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Abstract

A web-computing system (WCS) allows a host with
limited resources to perform CPU intensive tasks by
outsourcing the computations to external clients. But
not every client is trusted, and redundancy in task as-
signment and auditing of results are needed to ensure
the integrity of the results. This raises the question as
to the efficiency and reliability of the system as mea-
sured against a given unit of the host’s auditing time or
cost. In this paper we propose a WCS with low overhead
and has favorable error rate compared to a majority-
voting scheme with similar efficiency. We can reduce
the error rate by re-authenticating the results without
having to resubmit any jobs, and we have an auditing
strategy that in many cases is probabilistically better
than random sampling.

1. Introduction

The goal of a web-computing system (WCS) is
to perform CPU intensive but parallelized tasks by
out-sourcing the computations to external clients; the
host’s (limited) resources are devoted to the bookkeep-
ing of outgoing tasks and the assembling of returning
results. The popular SETI@home project [11] clearly
demonstrates the potential of WCS, providing a pro-
cessing rate of 60 tetraflops distributed over a million
computers [1].

This new computing paradigm also brings with it a
new challenge: how do we guarantee the integrity of the
results if we do not know ahead of time the answers?
Project managers for SETI@home have caught some of
their volunteer participants cheating, i.e. claiming cred-
its for tasks not completed, in order to move up their
standing in the list of top CPU contributors ([1], [6]).
The issue of cheating becomes even more critical if we

want to deploy WCS commercially, where clients are
paid a fee for the work they perform [6]. Another type
of problem is sabotage, where fringe groups of individ-
uals try to disrupt a WCS by submitting false results.
Note that the issues we face here are different from
those in the field of distributed fault tolerance with
Byzantine faults (cf. [7]). To quote [9, p. 105], exist-
ing works on Byzantine faults tolerance focus mostly
on stopping faults, where one or more of the processing
elements or communication nodes simply stop generat-
ing or transmitting data, either temporarily or perma-
nently; or on high performance parallel computation
where the equipments are centrally located and the
users are all trusted. Our focus, on the other hand, are
on (again quoting [9, p. 105]) faults where the proces-
sors do not stop producing data, but instead producing
bad data, possibly maliciously by hostile parties.

A common counter-measure for the problems we
raised, as is implemented in the distributed comput-
ing managing software BOINC [2], is redundancy (or
majority-voting) – assign the same task to multiple
clients and take the most popular result as the cor-
rect answer. But this could be undermined by a group
of colluded, untrusted clients. And since clients are of-
ten identified by their email or IP address, which are
easy to fabricate, such a collusion attack could even
be launched from a single source (called Sybil attack
[3]). To foil such an attack we need to increase the
degree of redundancy, which reduces the efficiency. Al-
ternatively, or in addition, we can try to screen out the
untrusted clients by auditing – assign trusted clients to
redo a random sample of these jobs and compare the
results with those turned in by the external clients –
which increases the cost of the WCS.

A major source of the inefficiency of the majority-
voting scheme is that it is highly localized : the effort
expended on authenticating the result of one task has
no bearing on any other task. We call this a task-
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centric model for WCS. We can visualize this by saying
that the graphs for different tasks are not connected
(Ci(j) is the j-th client for task Ti):
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Figure 1. Majority voting scheme

We can augment the majority-voting scheme with
blacklisting : the host keeps track of all results turned
in by every client, and try to screen out the untrusted
ones by random audits. But this would require mul-
tiple iterations of screenings before the portion of un-
trusted clients drop to an acceptable level. Moreover,
the initial iterations would contain a higher portion of
incorrect results, unless we discard all results turned
in by untrusted clients discovered by audits, which re-
duces the efficiency of the system, or we backtrack and
audit all these suspicious results, which could be costly.
And because of the Sybil attack, even after we reject
an untrusted client he can reenter the system under a
new identity, thereby holding up the error rate of the
system.

1.1 Related work

Sarmenta [9] studies WCS authentication as part
of a web-based volunteer computing environment, and
he gives theoretical analysis and experimental data for
various WCS schemes, including redundancy-only and
blacklisting. We will use these results and data as
benchmarks for our work.

