
Quantifying and Reducing the Effects of Wrong-Path Memory References in

Cache-Coherent Multiprocessor Systems

Resit Sendag1, Ayse Yilmazer1, Joshua J. Yi2, and Augustus K. Uht1

1 - Department of Electrical and Computer Engineering
University of Rhode Island

Kingston, RI
{sendag,yilmazer,uht}@ele.uri.edu

2 - Networking and Computing Systems Group
Freescale Semiconductor, Inc.

Austin, TX

joshua.yi@freescale.com

Abstract

High-performance multiprocessor systems built
around out-of-order processors with aggressive branch
predictors execute many memory references that turn out
to be on a mispredicted branch path. Previous work that
focused on uniprocessors showed that these wrong-path
memory references may pollute the caches by bringing in
data that are not needed on the correct execution path and
by evicting useful data or instructions. Additionally, they
may also increase the amount of cache and memory
traffic. On the positive side, however, they may have a
prefetching effect for memory references on the correct
path. While computer architects have thoroughly studied
the impact of wrong-path effects in uniprocessor systems,
there is no previous work on its effects in multiprocessor
systems. In this paper, we explore the effects of wrong-
path memory references on the memory system behavior of
shared-memory multiprocessor (SMP) systems for both
broadcast and directory-based cache coherence. Our
results show that these wrong-path memory references can
increase the amount of cache-to-cache transfers by 32%,
invalidations by 8% and 20% for broadcast and directory-
based SMPs, respectively, and the number of writebacks
by up to 67% for both systems. In addition to the extra
coherence traffic, wrong-path memory references also
increase the number of cache line state transitions by 21%
and 32% for broadcast and directory-based SMPs,
respectively. In order to reduce the performance impact of
these wrong-path memory references, we introduce two
simple mechanisms – filtering wrong-path blocks that are
not likely-to-be-used and wrong-path aware cache
replacement – that yield speedups of up to 37%.

1 Introduction

Shared-memory multiprocessor (SMP) systems are
typically built around a number of high-performance out-

of-order superscalar processors, each of which employs
aggressive branch prediction techniques in order to
achieve high issue rate. During program execution, these
processors speculatively execute the instructions following
the target of a predicted branch instruction. When a branch
is mispredicted, the processor must restore its state to the
state that existed prior to the mispredicted branch before
the processor can start executing instructions down the
correct path. However, during speculative execution, i.e.,
before the branch outcome is known, the processor
speculatively issues and executes many memory
references down the wrong-path. Although these wrong-
path memory references are not allowed to change the
processor’s architectural state, they do change the data and
instructions that are in the memory system, which can
affect the processor’s performance.

Previous work [1, 5, 8, 13-17, 19-22] studied the
effects that speculatively executed memory references
have on the performance of out-of-order superscalar
processors. These papers yield several conclusions. First,
wrong-path memory references may function as indirect
prefetches by bringing data into the cache that are needed
later by instructions on the correct execution path [14, 19,
20, 21]. Unfortunately, these wrong-path memory
references also increase the amount of memory traffic (i.e.,
increased bandwidth consumption) and can pollute the
cache with cache blocks that are not referenced by
instructions on the correct path [13, 14, 19, 22]. Of these
two effects, cache pollution – particularly in the L2 cache
– is the dominant negative effect [13, 14]. The results in
[14] also show that it is extremely important to model
wrong-path memory references, since they have a
significant impact on the estimated performance.

In this paper, we focus on the effect that wrong-path
memory references have on the memory system behavior
of SMP systems, in particular, for both broadcast-based
and directory-based cache coherence. For these systems,
not only do the wrong-path memory references affect the

1-4244-0054-6/06/$20.00 ©2006 IEEE

performance of the individual processors, they also affect
the performance of the entire system by increasing the
number of cache coherence transactions, the number of
cache line state transitions, the number of writebacks and
invalidations due to wrong-path coherence transactions,
and the amount of resource contention (buffer usage,
bandwidth, etc.).

In this paper, to minimize the effect that wrong-path
memory references have on the performance of a SMP
system, we propose and evaluate a simple mechanism to
filter out the wrong-path cache blocks that are unlikely to
be used on the correct-path. Our filtering mechanism uses
temporal locality and L1 data cache evictions to determine
if the corresponding cache block should be evicted from
the L2 cache. In addition to this filtering mechanism, we
also propose a cache replacement policy that is wrong-
path aware. More specifically, we add a field to each cache
line to indicate whether or not that cache line was due to
an instruction on the correct-path or the wrong-path. When
evicting a cache block from a set, evict the oldest wrong-
path cache block. Our results show that both of these
simple mechanisms can significantly reduce the negative
impact that wrong-path memory accesses have on the
performance of SMP systems.

