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Abstract

In this paper we describe a compiler framework
which can identify communication patterns for MPI-
based parallel applications. This has the potential of
providing significant performance benefits when connec-
tions can be established in the network prior to the ac-
tual communication operation. Qur compiler uses a
flexible and powerful communication pattern represen-
tation scheme that can capture the property of com-
munication patterns and allows manipulations of these
patterns. In this way, communication phases can be
detected and logically separated within the application.
Additionally, we extend the classification of static and
dynamic communication patterns and operations to in-
clude persistent communications. Persistent communi-
cations appear dynamically, however, they remain un-
changed for large segments of the application execution.
Our compiler is capable of detecting both static and per-
sistent communication patterns within an application.
We show that for the NAS Parallel Benchmarks, 100%
of the point-to-point communications can be classified
as either static or persistent and, with the exception of
1S, 100% of the collective were either static or persis-
tent. By comparison to application trace data, the pre-
dicted LBMHD, CG and MG communication patterns
have been verified.

1. Introduction

Understanding the communication behavior of par-
allel applications is becoming increasingly important
in high performance computing research. For instance,
circuit switching techniques have been proposed and
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used as network paradigms in massively parallel pro-
cessing machines [7]. However, the overhead incurred
in these techniques due to establishing connections
limits the performance enhancement potential. The
knowledge of the communication patterns can be used
to reduce this overhead. An extreme example is Flat
Neighborhood Networks [5], which can derive a much
better design from the specification of particular com-
munication patterns. Even for packet switching and
wormhole routing techniques, the knowledge of com-
munication patterns also provides significant guidance
to the communication system designers [9].

The motivation of this work stems from the pro-
posal to include an optical circuit switching (OCS)
network in the design of next generation high perfor-
mance computing systems [2]. In that proposal long-
lived bulk data transfers are routed through all op-
tical switches, which are characterized by high data
rates with high overhead for circuit establishment. An
OCS is less expensive than its electronic counterpart
as it uses fewer optical transceivers. This intercon-
nection technique is more effective if connections are
pre-established and the relatively long switch times are
amortized over the lifetime of the connections. Our
compiler provides the analysis that makes this pos-
sible. Shalf et. al. proposes another interconnec-
tion network that use both passive(circuit switching)
and active(packet switching) switches to deliver perfor-
mance as a fully-interconnected network [14]. In their
approach, the switches must be reconfigured to emu-
late a suitable interconnection topology to achieve best
performance for the running application. The effec-
tiveness of this topology optimization process heavily
depends on how quickly the communication pattern of
the application can be obtained. Our compiler can infer
the communication topology for such an approach at
compile-time to more effectively utilize this approach.

We target tackling MPI-based [13] parallel applica-
tions, which are supported by most supercomputer sys-
tems. Based on the temporal and spatial properties of



communications and the capability of the compiler to
identify the temporal properties and the detailed topol-
ogy — the spatial properties — of the communications,
we classify communications during a phase of an ap-
plication’s execution into three categories: static, per-
sistent and dynamic. In this context, the topology of
communication is the specification of the source and
destination of the messages exchanged.

Static — Communication is static if it can be com-
pletely determined through compile-time analysis.
That is the compiler can identify both the temporal
locality and the exact topology of the communication.
Persistent — Communication is persistent if, though
the compiler cannot determine the exact topology of
communication, it can determine that the topology
does not change during the phase. That is, its tem-
poral locality can be identified by the compiler, but its
spatial properties remains unknown until run-time.
Dynamic — Communication is dynamic if it cannot
be determined until run-time when the communica-
tion operations actually occur and they change within
a phase.