Several authors have approached guaranteed web-
computing from the financial point of view. The pay-
ment scheme in [5] aims at discouraging dishonest
clients by requiring each client to ‘deposit’ computa-
tions before payments, and by using a majority voting
procedure that bans from the system every client from
a group who turns in inconsistent results. The two
payment schemes in [4] (see also [12]) embed special
checkpoints within the tasks, and the client’s payment
depends on the extent to which these checkpoints are
passed. However, a determined saboteur is not likely to
be deterred by the prospect of financial losses; he could
even turn the payment scheme in [5] around, submit-
ting false results to drive out the honest clients (after
fulfilling the initial ‘deposit’ to establish his standing in
the system). Also, the schemes in [4] are not transpar-
ent – they require modification of the programs, and

one of the lessons the SETI@home project taught us
is that such modified codes are likely to be reverse-
engineered [1].

The authors in [16] takes a game-theoretic point of
view; their results suggest that unless we know ahead
of time that few clients are untrusted and/or colluding,
it could be just as cost effective to hire trusted, external
clients to perform these tasks as it would to employ a
distributed computing scheme with all the redundancy
and auditing. On the other hand, their results also
suggest that the cost of the host drops significantly if
a single colluded group dominates a poll; this is com-
patible with the analysis of our WCS scheme.

The motivation behind the recent work of Szajda et
al ([13], [14]) is the same as ours, namely to minimize
the error rate for a given level of redundancy. These
authors focus on one type of errors, namely collusion,
and they offer two solutions. In [13] they propose to
optimize collusion detection by using linear program-
ming techniques to vary the degree of redundancy for
different tasks. But this is done within the context of
majority scheme, and for the collusion rates considered
in [14, Fig. 1] or the detection rates considered in [14,
Fig. 2], our protocol yields better performance. In [14]
they propose an alternative task assignment scheme
that resembles in some way our protocol: loosely speak-
ing, clients are randomly assigned to vertices of a graph
where any two clients are connected by an edge, and
the host divides up several tasks into subtasks, each
of which is identified with an edge of this graph. In
particular, just like our protocol each subtask is as-
signed to exactly two clients. However, this scheme is
applicable only to tasks that can be subdivided. And
to achieve high collusion detection rate we need the
group size (i.e. number of vertices) to be large, which
significantly increases the bookkeeping overhead. Fur-
thermore, if one pair of clients turn in incompatible
results, this raises questions about the validity of the
results of the rest of the clients in this large group. To
resolve this issue we need to either (i) reject all results
from clients who submits just one incompatible results,
in which case the system is easily subject to attack by a
saboteur; (ii) perform yet another vote (accept results
from a client if say 80% of her results are compatible,
in which case we are back to majority voting; or (iii)
perform auditing, which is very expensive unless the
host limits the number of audits, which minimizes its
effectiveness, or keep the subtasks small, which leads
to large group size and the aforementioned problems.



1.2 Contribution

In this paper we propose a new WCS with the fol-
lowing features:

• low overhead: the host does not keep track of past
works, and each task is assigned to two clients
only;

• transparency: no need to modify any tasks to run
under our protocol;

• dynamic: clients can join or leave the system at
any time.

We give a theoretical analysis of the efficiency and the
error rate of our protocol, assuming maximal collusion
(i.e. the worst-case scenario). Our protocol compares
well against the basic redundancy-only scheme [9]. In
addition, our protocol allows the host to estimate, with-
out having to audit the results, the portion of untrusted
clients and how often the untrusted ones actually turn
in incorrect results; this information gives the host the
option to re-authenticate the tasks at a different effi-
ciency and error rate without having to resubmit any
job. Finally, if the host chooses to audit the results,
our protocol provides an optimal auditing strategy that
yield in many cases a better fault-detection rate than
random sampling.