This paper makes the following contributions:

1. It analyzes and quantifies the effect that
wrong-path memory accesses have on the
performance of SMP systems, in particular,
how wrong-path memory accesses affect the
cache coherence traffic and state transitions,
and the resource utilization.

2. It proposes a filtering mechanism and a
replacement policy that evicts the oldest
wrong-path cache blocks first to minimize the
impact that wrong-path memory references
have on the performance of SMP systems.

The remainder of the paper is organized as follows –
Section 2 describes the effects that wrong-path memory
references can have on the memory system behavior of
SMP systems. Sections 3 and 4 present the details of the
simulation environment and the simulation results,
respectively. Section 5 describes our filtering mechanism
and the wrong-path aware replacement policy, and how
they reduce negative effects of wrong-path memory
references. Section 6 describes some related work, while
Section 7 concludes and suggests some future work.

2 Wrong-Path Effects

When designing a coherent shared-memory
interconnect, the most important design decision is the
choice of the cache coherence protocol. Popular protocols
include: MSI (Modified, Shared, Invalid), MESI

(Modified, Exclusive, Shared, Invalid), MOSI (Modified,
Owned, Shared, Invalid), and MOESI (Modified, Owned,
Exclusive, Shared, Invalid) [9]. Since the cache coherence
protocol maintains the illusion of sequential consistency
between processors, when a processor accesses memory,
the coherence state (i.e., M, O, E, S, or I) of the cache
lines in the processors’ data caches may change. However,
although the branch prediction accuracy of modern high-
performance processors is high, when a branch
misprediction does occur, loads on the mispredicted path
access the memory subsystem, which generates additional
coherence traffic (additional communication and state
transitions). While these extra state transitions do not
violate the illusion of sequential consistency, they may
degrade the performance of the cache coherence protocol
and, subsequently, the performance of the memory
subsystem, and, finally, the performance of the SMP. In
the remainder of this section, we discuss the potential
effects that wrong-path memory references can have for
each of the aforementioned four cache coherence protocols
(MSI, MESI, MOSI, and MOESI).

2.1 Replacements

A speculatively-executed load instruction that is later
determined to be on a mispredicted path may bring a cache
block into data cache that replaces another block that may
be needed later by a load on the correct-path. As a result of
these replacements, wrong-path loads pollute the data
cache [13, 19], which may cause additional cache misses.
Figure 1, Step 2 shows an example of this situation. In this
example, Processor 0 speculatively requests Block A,
which causes the replacement.

On the other hand, these speculatively accessed
memory references can potentially hide the memory
latency for later correct path misses, i.e. prefetching [14,
19-21], which can improve the processor’s performance.

2.2 Writebacks

In contrast to the writebacks caused by the correct-path
replacements, in a SMP system, the coherence actions
caused by wrong-path memory references can also cause
writebacks. For example, if the requested wrong-path
block has been modified by another processor, i.e., its
cache coherence state is M, a shared copy of that block is
sent to the requesting processor’s cache, which
subsequently may cause a replacement. When the evicted
block has a cache coherence state of M (exclusive, dirty)
or O (shared, dirty) state, this causes an additional
writeback, which would not have occurred if the wrong-
path load had not accessed memory in the first place. Step
2 in Figure 1illustrates this example. Extra writebacks, in
addition to what is discussed above, may occur in MSI or
MESI coherence SMPs. For these two protocols, if the
requested wrong-path block is in the M state in

Figure 1. Summary of the wrong-path effects on a SMP system for MOSI (Modified, Owned, Shared, Invalid) or
MOESI (Modified, Owned, Exclusive, Shared, Invalid) coherence protocols. Blocks A and B map to the same cache.
(1) Initially, block B is in the Modified (M) state in P0’s cache and it is the LRU (Least Recently Used) block in the
set, while block A is in P1’s cache in the M state. (2) P0 speculatively reads block A. A Shared (S) copy of the block
replaces block B and causes a writeback. The copy in P1’s cache changes its state to O. (3) Speculation turns out
to be incorrect. Note the extra cache transactions and state transitions. (4) P1 writes on block A and gets the
exclusive ownership (state of block A is M now). This causes invalidation to be sent to the caches sharing block A.

another processor’s cache, a shared copy of that block is
sent to the requesting processor’s cache and also it is
written back to the memory. Then the cache coherence
state of that cache block is demoted from M to S in the
original owner’s cache. This additional writeback may not
occur without the wrong-path load.

2.3 Invalidations

To maintain the illusion of sequential consistency, a
store instruction cannot write its value to memory until it
becomes the oldest (i.e., non-speculative) instruction in the
processor. As a result, store instructions can never cause
any extra invalidations.1 However, wrong-path loads may
cause additional invalidations.