Given that communication requirements of applica-
tions may change during different phases of execution,
an important part of the analysis of communication
patterns is to identify and segregate different commu-
nication phases. We observe that a main source of
communication temporal locality originates from loop
structures of MPI programs. Hence, it is natural to
consider a loop, which contains communications as the
building blocks of phases.
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In Figure 1, we illustrate the definition of static,
persistent and dynamic communications when a phase
is defined as a loop. Specifically, the communica-
tion operations are static if the topology (in terms of
sources and destinations) can be completely resolved
at compile-time, as in Figure 1(a). In Figure 1(b),
the topology can not be determined until run-time.
However, once defined, the topology is repeatedly used
within the loop. In this case we call the communication
operations persistent. In Figure 1(c), the communica-
tions are dynamic because during each iteration of the
loop, the topology is re-calculated prior to use.

The above classification implies different possibil-
ities for reducing communication overhead. For ex-

ample, considering circuit switching networks with
preloading capability such as an OCS network, the
earliest opportunity for determining network config-
urations for a static communication operation is at
compile-time. Thus configurations may be statically
inserted into the code by the compiler at the phase
boundaries. For persistent communication, the ear-
liest opportunity to know the necessary topology of
the network is at run-time. However, it is possible for
the compiler to insert a symbolic expressions specifying
the topology at compile time that may be resolved at
runtime. By placing these symbolic expressions at the
earliest point where the expression will be resolved the
network reconfiguration may still be able to take place
prior to use within a phase.

In this paper, we present a compiler-based communi-
cation analysis approach for identifying static and per-
sistent communication patterns. Many previous efforts
to analyze parallel applications’ communications char-
acteristics are based solely on trace analysis. However,
the traces can provide the communication information
for only a single execution instance of an application on
a particular platform. Our goal is to reveal the underly-
ing communication patterns available at compile-time.

We use a powerful scheme to represent communica-
tion patterns which includes both collective and point-
to-point communications in terms of communication
vectors and matrices. The vectors and matrices con-
tain exact values if the communication pattern con-
tains only static communications. Otherwise, they may
contain symbolic expressions for later resolution. This
scheme allows the manipulation of communication pat-
terns through a set of convenient operations. It is also
flexible and can be easily tailored to other types of
communication analysis.

This paper is organized as follows. Section 2
presents some motivation and related work. We de-
scribe the stages of the compiler in Section 3. The
communication pattern representation methodology is
detailed in Section 4. Section 5 relates experimental re-
sults from our compiler on a set of parallel benchmarks.
Conclusions are related in Section 6.

2. Related Work

The recent trends in network switching techniques
have shown significant improvements in network band-
width and a reduction in communication latency.
These trends are often driven by improvements in im-
plementation technology. For example, circuit switch-
ing hardware continues to improve due to improve-
ments in the technology. Newer technologies such as
optical networking continues to be an alternative to
electronic circuit switching that provides several advan-
tages such as capabilities to handle long wire lengths
and achieve high bandwidths. However, the reconfigu-
ration time of optical switching may be relatively long
(ms vs ps). Hence, to implement circuit switching with
relatively long switching latency mandates a technique
to amortize connection establishment overhead.



Our previous work [6] shows that much of the
circuit switching overhead can be amortized by pre-
establishing connections and re-using connections as
much as possible. In fact, the network configuration
pre-loading scheme has been shown to perform better
than traditional wormhole and non-predictive circuit
switching techniques in many instances. However, this
solution requires that the communication pattern must
be known early enough, ideally at compile-time.

There have been several attempts [1,8,10,15,16] to
understand the communication characteristics of par-
allel applications. These efforts focus on analyzing the
communication characteristics of parallel applications
such as the ratio of different kinds of communications.
They do not provide accurate descriptions of commu-
nication patterns with respect to connections. Some
researchers do try to identify the logical communica-
tion topologies, such as the 2-D meshes or hypercube.

Many interesting research projects require informa-
tion about communication patterns. For example,
Cappello and Germain proposed an approach to asso-
ciate compiled communications and a circuit switched
interconnection network [3]. Yuan et. al. explored
using compiled communication as an alternative to dy-
namic network control [18]. The compiled communica-
tion technique requires that a large portion of static
communications be identified at compile-time. Di-
etz and Mattox studied the Flat Neighborhood Net-
work (FNN) which uses the communication patterns
to determine the design of the network [5]. Liang et.
al. described a compiler, which supports compile-time
scheduled communication for their adaptive System-
On-a-Chip (aSOC) communication architecture [12].
As previously described, our previous work introduces
a switch design which can use our compilation tech-
nique to pre-program a TDM network switch [6]. All
of the above efforts need the precise knowledge of com-
munication patterns, which is the goal of our com-
piler. Each of these techniques can take advantage of
compile-time knowledge of the communication pattern
to reduce overhead in the network.