We end this introduction by explaining the mo-
tivation behind our protocol, namely the concept of
a client-centric WCS. Implicit in the majority-voting
scheme is the assumption that those clients who are in
the majority are trusted. In other words, the voting
process for one task generates not just a consensus an-
swer for the task but new information about the clients.
However, we have no way of applying this piece of infor-
mation to the voting for any other tasks. This suggests
that we study WCS where the clients are connected to
each other via common tasks. And to maximize the
efficiency we need to minimize the number of clients
assigned to a given task; equivalently, to minimize the
valency of the graphs in Figure 1. The minimal valency
of a connected graph is 2, so we are lead to consider
WCS of the following form

Cj−1 Cj Cj+1
confidence neighborhood of Cj

C C j+2common task common taskj−2

common task common task

Figure 2. A client-centric WCS

Since each task is performed by only two clients, we
can no longer rely on majority voting to generate a
consensus result. Instead we vote by reputation – we
declare that the results turned in by Ci are correct if
both results of Ci agree with those of the neighbors of
Ci. To increase the degree of confidence of our system
we can enlarge these neighborhoods; for example, we
can insist that not only should Ci agree with Ci±1, but
that Ci+1 should also agree with Ci+2 as well. And un-
like the majority-voting scheme, where the host must
resubmit the task to additional clients if she is not con-
fident of a particular vote, we can choose these confi-
dence neighborhoods at the time of authentication, and
we can re-authenticate the same collection of results at
different level of confidence without having to resubmit
any of these tasks. Finally, because each client is re-
sponsible for two tasks, we can audit one task and use
the confidence neighborhood to probabilistically audit
the second task.

To paraphrase the authors in [13], we do not claim
that ours is the ‘best’ WCS protocol. With WCS pack-
ages such as BOINC, where authentication is imple-
mented as a separate module, the host has the option
of using different protocols with contrasting efficiency
rate and error rate, so in practice the host can pick the
protocol whose characteristics match her targeted per-
formance and potential clients pool. Our protocol is
an attractive option in an environment demanding low
bookkeeping overhead, flexibility, and competitive per-
formance using a clients pool that is not too untrusted
(under < 40%).

In Section 2 we state the precise hypotheses of our
theoretical model. After describing our protocol in Sec-
tion 3, in Section 4 we analyze the error rate and ef-
ficiency of our protocol, and we compare our protocol
with the majority-voting scheme. Section 5 describes
our probabilistic auditing scheme, and Section 6 con-
cludes.



2 Model hypothesis

Denote by T a collection of tasks, and C a collec-
tion of clients. For the rest of this paper we make two
hypotheses on T :

(T1): one cannot correctly predict with high
probability the output of a given task in
T without actually performing the com-
putations.

(T2): if a given task is assigned to two clients,
it is computationally efficient for the host
to decide if the two results are the same.

Numerical integration is a good example of tasks that
satisfy (T1). Database search can be easily modified to
fit hypothesis (T1) as well. For example, suppose we
need to find a match within a given range of a database
of names, indexed by ID numbers. We stipulate that
the output of the search be made up of two compo-
nents: the first component is either a ‘yes’ if we find
the name (plus the record of this entry), or a ‘no’; and
the second component is the sum, modulo a given large
integer (prescribed by the task), of the ASCII of every
letter of every first name within the range. This output
format serves to prevent false-negative results, and it
can be trivially adopted for many similar tasks, such
as inverting one-way functions by brute force search.
Note also that the only restriction in our task assign-
ment protocol is the condition (1); in particular, we
can assign different types of tasks in our queue so long
as they satisfy (T1).

Hypothesis (T2) is clearly satisfied by discrete, de-
terministic tasks such as the modified database search
described above. The issue becomes more subtle, how-
ever, for numerical computations. A recent study [15]
documents a real-life implementation of BOINC for
protein-foldings involving simulations that are sensi-
tive to initial conditions. The authors observe that the
same Fortran code yields noticeably different results
if they use the same hardware but different operating
systems (Linux vs. Window), or the same operating
system but different hardwares (Pentium 4 vs. AMD).
Our protocol is not intended to address this issue, but
we wish to bring this to the attention of the WCS com-
munity, and if necessary, follow the suggestion in [15] of
distributing computations that are sensitive to initial
conditions only among clients with identical hardware
and software configurations.