For example, assuming a MOESI protocol, when a
wrong-path load instruction accesses a cache block that
another processor has modified, the state of that cache
block changes from M to O in the owner’s cache and will
have a cache coherence state of shared, S, in the
requester’s cache. If the owner of that cache block needs
to write to it, the owner changes the state of that block

1 In this study, we did not consider the multiprocessors based on
uniprocessors that may speculatively execute store instructions, such as

the speculative versioning cache of Multiscalar [32], or Levo [34].

from O to M and invalidates all other copies of that cache
block. Therefore, as this example shows, changes in the
cache coherence state of a cache block due to a wrong-
path load can cause additional invalidations. Figure 1, Step
4 illustrates this example.

2.4 Cache Block State Transitions

In addition to causing additional replacements,
writebacks, and invalidations, wrong-path memory
references can also cause transitions in the cache
coherence state of a cache block. For example, when a
wrong-path memory reference accesses a modified cache
block in another processor’s cache, under the MOESI
protocol, the cache coherence state of that block changes
from M to O in the owner’s cache. The state of that cache
block changes back to M when the owner writes to that
block. These changes in the cache coherence is due solely
to the wrong-path access. Therefore, in this case, a wrong-
path memory access in another processor results in two
extra cache state transitions in the owner’s cache (see
Steps 2 and 4 in Figure 4).

Table 1. Benchmarks and input data sets
Benchmark Description Input Data Set

fft Complex 1-D FFT 64K points

radix Integer radix sort 2M integers, radix 1024

ocean
Simulates large-scale ocean
movements

128x128 ocean

water-spatial
Simulation of water
molecules

512 molecules

em3d
Electromagnetic force
simulation

400K nodes, degree 2,
span 5, 15% remote

Table 2. Broadcast (snoop)-based and directory-based
SMP system parameters

Parameter Value

Processors 16 UltraSPARC III processors

2 GHz 15-stage pipeline, out-of-order execution

8-wide dispatch/retirement

256/128-entry ROB/scheduler

10 cycle branch misprediction penalty

GSHARE branch predictor with 4K PHT

64-entry return address stack

Processor

Parameters

32 Entry CAS and CAS exception table

Split I/D, 32KB 2-way, 128 Byte Blocks, with 2ns
access latency L1 Caches

32 Entry MSHRs

Unified, 2 MB 2-way, 20ns hit latency
L2 Caches

Exclusive L1 and L2s

Main Memory 4 GByte per bank, 240ns DRAM latency

Interconnect Hierarchical Switch

2.5 Data/Bus Traffic and Coherence

Transactions

Due to these extra replacements, writebacks,
invalidations, and changes in the cache coherence state,
wrong-path memory accesses increase the amount of
traffic due to L1 and L2 cache accesses, as well as
increasing the number of snoop and directory requests.

2.6 Power Consumption

In the best case, even if wrong-path memory references
do not affect the performance of the SMP system, they still
may increase system’s overall power consumption [23].

Several previous studies proposed methods to reduce
the power in snoop-based systems [23-27] by filtering
unnecessary snoops. In particular, Moshovos et al. [23]
showed that filtering unnecessary snoops can reduce the
total L2 cache power by 30%. Accordingly, reducing the
cache line transitions and cache coherence traffic due to
wrong-path memory accesses should also reduce the
power consumption. However, in this paper, we defer a
detailed examination of the attendant power consumption
implications to future work.

2.7 Resource Contention

Finally, in addition to the aforementioned effects,

wrong-path memory accesses can also increase the amount
of resource contention. More specifically, wrong-path
memory accesses compete with correct-path memory
accesses for the multiprocessor’s resources, such as
request and response queues at the communication
interconnect, and interprocessor bandwidth. The additional
cache coherence transactions may increase the frequency
of full service buffers, which increases the chance for
deadlock. In this paper, however, we assume a sufficient
network bandwidth to keep the network contention low.
With the possible exceptions of fft, which uses all-to-all
communication, and em3d, network contention was not a
problem for the benchmarks that we studied in this paper.
However, for other workloads, network contention could
have a serious performance impact.

3 Experimental Methodology

3.1 Benchmarks

Table 1 lists the five benchmarks that we used in this
paper. The first four benchmarks are benchmarks from the
SPLASH-2 benchmark suite [31], while em3d [33] is an
electromagnetic force simulation benchmark.

3.2 Simulated System Configurations

In this paper, we evaluate a 16-processor SPARC v9
system running an unmodified copy of Solaris 9. We
simulate both snoop-based and directory-based SMP
systems with an invalidation-based cache coherence. We
use the MOSI and MOESI cache coherence protocols,
respectively, for the snooping-based and directory-based
SMP systems. Each node includes an aggressive,
dynamically-scheduled, out-of-order processor core [10],
two levels of cache, coherence protocol controllers, and a
memory controller [11]. Table 2 lists the relevant
parameters of simulated SMP systems.