3. Compilation Framework

Analyzing communication patterns from the source
code of a MPI application is challenging. In this sec-
tion, we describe the compilation framework in detail.

3.1. Analysis Techniques

Although there still exist many technical challenges,
compiler techniques today are capable of inferring in-
formation which is essential for analyzing the commu-
nication behavior of a whole MPI parallel program.
In order to accomplish this, we must perform fairly
sophisticated compiler transformations such as inter-
procedural analysis on the source code. For exam-
ple, the value of constant function parameters must
be propagated during the analysis of callee functions
to help determine whether communications are static.
Also, many MPI functions utilize array parameters in

MPI functions. This requires the compiler to employ
array analysis techniques.

Path A Path B
Communications Communications

Figure 2. Decision point.

MPI programs are written in SPMD style. Each pro-
cessor independently executes the same program on its
private data. Nevertheless, often different processors
take different execution paths. The graph in Figure 2
represents a decision point (DP) which introduces mul-
tiple, here 2, optional branches. Each processor will in-
dependently evaluate the conditions at the beginning
of the DP and make its decision to take either Path A
or Path B. Although we call it a decision “point”, we
will use this terminology to refer to all the instructions
and communications between the condition instruction
point and the merge point.

We attempt to resolve information from the lead-
ing conditions of a decision point about which set of
processors are allowed to take a particular execution
branch of the decision point. The information is cru-
cial for identifying communication patterns. For ex-
ample, the eligible source processors of an MPI send
function can be determined if the information can be
inferred at compile-time (e.g. the conditional depends
on the processor id). The destination processors can
be determined by analyzing the destination parameter
in the MPI function. Therefore, the topology of this
send operation may be completely resolved. Also, if the
leading condition of a decision point is an equality or
inequality test comparing to a constant, we propagate
the value while analyzing the selected branch.

Because our focus is on inferring information about
communication, we can safely prune the control flow
graph (CFG) branches that do not contain commu-
nication operations and do not perform operations
which modify information involved in analyzing com-
munications. Additionally, though compiler analysis
techniques are fundamental to accomplishing these in-
ferrances, most of the techniques that we utilize are
classical and well studied in the literature. Thus, we
will not describe the details of their implementations.
Rather, we focus on how these techniques are applied
for analyzing communication patterns and treat com-
piler analysis techniques just as tools for providing in-
formation.

3.2. Compilation Framework Paradigm

The compilation framework can identify communi-
cation patterns and enhance applications with network
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configuration instructions and trace generation instruc-
tions. A compiler prototype has been developed based
on the SUIF compiler [17]. The SUIF compiler is an
open source, source to source compiler for both the C
and Fortran 77 languages.

Figure 3 shows the paradigm of our compilation
framework. The front end of the SUIF compiler com-
piles parallel applications to the SUIF intermediate for-
mat. A tool, porky, from the SUIF compiler system is
used to perform basic transformations, such as copy
propagation and constant propagation in order to dis-
cover more details about the characteristics of different
communication(e.g. static, dynamic, or persistent).

We do not intend to demonstrate a compiler which
can schedule communications for specific interconnec-
tion networks. Instead, we focus on identifying com-
munication patterns at compile-time. In other words
we focus on the communication detection and commu-
nication analysis components of the framework.