We assume that the clients come in two types: the
trusted ones and the untrusted ones. Furthermore, we
assume that

(C1): the trusted clients always turn in correct
results;

(C2): the untrusted clients are randomly dis-
tributed in the queue;

(C3): the probability that an untrusted client
would turn in incorrect result for any
given task is the same for all clients and
for all tasks;

(C4): if an untrusted client is assigned multiple
tasks, his decision to turn in incorrect to
turn in incorrect result for each task is
independent of each other;

(C5): the untrusted clients are maximally col-
luded : if two untrusted clients are as-
signed the same task and if they both de-
cide to falsify a result, then they both turn
in the same incorrect result.

In Section 4 we will analyze the performance of our
protocol based on these hypotheses, noting that (C5)
will always guarantee the worst case scenario.

3 Description of the Protocol

3.1 Task Assignment

We now construct an ordered task queue Q =
{Q1, Q2, . . .} as follows. To each slot Qi ∈ Q we as-
sign a random client Ci ∈ C and two distinct tasks
Li, Ri ∈ T , called the left task and the right task for
Qi, such that

Ri = Li+1 for every i ≥ 2. (1)

Note that Q is dynamic: we can add or reject clients
as we go along. Also, the same client could be assigned
to multiple queue slots, i.e. we allow Ci = Cj for some
i 6= j. Similarly, T is dynamic, and the same task could
be assigned to multiple queue slots in addition to (1),
i.e. we allow Li = Lj or Ri = Rj for some i 6= j.

3.2 Authentication

To simplify the notation, we write [T ] for the result
of a task T ∈ T . There are three levels of authentica-
tion:

Level One. For every i ≥ 2, check to see if

[Ri−1] = [Li] and [Ri] = [Li+1]. (2)

If so then declare that both [Li] and [Ri] are correct
to level one.

Level Two. For every i ≥ 3, check to see if (2) and
at least one of the followings conditions holds:

[Ri−2] = [Li−1]; (3)

[Ri+1] = [Li+2]. (4)



If so then declare that both [Li] and [Ri] are correct
to level two.

Level Three. For every i ≥ 3, check to see if (2) as
well as both of (3) and (4) hold. If so then declare
that both [Li] and [Ri] are correct to level three.

By extension, we say that a client Qi is trusted to level
j if both [Li] and [Ri] are correct to level j.

Remark 1. Note that the level one authentication pro-
cedure leaves unattended the queue slot Q1. There are
two ways to handle this:

(i) take C1 to be a trusted client and accept as correct
[L1] and [R1];

(ii) assign L1 to be the right task at another queue
slot, i.e. Rj = L1 for some j > 1.

In case (i) we can use the correctness of [R1] to audit
subsequent tasks. In case (ii) we effectively ‘close up’
the task queue Q, turning it into an ordered loop and
authenticate accordingly. Similarly, to authenticate L2

and R2 to level two, we can either assign both Q1 and
Q2 to a trusted client, or close up Q so that Rj = L1

and Rj−1 = Lj ; ditto for level three.

Remark 2. To authenticate Qi we only need the results
from its neighbors, not the entire queue. In particular,
we do not have to wait for all the results to come in
before commencing authentication.

Remark 3. If the same client appears more than once in
the queue and his works are authenticated in one slot
but not in others, we do not reject the ones deemed
correct – the results deemed incorrect could be due to
untrusted neighboring clients.

4 Performance analysis

4.1 Performance metrics

To analyze the performance of our protocol, we pick
a random, finite, consecutive sequence Q′ of tasks from
Q and compare the number of results that are gen-
uinely correct verse those that are deemed correct but
in fact are not. The following quantities will be the
bases of our performance metric:

N : number of tasks in this random, consec-
utive sequence Q′ of tasks;

B: number of tasks in this random, consec-
utive sequence Q′ of tasks;

β: portion of untrusted clients = B/N ;

Cor: portion of Qi both of whose tasks are
performed correctly;

Corj: portion of Qi that are declared trusted
to level j;

Falsej: portion of Qi that are declared trusted
to level j but submit at least one incor-
rect result;

Eff j: efficiency of level j authentication =
(number of Qi trusted to level j)/2N =
Corj/2;

Errj: error rate of level j authentication =
Falsej/Corj.