3.3 Simulation Methodology

We collect our simulation results using the GEMS
[10] extension to Virtutech’s Simics [35], which is a full
system simulator. GEMS adds cycle-accurate models of an
out-of-order processor core, cache hierarchy, various
cache coherence protocols, multibanked memory (unified
or distributed), and various interconnection networks to
the base-version of Simics.
 To avoid measuring the time needed for thread-
forking, we begin our measurements at the start of the
parallel phase by using Simics’ functional simulation to
execute the benchmarks until the start of the parallel
phase. Then, we use first iteration of the loop to warm-up
the caches and branch predictors. After the first iteration,
we simulate the benchmark for one iteration to gather our
simulation results.

0

5

10

15

20

25

30

35

L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

FFT RADIX OCEAN WATER em3d Average

Figure 2. Percentage of increase in L1 and L2 cache
traffic for broadcast-based SMPs

0

5

10

15

20

25

30

35

L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

FFT RADIX OCEAN WATER em3d Average

Figure 3. Percentage increase in L1 and L2 cache
traffic for directory SMPs

4 Evaluating the Wrong-Path Effects

In this section, we evaluate the impact that executing
wrong-path memory references have on the caches of the
processors in the SMP, the communication between
processors due to coherence transactions, and the overall
performance of SMP. To measure the various wrong-path
effects, we track the speculatively generated memory
references and mark them as being on the wrong-path
when the branch misprediction is known.

4.1 L1, L2, and Coherence Traffic

Figure 2 shows the increase in the traffic between
processor and its L1 data cache due to wrong-path
memory references, as a percentage of the total number of
memory references, for both broadcast and directory-based
SMPs. Figure 3 does the same for the L1 data cache and
L2 cache traffic.

Figure 2 shows that wrong-path loads increase the total
number of memory accesses by an average of 17% and
14%, for broadcast and directory-based SMPs,
respectively, while Figure 3 shows that these loads
increase the percentage of L2 cache accesses by 23% and
21% for broadcast and directory-based SMP systems,
respectively. For all benchmarks and for both SMP
systems, the percentage increase in the number of L2
references is larger than the percentage increase in the
number of L1 cache references. For em3d, while this
increase is negligible for both systems, the number of L1
misses increases by as much as 30%.

Figure 4 shows that wrong-path memory accesses
increase the number of coherence transactions by an
average of 32% and 33% for broadcast and directory-
based SMPs, respectively, while for em3d, the coherence
traffic increases by over 60%.

4.2 Cache Line Replacements

Wrong-path memory references can have both a
positive and negative effect on the processor’s

0

10

20

30

40

50

60

70

FFT RADIX OCEAN WATER em3d Average

broadcast

directory

Figure 4. Percentage of increase in coherence traffic
for SMPs

performance by either prefetching data into the caches or
by polluting them [13, 14, 19, 20], respectively. To
determine their performance impact, we categorize the
misses caused by wrong-path loads into four groups:
unused, used, direct miss, and indirect miss. We classify a
wrong-path cache block as unused when it is evicted
before being used or is never used by a load on the
correct-path. Conversely, we classify a wrong-path cache
block as used when a correct-path memory access
references it. A direct miss cache block replaces a cache
block that will be referenced later by a correct-path load,
which has a very large performance impact, but is itself
evicted before being used.

Finally, one side-effect that unused wrong-path cache
blocks have is that they change the LRU state of the other
cache blocks in that set, which may eventually cause
correct-path misses. We call these misses indirect misses.
For example, assume that: 1) Cache blocks A, B, C, and D
all map to the same set, 2) We have a two-way associative
set that contains blocks A and B, 3) B is the LRU block,
and 4) C is the only cache block on the wrong-path. In this
situation, the sequence of operations is as follows: Wrong-
path block C replaces B, D replaces A, and, after a cache
miss, A replaces C. If the wrong-path reference for block

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

FFT RADIX OCEAN WATER em3d FFT RADIX OCEAN WATER em3d

BROADCAST DIRECTORY

Used Unused Direct miss Indirect miss

Figure 5. Replacements due to wrong-path memory
references.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CP WP CP WP CP WP CP WP CP WP CP WP

FFT RADIX OCEAN WATER em3d Average

Remote Caches Memory

Figure 6. Servicing coherence transactions for
broadcast-based SMPs for the correct-path (CP) and
the wrong-path (WP).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CP WP CP WP CP WP CP WP CP WP CP WP

FFT RADIX OCEAN WATER em3d Average

Remote Caches Local Memory Remote Memory

Figure 7. Servicing coherence transactions for
directory-based SMPs for the correct-path (CP) and the
wrong-path (WP).

C did not occur, then the correct-path reference for block
A would have been a cache hit.

