructions to emulate the wrong-path. 
However, this is not realistic because the number of 
instructions executed on the wrong-path is not fixed in a 
real processor [5]. They also introduced an instruction 
cache prefetching mechanism, which shows the usefulness 
of wrong-path memory references to the instruction cache 
[17]. Their mechanism fetches both the fall-through and 
target addresses of conditional branch instructions, i.e.,
their mechanism prefetches instructions on the taken and 
not-taken paths.  

It is important to note that all of the papers that were 
described in this section used simulation environments that 
did not run an operating system on top of the simulator, 
thus ignoring the effect of the operating system. In this 
paper, we used full-system cycle-accurate simulator 
(GEMS based on Simics), which accounts for operating 
system effects, and measures the wrong-path effects in 
both user and supervisor modes. 

7 Conclusion and Future Work 

In this paper, we evaluate the effects of executing 
wrong-path memory references on the memory behavior 
of cache coherent multiprocessor systems. Our evaluation 
reveals the following key conclusions: 

1. It is important to model wrong-path memory 
references in cache coherent shared-memory 
multiprocessors. Neglecting to model them 
may result in incorrect design decisions, 
especially for future systems with longer 
memory interconnect latencies and processors 
with larger instruction windows. 

2. For SMP systems, not only do the wrong-path 
memory references affect the performance of 
the individual processors due to prefetching 
and pollution, they also affect the performance 
of the entire system by increasing the number 
of cache coherence transactions, the number of 
cache line state transitions, the number of 
writebacks and invalidations due to wrong-
path coherence transactions, and the amount of 
resource contention (buffer usage, bandwidth, 
etc.).  

3. For a workload with many cache-to-cache 
transfers, wrong-path memory references can 
significantly affect the coherence actions. 

4. Finally, simple mechanisms such as filtering 
unlikely to-be-used wrong-path blocks from 
being placed into L2 or making the 
replacement policy wrong-path aware can 
significantly improve the SMP performance. 

Future Work: A thorough evaluation of wrong-path 
effects requires a detailed examination of how memory 
subsystem parameters (e.g., cache size, associativity and 
block size), varying numbers of processors, different 
interconnections networks, and different multiprocessing 
models (e.g., chip multiprocessor-based SMPs) change the 
effects that wrong-path references have on SMP 
performance. 

Second, while we evaluated two possible 
enhancements in this paper, our primary goal was not to 
comprehensively study specific enhancements to improve 
the performance of SMP systems, but rather to study their 
potential effects. However, in our future work, we plan to 
develop more accurate filtering and replacement 
mechanisms to minimize the negative performance effects 
of speculative memory accesses. 
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