The factor 2 in the definition of Eff j is due to the fact
that each task is assigned to two clients. Following
hypothesis (C5), define

α: probability that an untrusted client in
Q′ would turn in an incorrect result;

ϕ: the fault rate of Q′, i.e. the probability
that an individual result is incorrect =
αβ.

As in any WCS, the host does not know in advance
which ones of the clients are untrusted. This is the
reason why our definition of the efficiency rate Effj in-
volves Corj , which can be measured by the host, and
not Cor, which cannot. An interesting feature of our
protocol is that from the authentication process alone
(i.e. no auditing) we can determine α and β probabilis-
tically; cf. Remark 4. As we will see later, this feature
will allow us to optimize the performance and of our
protocol as well as the (optional) auditing of the re-
sults.

4.2 Efficiency and error rate

Write the subqueue Q′ as {Qi+1, . . . , Qi+N}. We
now work out the efficiency and error rate for level
one authentication. The same method will yield the
corresponding results for higher level authentications.

Theorem 1. The efficiency and error rate for level
one authentication are as follow:

Eff1(α, β) =
1

2

( α4β3 + (1 − αβ)2(1 − β)
+ (1 − αβ)2β(1 − α)2

+ 2β2α2(1 − α)(1 − αβ)

)

+ O
( 1

N

)

Err1(α, β) =
α4β3 + 2β2α2(1 − α)(1 − αβ)

2Eff1(α, β)
+ O

( 1

N

)

where the O-constants are absolute.

Proof. For 1 < j < N , there are five scenarios under
which Qi+j will be declared correct to level one:

Case I. Ci+j is trusted.

Then the Ci+j±1 are either both trusted, or they
are both untrusted and submit correct results. The



probability for this case is

(N − B − 1

N
+

B

N
(1 − α)

)(N − B

N

)

×
(N − B − 2

N
+

B − 1

N
(1 − α)

)

= (1 − αβ)2(1 − β) + O(1/N)

with an absolute O-constant.
Case II. Ci+j is not trusted but both [Li] and [Ri] are
correct.

By hypothesis (C4), the correctness of each of the
two tasks submitted by an untrusted client is indepen-
dent of each other, so the probability that Ci+j satisfies
the conditions in Case II is β(1−α)2. Also, both Ci+j±1

must be as in Case I. So the probability for Case II is

(1 − β + β(1 − α))2 · β(1 − α)2 + O(1/N)

= β(1 − α)2(1 − αβ)2 + O(1/N)

with an absolute O-constant.
Case III. Ci+j is not trusted and [Li] is correct, but
[Ri] is not.

Then Ci+j−1 is as in Case II, and (keeping in mind
hypothesis (C5)) Ci+j+1 must be untrusted and submit
incorrect result. So the probability for this case is

(1 − β + β(1 − α))β(1 − α)αβα + O(1/N)

= β2α2(1 − α)(1 − αβ) + O(1/N)

with an absolute O-constant.
Case IV. Ci+j is not trusted and [Ri] is correct, but
[Li] is not.

We get the same probability as in Case III.
Case V. Ci+j is not trusted and both [Li] and [Ri] are
incorrect.

Then both Ci+j±1 are untrusted and both submit
incorrect results. The probability is α4β3 + O(1/N)
with an absolute O-constant.

Note that each of these probabilities is independent
of 1 < j < N , so for large N , up to an absolute O(1)-
term the expected number of Qi+j that are correct
to level one can be computed by simply multiplying
the corresponding probability by N . It follows that
Cor1(α, β) is the sum of the five probabilities above.
Case III, IV and V are the only scenarios under which
Qi+j would be declared correct to level one even though
the results it submits are incorrect, so False1(α, β) is
the sum of these three probabilities, and Theorem 1
follows.

Remark 4. For a given implementation of our WCS
protocol, Corj(α, β) can be determined empirically
from the authentication process alone with no audit-
ing. For large values of N , these empirical values will

match the main terms of the corresponding algebraic
expression. We can then turn this around, substituting
these empirical values into the polynomial expressions
for Cor1(α, β) and Cor2(α, β) to solve for approximate
values of α and β. More precisely, this will lead to
finitely many choices for the pairs (α, β), and we can
eliminate the extraneous ones by substituting each pair
into the expression for Cor3(α, β).