Figure 5 classifies the wrong-path-caused cache misses
into the aforementioned four categories. The results show
that 55% to 67% of the wrong-path replacements in the L1
data cache and 12% to 36% of the wrong-path
replacements in the L2 are used in broadcast-based

systems. Direct misses account for 5% to 62% of all
wrong-path replacements and account for a higher
percentage of wrong-path misses in broadcast-based SMP
systems than for directory-based. Finally, indirect misses
account for less than 5% of all wrong-path misses for most
of the benchmarks and systems tested.

It is important to note that direct and indirect misses
are responsible for the pollution caused by the wrong-path
memory references. While they have similar effect on the
L1 data cache for both broadcast and directory systems,
their effects on L2 cache are different between the two
SMP systems. For directory-based, almost all of the L2
replacements are used, while the opposite is true for
broadcast-based. This suggests that wrong-path memory
references have a greater effect on broadcast-based
systems. However, a small number of remote misses
caused by wrong-path loads may have a disproportionately
large performance impact in a directory-based system, as
compared to a broadcast-based system.

4.3 Servicing Cache Coherence Transactions

Broadcast-based cache coherence provides the lowest
possible latency to retrieve data since misses can either be
served by remote caches or shared memory. In contrast, in
a directory-based SMP, misses can be served locally
(including the local directory), at a remote home node, or
by using both the home node and the remote node that is
caching an exclusive copy, i.e., a three-hop miss. The
latter case has a higher cost because it requires
interrogating both the home directory and a remote cache.
Coherence misses account for most of the remote misses.

Figures 6 and 7 show how the correct-path and wrong-
path cache coherence transactions are serviced for
broadcast and directory-based SMP systems, respectively.
The figures show that the results are similar for both SMP
systems. Namely, remote caches service a greater
percentage of the wrong-path misses than for correct-path
misses for all benchmarks except em3d. For those
benchmarks, the percentage of misses serviced by remote
caches varies from 12% to 80% for correct-path loads and
55% to 96% for wrong-path loads. For the directory-based
SMP, in all benchmarks, local memory services only a
very small percentage of both correct-path and wrong-path
memory references.

4.4 Replacements and Writebacks

As described in Section 2.2, wrong-path replacements
may cause extra writebacks that would not occur
otherwise. Figures 8 and 9 show the percentage increase in
the number of replacements and writebacks due to wrong-
path memory references. Figure 8 shows the percentage
increase in the number of E (for directory MOESI) and S
line replacements. E I transitions – which increased by

0

10

20

30

40

50

60

70

FFT RADIX OCEAN WATER em3d FFT RADIX OCEAN WATER em3d

BROADCAST DIRECTORY

S->I

E->I

O->I

M->I

Figure 8. Percentage increase in the number of
replacements due to wrong-path references in
broadcast and directory-based SMPs.

0

10

20

30

40

50

FFT RADIX OCEAN WATER em3d FFT RADIX OCEAN WATER em3d

BROADCAST DIRECTORY

O->M

E->O

M->O

Figure 10. Percentage increase in the number cache
line transitions for MOSI broadcast-based and MOESI
directory-based SMPs

0

10

20

30

40

50

60

70

FFT RADIX OCEAN WATER em3d FFT RADIX OCEAN WATER em3d

BROADCAST DIRECTORY

M

O

Figure 9. Percentage increase in the number of
writebacks due to wrong-path references in broadcast
and directory-based SMPs.

0

10

20

30

FFT RADIX OCEAN WATER em3d HMMER FFT RADIX OCEAN WATER em3d HMMER

BROADCAST DIRECTORY

E-Line

M-Line

Figure 11. Increase in the write misses and extra
invalidations due to wrong-path references in
broadcast and directory-based SMPs.

2% to 63% – are particularly important since the processor
loses the ownership of a block and, more importantly, the
ability to silently upgrade its value, which can
significantly increase the number of invalidations needed
for write upgrades. For broadcast-based SMPs, the number
of S line replacements account for a significant fraction of
the total number of the replacements due to wrong-path
references, while they are relatively insignificant for
directory-based. For em3d, there is a large increase in both
the replacements and writebacks.

Figure 9 shows that wrong-path memory accesses
increase the number of writebacks from 4% to 67%. It is
important to note that writebacks may result in additional
stall cycles when an L2 cache miss occurs after the
processor starts to perform a writeback, since it cannot
begin to service the miss until the writeback completes.

4.5 Cache Line State Transitions

Figure 10 shows the impact that wrong-path memory
references have on the number of cache line state
transitions. The results show that the number of cache line
state transitions increase by 20% to 24% for a broadcast-

based SMPs and by 27% to 44% for directory-based.
Although the percentage increase is smaller for the
broadcast-based system, the number of cache line state
transitions is much higher to begin with.

A processor loses ownership of an exclusive cache
block (M or clean E) when another processor references it.
In order to regain ownership, that processor has to first
invalidate all other copies of that cache block, i.e., S I,
for all other processors. Section 2.4 describes this situation
in more detail. Figure 11 shows that there is 8% to 11%
increase in the number of write misses – each of which
subsequently causes an invalidation – for broadcast-based
SMPs; this percentage is higher, 15% to 26%, for the
directory-based SMPs.