3.2.1. Communication Detection Component

The communication detection component is respon-
sible for detecting all the MPI communication calls
from the SUIF intermediate code. Because MPI is
a standard, we can explicitly enumerate all possible
MPI operations. Based on this list, we can easily iden-
tify, within the compiler, all the MPI operations that
occur in the code. This component collects informa-
tion about these communication operations’ parame-
ters. For instance, the communication detection com-
ponent identifies that me is the variable holding the
rank value and nprocs is the variable holding the total
number of nodes from the following source code.

call mpi_comm_rank(mpi_comm_world, me, ierr)

call mpi_comm_size(mpi_comm world, nprocs, ierr)

3.2.2. The Communication Analysis Component

The MPI operations and parameter information
identified during communication detection is used dur-
ing communication analysis to identify and represent

the communication pattern. First, the a complete con-
trol flow graph (CFG) is constructed and communi-
cation information is propagated through the graph.
Then the communication analysis component builds
a communication sequence, which can be represented
either as a communication-intensive simplified version
of the CFG (also called a communication graph) or a
literal expression which contains similar information.
The communication sequence is built from the CFG
and has links pointing back to the original CFG. This
process is described in more detail in Section 4.1. Then
the the communication pattern is identified from the
communication sequence and represented using a com-
pact internal format. The communication behavior
of the application is broken down into communication
phases using techniques described in Section 4.3. By
mapping the communication patterns into a series of
phases it is possible to create smaller, more efficient
communication working sets or groups of communica-
tions that occur in relatively close proximity. By im-
proving the coupling of the phase to the underlying
structure of the application it is possible to more effi-
ciently utilize our network resources.

3.2.3. Communication Compiling Component

The communication compiling component compiles
the communication pattern identified during analysis
and inserts network configuration instructions into the
application to assist configuring the network. The
communication compiling component is designed for
connection-oriented networks with the goal of reducing
the communication overhead. For example, our com-
piler can insert instructions to preload network config-
urations for the switches proposed in [6]. Two types
of network configuration instructions are considered in
our current experimental compiler.

Network configuration setup instructions are
used to pre-establish network connections. It can re-
duce the setup overhead of connections and overlap net-
work control with computation.

Network configuration flush instructions are
used to flush the current network configuration or a
subset of circuits from the current configuration. Such
instructions can be used to remove the expired circuits.
It also provides potential to speedup the parallel appli-
cations as it reduces contention for the circuits.

For static communication patterns, the content of
the communication pattern derived during analysis
is inserted into the code using network configuration
setup instructions designed to pre-configure the net-
work at the beginning of each communication phase.
For persistent communication patterns, the commu-
nication analysis component provides communication
pattern information as a function of variables that will
not be known until run-time. Code for calculating
these symbolic expressions at the appropriate locations
after all the required parameters are known is gener-
ated and inserted into the code. The scope and value
availabilities of variables in the symbolic expressions,



in addition to the location of the communication op-
erations, put constraints on the locations where these
instructions may be inserted. The communication com-
piling component can also insert network configuration
flush instructions at the end of a communication phase
upon the determination that the next phase will use
different set of connections.

3.2.4. Trace Generation Component

Many efforts to study the communication patterns
of parallel applications depend on study of application
traces. Unfortunately, this technique has the drawback
of seeing the execution based on a specific set of data
and parameters. While our goal is the determination
of the communication patterns of applications through
compiler analysis, our compiler also has the capability
to add trace generation instructions (e.g. print state-
ments) within the application. These traces are pri-
marily used to verify that the communication patterns
detected by the compiler are accurate.

4. Pattern Representation

Several research groups have observed that the com-
munication operations in many applications exhibit
regular patterns [2,10-12]. Additionally, it has been
shown that these regular communication patterns can
often be discovered through analysis of the source code
[3,4,8]. Our compilation framework described in Sec-
tion 3 and the subsequent communication analysis de-
scribed in the following sections is motivated by these
two discoveries.

To effectively perform compile-time communication
analysis it is necessary to represent the communica-
tion patterns identified from the code in a form that
is both concise and accurate. In the following sections
we describe a communication sequence and a commu-
nication matrix/vector pair that are used to represent
the communication patterns in the application. Ad-
ditionally, we describe techniques for detecting com-
munication phases within the application and how the
communication pattern representations can be manip-
ulated to closely correspond to the underlying commu-
nication network.