Knowing the values of α and β will help improve
auditing, if the host chooses to do so; cf. Section 5.

4.3 Majority voting

In this subsection we collect together several facts
about a simple majority voting scheme. For more de-
tails see [9, Chap. 6].

Consider a majority voting scheme Votem(α, β)
where you assign the same task to 2m − 1 clients and
accept as correct the common answer from at least m
of them. If the fault rate is ϕ = αβ, then the error rate
is [9, Eqn. (6.1)]

ErrVote(ϕ,m) =

2m−1
∑

i=m

(

2m − 1
i

)

ϕi(1 − ϕ)2m−1−i.

Since each task is performed by 2m − 1 clients, the
efficiency rate is ≤ 1/(2m−1). The next result tells us
when we would hit this maximal rate.

Lemma 1. The efficiency rate EffVote(α, β,m) of
Votem(α, β) is 1/(2m − 1) when either αβ ≤ (m −
1)/(2m − 1) or αβ ≥ m/(2m − 1).

Proof. Among the 2m − 1 random clients,

Prob(a given client is trusted) = 1 − β,
Prob(a given client is untrusted and turns in correct result) = β(1 − α),
Prob(a given client is untrusted and turns in incorrect result) = αβ,

Note that these probability are independent of the
clients, so the corresponding expected values can be
computed by multiplying each probability value by
2m−1. In the Votem(α, β) scheme, we approve a result
if we have at least m agreements; that means we need at
least m correct or at least m compatible but incorrect
results. Since the clients are assumed to be maximally
colluded (recall hypothesis (C5) in §2) and we see that
we need either (2m−1)(1−β)+(2m−1)β(1−α) ≥ m
or (2m − 1)αβ ≥ m, and the Lemma follows.

4.4 Comparison with majority voting

Since every job is assigned to two different slots in
the queue, the efficiency rate of our protocol will never



exceed 1/2. That would be the case for any WCS
scheme that makes use of redundancy. But the for the
same efficiency rate, our protocol compares favorably
with the majority voting scheme Votem. To illustrate
this we consider the case where Votem attains its max-
imum efficiency rate, namely 1/(2m − 1).

Theorem 2. Fix an integer m ≥ 2, and consider those
0 ≤ α, β ≤ 1 so that Eff1(α, β) = EffVote(α, β,m) =
1/(2m − 1). Suppose N is large. Then Err1(α, β) <
ErrVote(αβ,m) if m > 4, or if 2 ≤ m ≤ 4 and β is less
than the following bounds:

m 2 3 4
minimal β 0.87267 0.39848 0.45030

Proof. Leaving out the O(1/N)-term, the equation
Eff1(α, β) = 1/(2m − 1) becomes

1

2

(

α4β3 + (1 − αβ)2(1 − β)
+ (1 − αβ)2β(1 − α)2

+ 2β2α2(1 − α)(1 − αβ)

)

=
1

2m − 1
. (5)

Since 0 ≤ α, β ≤ 1, by calculus we find that the left
side above takes its minimum value at (α, β) = (1, 1/2)
or (1/2, 1), with minimal value 1/8 > 1/(2 · 5 − 1).
So Eff1(α, β) = EffVote(α, β,m) = 1/(2m − 1) only
when m ≤ 4, and of course we need m ≥ 2 to
have a vote. For any fixed m, the equation (5) de-
fines a curve CEff(m) on the (α, β)-plane, and the
equation Err1(α, β) = ErrVote(αβ,m) defines another
curve CErr(m). For each 2 ≤ m ≤ 4, we plot these
two curves on the same (α, β)-plane (see Figure 3
above) and we find that CErr(m) partitions the unit
square into two regions inside each of which the dif-
ference ErrVote(αβ,m) − Err1(α, β) has constant sign
(the darker curve is CEff(m)). Evaluate this difference
at any interior point in these regions and we find that
the sign is positive in the region to the right of CErr(m).
The lower bounds for β in Theorem 2 now correspond,
for m = 2, to the β-coordinate of the lowest point on
the upper right hand portion of CEff; and for m = 3
and 4, the β-coordinate of the intersection point of
these two curves (we readily check that the points so
obtained for every m satisfy the conditions in Lemma
1).