5 Filtering and replacement policies for

wrong-path memory references

In Section 4, we described the effects that wrong-path
memory references can have on the memory subsystem
behavior of broadcast and directory-based SMP systems.
In this section, we evaluate two enhancements that try to

minimize the negative effects of wrong-path memory
references, while retaining their positive effects (i.e.,
prefetching), to improve the performance of an SMP
system without significantly increasing the complexity of
the memory subsystem.

5.1 Reducing Cache Pollution via Filtering

Based on the results in Section 4, we propose a
filtering mechanism that reduces the cache pollution due
by direct and indirect miss wrong-path references, and by
evicting the unused wrong-path blocks early. We apply
our filtering mechanism to the L2 cache due to the long
latency of L2 instructions.

We base our filtering mechanism on the observation
that if a speculatively-fetched cache block is not used
while it resides in the L1 cache, then it is likely that that
block will not be used at all or will not be used before
being evicted from the L2 cache [13].

In this paper, we evaluate exclusive L1 and L2 caches.
A block that misses both in L1 and L2 allocates a line only
in the L1 cache. Then, when a block is evicted from the L1
cache, it is written to L2.

Our filtering mechanism works as follows: If a wrong-
path block is evicted from the L1 cache before being used
by a correct-path memory reference, it is allocated to the
L2 cache only if its L2 set has an empty way, i.e., at least
one cache way is invalid. If not, then that cache block is
discarded, i.e., not allocated to the L2 cache, but written to
memory only. A wrong-path block that services a correct-
path reference is handled in the same way as a correct-path
block.

We can further filter wrong-path blocks from being
placed in L2 cache by canceling the wrong-path references
in the L2 cache request queue as soon as the misprediction
is known. For example, if a requested block is an L1 cache
miss, a request is sent to the L2 cache controller and
placed in a request queue. At the time that the L2 cache
controller processes this request, if it is known that the
load instruction was on a mispredicted branch path, then
this request is simply discarded without being serviced. (If
this request were not discarded, it would cause an L2 miss
and could possibly replace a valid block in the L2 cache.)
However, if there is an invalid line the set, the L2 cache
controller services that wrong-path memory reference and
overwrites the invalid line. Otherwise, the L2 cache
controller processes this request as usual.

5.2 A Wrong-Path Aware Replacement Policy

Our second proposed enhancement is to make the
cache replacement policy wrong-path aware. To
accomplish this, when a block is brought into the cache, it
is marked as being either on the correct-path or on the
wrong-path. (There are several possible ways to design
such a mechanism, but they are beyond the scope of this

paper.) Later, when a block needs to be evicted from that
set in the cache, assuming that all cache blocks are valid
(if not, an invalid block is “replaced” first), wrong-path
blocks are evicted first, on a LRU basis if there are
multiple wrong-path blocks. However, a wrong-path block
that services a correct path reference is marked as if it was
on the correct-path, thus excluding it from the wrong-path
replacement policy. If all cache blocks originated from a
correct-path reference, then the LRU block in that set is
chosen for eviction.

5.3 Performance Evaluation

Figure 12 shows the speedup results for the
enhancements described in Sections 5.1 and 5.2. In this
figure, there are a total of three enhancements:
replacement, filter, and their combination, i.e.,
filter+replacement.

-20

-10

0

10

20

30

40

FFT RADIX OCEAN WATER em3d FFT RADIX OCEAN WATER em3d

BROADCAST DIRECTORY

replacement filter filter+replacement

Figure 12. Percentage speedup in execution time for
wrong-path aware replacement, L2 wrong-path filter,
and for combination of both, i.e., filter+replacement.

The results in Figure 12 show that a simple wrong-path
aware replacement policy may perform very well for some
benchmarks. For example, for water, all three
enhancements yield speedups over 30% for the broadcast-
based SMPs. Overall, the performance of the
enhancements varies across benchmarks and systems. On
average, filtering yields higher speedups than wrong-path
aware replacement, while also outperforming replacement
for all benchmarks for directory-based SMPs. For
broadcast-based SMPs, filter performs better than
replacement for radix, water and em3d. Employing a
simple wrong-path replacement policy does not
significantly improve the performance of ocean and fft.

6 Related work

To best of our knowledge, no previous work examined
the effects that wrong-path memory references have on
SMPs. However, several papers examined the effect that
speculative execution had on the performance of

uniprocessor systems. Mutlu et al. [14, 15] analyzed the
performance impact that wrong-path references have for
different memory latencies and instruction window sizes.
Their results showed that the major reason for
performance degradation due to wrong-path memory
references is L2 cache pollution.