Remark 5. It seems unlikely that a WCS would be de-
ployed in an environment where 39.8% of the clients
are untrusted (especially with an efficiency rate of just
0.2 = 1/(2·3−1)), so in practice our protocol offers bet-
ter performance than Votem for comparable efficiency.
And thanks to Remark 4, the host can estimate α, β
without performing any audits. So if the host decides
that Err1(α, β) is too high, she can use a higher level

authentication to reduce the error rate without having
to resubmit any of the tasks. We are not aware of any
other WCS scheme with a similar feature.

The table in Figure 4 compares the error rate for
our protocol versus Votem for m ≤ 4 for a sample set
of α, β. Note that Err1(α, β) for certain pairs of (α, β)
in the table is higher than some of the corresponding
ErrVotem

(αβ), but (as is predicted by Theorem 2) the
corresponding Eff1(α, β) is lower than that for Votem

(recall that EffVotem
≤ 1/(2m − 1)).

5 Probabilistic Auditing

In the majority voting scheme, auditing the result
of the client Ci(j) (recall the notation in Figure 1) will
determine whether this client is trusted in this instance;
if she is not and if the host employs blacklisting, the
auditing will then lead to the removal of Ci(j) from the
clients pool. To carry out this auditing the host needs
to employ a trusted client to perform Ti; that means
the host would have performed the task Ti without the
input of any other clients Ci(j

′) in the same voting
block. We can summarize this by saying that it takes
2m − 1 ≥ 3 clients, at least one of whom is trusted,
to audit a single random client. Furthermore, as we
pointed out in the introduction, the Sybil attack [3]
neutralizes much of the benefits of blacklisting. Thus
auditing Votem is an expensive process with limited
benefits.

Turning now to our protocol, since each task is
shared by exactly two clients, it only takes two clients,
one of whom is trusted, to audit a single task. And
since each client Ci is assigned two tasks, we can try
to use the outcome of auditing (say) the left task Li

to predict the correctness of the right task Ri. This
leads to a probabilistic auditing of our protocol. More
precisely, we have two probabilistic auditing options,
depending on whether the random client selected is de-
clared correct or not to a given level. We now examine
each of these two options. For simplicity we will focus
on level one authentication.

Case: Ci is trusted to level one.

We would like to know the likelihood that the cor-
rectness of [Li] (as is confirmed by auditing) would im-
ply the correctness of [Ri]. In other words, we need to
determine

Prob
( Ci is trusted to level one and

both [Li], [Ri] are correct

)

Prob(Ci is trusted to level one)
.

In the proof of the Theorem 1 we saw that Ci is trusted
to level one under exactly five scenarios. In particular,
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Figure 3. Plots of the curves CEff(m) and CErr(m) for m = 2, 3, 4

β α Err1(α, β) Eff1(α, β) m = 2 m = 3 m = 4

0.05 0.5 0.000674 0.457796 0.001843 0.000150 0.000012
1.0 0.000145 0.428750 0.007249 0.001158 0.000193

0.10 0.5 0.002911 0.418625 0.007249 0.001158 0.000193
1.0 0.001369 0.365000 0.027999 0.008559 0.002727

0.15 0.5 0.007079 0.382390 0.016031 0.003758 0.000920
1.0 0.005465 0.308750 0.060749 0.026611 0.012103

0.20 0.5 0.013610 0.349000 0.027999 0.008559 0.002727
1.0 0.015384 0.260000 0.103999 0.057919 0.033343

0.25 0.5 0.023006 0.318359 0.042968 0.016052 0.006238
1.0 0.035714 0.218750 0.156249 0.103515 0.070556

0.30 0.5 0.035837 0.290375 0.060749 0.026611 0.012103
1.0 0.072972 0.185000 0.215999 0.163079 0.126035

0.35 0.5 0.052736 0.264953 0.081156 0.040510 0.020949
1.0 0.135039 0.158750 0.281749 0.235169 0.199845

0.40 0.5 0.074380 0.242000 0.103999 0.057919 0.033343
1.0 0.228571 0.140000 0.351999 0.317439 0.289791