Sendag et al. [19] proposed using the fully-associative
Wrong-Path Cache (WPC) to eliminate the cache
pollution caused by wrong-path references. The WPC
stores data brought into the processor by wrong-path load
instructions and evicted from the L1 cache. The processor
accesses the WPC and the L1 data cache in parallel.
Hence, the WPC functions both as a victim cache [8] and a
buffer to store data fetched by wrong-path references. This
approach eliminates the pollution caused by wrong-path
references in the L1 cache. Sendag et al. [20] also studied
the effects of incorrect speculation on the performance of a
concurrent multithreaded architecture. They analyzed how
wrongly-forked threads affected the memory system
performance in addition to the known effects by the
wrong-path load instructions in a uniprocessor.

Mutlu et al. proposed using the L1 caches as filters to
reduce the pollution in the L2 cache caused by speculative
memory references, including both wrong-path and
prefetched references [13]. Their mechanism takes
advantage of the observation that pollution in the L1 cache
caused by speculative references has less impact on the
performance than pollution in the L2 cache. Their
approach reduces the L2 cache pollution due to
speculative references for both for out-of-order and
runahead processors, without requiring extra storage to
hold the data fetched by the speculative references.

Finally, Pierce and Mudge studied the effect of wrong-
path memory references on cache performance [16]. Their
study used trace-driven simulation, where they injected a
fixed number of instructions to emulate the wrong-path.
However, this is not realistic because the number of
instructions executed on the wrong-path is not fixed in a
real processor [5]. They also introduced an instruction
cache prefetching mechanism, which shows the usefulness
of wrong-path memory references to the instruction cache
[17]. Their mechanism fetches both the fall-through and
target addresses of conditional branch instructions, i.e.,
their mechanism prefetches instructions on the taken and
not-taken paths.

It is important to note that all of the papers that were
described in this section used simulation environments that
did not run an operating system on top of the simulator,
thus ignoring the effect of the operating system. In this
paper, we used full-system cycle-accurate simulator
(GEMS based on Simics), which accounts for operating
system effects, and measures the wrong-path effects in
both user and supervisor modes.

7 Conclusion and Future Work

In this paper, we evaluate the effects of executing
wrong-path memory references on the memory behavior
of cache coherent multiprocessor systems. Our evaluation
reveals the following key conclusions:

1. It is important to model wrong-path memory
references in cache coherent shared-memory
multiprocessors. Neglecting to model them
may result in incorrect design decisions,
especially for future systems with longer
memory interconnect latencies and processors
with larger instruction windows.

2. For SMP systems, not only do the wrong-path
memory references affect the performance of
the individual processors due to prefetching
and pollution, they also affect the performance
of the entire system by increasing the number
of cache coherence transactions, the number of
cache line state transitions, the number of
writebacks and invalidations due to wrong-
path coherence transactions, and the amount of
resource contention (buffer usage, bandwidth,
etc.).

3. For a workload with many cache-to-cache
transfers, wrong-path memory references can
significantly affect the coherence actions.

4. Finally, simple mechanisms such as filtering
unlikely to-be-used wrong-path blocks from
being placed into L2 or making the
replacement policy wrong-path aware can
significantly improve the SMP performance.

Future Work: A thorough evaluation of wrong-path
effects requires a detailed examination of how memory
subsystem parameters (e.g., cache size, associativity and
block size), varying numbers of processors, different
interconnections networks, and different multiprocessing
models (e.g., chip multiprocessor-based SMPs) change the
effects that wrong-path references have on SMP
performance.

Second, while we evaluated two possible
enhancements in this paper, our primary goal was not to
comprehensively study specific enhancements to improve
the performance of SMP systems, but rather to study their
potential effects. However, in our future work, we plan to
develop more accurate filtering and replacement
mechanisms to minimize the negative performance effects
of speculative memory accesses.

Acknowledgments

We would like to thank Thomas Wenisch and Babak
Falsafi for supplying us with the em3d benchmark.

References

[1] R. Bahar and G. Albera. Performance analysis of wrong-
path data cache accesses. Workshop on Performance
Analysis and its Impact on Design, 1998.

[2] R. Bhargava, L. John, and F. Matus. Accurately modeling
speculative instruction fetching in trace-driven simulation.
IEEE Performance, Computers and Communications
Conference, 1999.

[3] P. Chang, E. Hao, and Y. Patt. Predicting indirect jumps
using a target cache. International Symposium on Computer
Architecture, 1997.

[4] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture
optimizations for exploiting memory-level parallelism.
International Symposium on Computer Architecture, 2004.

[5] J. Combs, C. Combs, and J. Shen. Mispredicted path cache
effects. Euro-Par, 1999.

[6] J. Dundas and T. Mudge. Improving data cache
performance by pre-executing instructions under a cache
miss. International Conference on Supercomputing, 1997.