0.45 0.5 0.101457 0.221421 0.129093 0.078922 0.049760
1.0 0.353883 0.128750 0.425249 0.406873 0.391712

0.50 0.5 0.134615 0.203125 0.156249 0.103515 0.070556
1.0 0.499999 0.124999 0.499999 0.499999 0.499999

Figure 4. Error rate for Level One Authentication vs. Majority Voting



the denominator above is equal to the sum of the prob-
ability for these five cases, and the numerator, the sum
of cases I and II. So up to an absolute O(1/N)-term,
this ratio is

R1(α, β) :=

(

(1 − αβ)2(1 − β)+
(1 − α + β(1 − α))2β(1 − α)2

)

2Eff1(α, β)
.

In Figure 3 below we give the contour plot of R1(α, β),
with the top curve being R1(α, β) = 0.5 and with the
bottom one being R1(α, β) = 0.9, in steps of 0.1. Using
numerical integrations, we find that the area of the
darkest region in Figure 3, viewed as a subset of the
unit square, is 0.74950. To summarize, suppose N is
large. Then for nearly 75% of the parameters (α, β), if
auditing confirms one of the two tasks performed by a
client who is trusted to level one, then with at least 90%
certainty we can arrive at the additional conclusion
that the other task is also correct. It is in this sense
that this is a probabilistic auditing.
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Figure 5. Plot of R1(α, β)

Case: Ci is not trusted to level one.
This time we need to determine

Prob
(

Ci is not trusted to level one,
but both [Li], [Ri] are correct

)

Prob(Ci is not trusted to level one)
.

The same argument as in the proof of Theorem 1 shows
that there are exactly five scenarios under which Ci

is not trusted to level one. Moreover, in exactly two
of these five scenarios both [Li] and [Ri] are correct,
namely when Ci is trusted, or when Ci is not trusted
but submit correct results for both Li and Ri. Up to
an absolute O(1/N)-term we find that this ratio is

R2(α, β) :=
β2(1 − β)α2 + β3α2(1 − α)2

( β2(1 − β)α2 + β3α2(1 − α)2

+2β2α2(1 − α)(1 − α + βα)
+(1 − α + βα)2βα2

)

.
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Figure 6. Plot of R2(α, β)

In Figure 4 we give the contour plot of R2(α, β), start-
ing with R2(α, β) = 0.5 on the left of the picture and
ending with R2(α, β) = 0.9 on the right, in steps of
0.1. From the picture we see that we need α to be
close to 1 in order to conduct a probabilistic audit-
ing of clients that are untrusted to level one. Now,
α measures how often an untrusted client submits an
incorrect result. In light of hypothesis (C5), we can
therefore interpret Figure 4 by saying that probabilis-
tic auditing of untrusted clients is effective only when
the untrusted clients are maximally untrusted. It is in
this sense that this second type of auditing is compat-
ible with the results in [16].

6 Conclusion and further work

We propose a WCS that is transparent, dynamic
and with low overhead. It has a lower error rate than
the majority-voting scheme with comparable efficiency,
provided that at most 39.8% of the clients are un-
trusted. Our protocol also allows the host to estimate
without auditing the proportion of untrusted clients,
and how often these untrusted clients would submit
incorrect results. These estimates give the host the op-
tion to trade off the error rate against the efficiency by
re-authenticating the results without having to resub-
mit any jobs. And these estimates also allow the host
to conduct probabilistic auditing.

The only storage requirement for the host are a list
of the clients as well as the two tasks assigned to each
client, and the authentication process only requires
that the host check to see if the clients assigned the
same tasks turn in the same result. It would be inter-
esting to implement our protocol under the BOINC
system [2] and compare the real-life performance of
our protocol against the existing ones. It would also
be interesting to combine our protocol with the linear
programming strategy in [13] to further improve our



error rate, and to analyze further our probabilistic au-
diting strategy. For example, if two adjacent clients Ci

and Ci+1 are both trusted to level one, and if [Li] is
found to be correct by auditing, it would be interesting
to see how likely (and how often) can we deduce that
Ri = Li+1 and Ri+1 are both performed correctly.
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