[7] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G.
Abraham. Effective stream-based and execution based data
prefetching. International Conference on Supercomputing,
2004.

[8] N. Jouppi. Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch
buffers. International Symposium on Computer
Architecture, 1990.

[9] D. Culler and J. Singh, Parallel Computer Architecture,
Morgan Kaufmann, 1999.

[10] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A.
Alameldeen, K. Moore, M. Hill, and D. Wood. Multifacet's
General Execution-driven Multiprocessor Simulator
(GEMS) Toolset. Computer Architecture News, Vol. 33,
No. 4, September 2005

[11] C. Mauer, M. Hill, and D. Wood. Full-System Timing-First
Simulation. Joint International Conference on Measurement
and Modeling of Computer Systems, 2002.

[12] M. Moudgill, J. Wellman, and J. Moreno. An approach for
quantifying the impact of not simulating mispredicted paths.
Performance Analysis and Its Impact in Design, 1998.

[13] O. Mutlu, H. Kim, D. Armstrong, and Y. Patt. Cache
filtering techniques to reduce the negative impact of useless
speculative memory references on processor performance.
Symposium on Computer Architecture and High
Performance Computing, 2004.

[14] O. Mutlu, H. Kim, D. Armstrong, and Y. Patt.
Understanding the effects of wrong-path memory references
on processor performance. Workshop on Memory
Performance Issues, 2004.

[15] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt. Runahead
execution: An alternative to very large instruction windows
for out-of-order processors. International Symposium on
High-Performance Computer Architecture, 2003.

[16] J. Pierce and T. Mudge. The effect of speculative execution
on cache performance. International Parallel Processing
Symposium, 1994.

[17] J. Pierce and T. Mudge. Wrong-path instruction prefetching.
International Symposium on Microarchitecture, 1996.

[18] E. Rotenberg, Q. Jacobson, and J. Smith. A study of control
independence in superscalar processors. International

Symposium on High Performance Computer Architecture,
1999.

[19] R. Sendag, D. Lilja, and S. Kunkel. Exploiting the
prefetching effect provided by executing mispredicted load
instructions. Euro-Par, 2002.

[20] R. Sendag, Y. Chen and D. Lilja. The Impact of Incorrectly
Speculated Memory Operations in a Multithreaded
Architecture. IEEE Transactions on Parallel and Distributed
Systems, Vol. 16, No. 3, pp. 271-285, March 2005.

[21] Y. Chen, R. Sendag, and D. Lilja. Using Incorrect
Speculation to Prefetch Data in a Concurrent Multithreaded
Processor. International Parallel and Distributed Processing
Symposium, 2003.

[22] R. Sendag, Y. Chen and D. Lilja. The Effect of Executing
Mispredicted Load Instructions on Speculative
Multithreaded Architecture. Workshop on Multi-threaded
Execution, Architecture and Compilation, 2002.

[23] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary,
JETTY: Filtering Snoops for Reduced Energy Consumption
in SMP Servers. International Symposium on High-
Performance Computer Architecture, 2001.

[24] A. Moshovos. RegionScout: Exploiting Coarse Grain
Sharing in Snoop-Based Coherence. International
Symposium on Computer Architecture, 2005.

[25] C. Saldanha and M. Lipasti. Power Efficient Cache
Coherence. Workshop on Memory Performance Issues,
2001.

[26] M. Ekman, F. Dahlgren, and P. Stenström. TLB and Snoop
Energy-Reduction using Virtual Caches in Low-Power
Chip-Multiprocessors. International Symposium on Low-
Power Electronics and Design, 2002.

[27] M. Ekman, F. Dahlgren, and P. Stenström: Evaluation of
Snoop-Energy Reduction Techniques for Chip-
Multiprocessors. Workshop on Duplicating, Deconstructing,
and Debunking, 2002.

[28] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.
POWER4 system microarchitecture. IBM Technical White
Paper, 2001.

[29] M. Wilkes. The memory gap and the future of high
performance memories. Computer Architecture News, Vol.
29, No. 1, pages 2–7, March 2001.

[30] T. Yeh and Y. Patt. Alternative implementations of two-
level adaptive branch prediction. International Symposium
on Computer Architecture, 1992.

[31] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. International Symposium on Computer
Architecture, 1995.

[32] G. Sohi, S. Breach and T. Vijaykumar. Multiscalar
Processors, International Symposium on Computer
Architecture, 1995.

[33] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S.
Lumetta, T. von Eicken, and K. Yelick. Parallel
programming in Split-C. Supercomputing, 1993.

[34] A. Uht, D. Morano, A. Khalafi, and D. Kaeli. Levo - A
Scalable Processor with High IPC. Journal of Instruction-
Level Parallelism, Vol. 5, 2003.

[35] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B.
Werner. Simics: A full system simulation platform. IEEE
Computer, Vol. 35, No. 2, pages 50–58, February 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