4.1. Communication Sequence

When studying communication patterns, we are pri-
marily interested in the communication operations and
control flow related code structures. Since the content
of the CFG of an entire application includes much infor-
mation unrelated to the communication behavior, our
experimental compiler uses a communication sequence
which prunes the branches that have no impact on ana-
lyzing communications. The communication sequence
retains only the communications and communication-
related control flow. It is constructed from the original
CFG and contains links back to original CFG.

The communication sequence delineates the innate
communication characteristics of the application. More

formally, we use a concise literal representation to de-
scribe the communication in a program. The grammar
in Figure 4 produces simple literal strings for describing
communication sequences.

Comm_Sequence — ¢ | Comm_element Comm_Sequence
Comm_element — Col | P2P | Comm_Loop | Comm_DP
Col — AA | AV | BC | BR | RD | AR |
Comm_Loop — [ Comm_Sequence ]

Comm DP — { Comm_Sequence || Comm_Sequence }

Figure 4. The grammar for communication
sequence literal representation.

The symbols on the left side are non-terminals.
The collective communications, or Cols are as fol-
lows: AA represents MPI_Alltoall, AV represents
MPI_Alltoallv, BC represents MPI_Beast, RD represents
MPI_Reduce, AR represents MPI_Allreduce, BR repre-
sents MPI_Barrier, etc. P2P represents a point-to-point
communication. Comm_Loop represents a loop that con-
tains communication operations expressed by square
brackets. Comm_DP indicates a decision point expressed
by curly brackets. There are two types of Comm_DP,
if-then or if-then-else.

Example 1: The communication sequence literal rep-
resentation of the IS (integer sorting) program from
NAS parallel benchmark suite [1] is shown below:

AR AA AV [ AR AA AV ] RD { P2P || } RD

There are three collective communications to start the
application followed by a loop with three collective
communications in the body. There is a reduce opera-
tion after the loop completes immediately followed by
a conditional represented by a decision point. For this
example using the representation from Figure 2, path
A contains a P2P communication and path B contains
no communication. The last operation is a reduce.
The communication sequence and its literal repre-
sentation is constructed by the communication analysis
component of our compilation framework. While the
literal representation does not provide details of the
point-to-point or collective communication operations,
it does provide a fairly concise and surprisingly detailed
map of the application’s communication characteris-
tics. It can be used to quickly familiarize developers
with communications occurring in the application.

4.2. Phases and Pattern Representation

Often, a parallel program is written to solve a par-
ticular scientific problem. These applications are often
organized in phases and although different processors
may take different paths, they tend to work in the same
computational phase at approximately the same time
but primarily on their local data. Given that these
parallel applications have computational phases, we
can expect their communication operations to behave
similarly. For example, the communication topologies
of adaptive applications evolve during their execution
time. Even for parallel applications that have static



communication patterns, their active communication
working set may change as the phases change. The
result is one or more communication phases. Com-
munication phases are not identical to computational
phases, but are strongly associated with them. For
example, some computational phases contain no com-
munication and thus can be ignored when identify-
ing communication patterns. Several computational
phases may just yield a single communication phase.
The number of phases is an artifact of the analysis used
to partition the communication sequence into phases.
Example 2: We can partition the communication se-
quence in example 1 into phases in two ways shown in
Table 1. The first one partitions the sequence at the
loop boundaries and three phases are identified. Ac-
tually the communications in the first two phases are
identical. Hence we can merge them and obtain the
two-phase partition.

Table 1. Communication phases in IS.

Phases sub — sequence
phase 0 AR AA AV

phase 1 [AR AA AV]
phase 2 RD { P2P || } RD

Phases sub — sequence
phase 0 AR AA AV [AR AA AV]
phase 1 RD { P2P || } RD

The fact that the communication pattern of an ap-
plication contains phases is important and must be de-
scribed while representing the pattern. However, the
traditional technique to represent the communication
pattern of an application is to describe its rough log-
ical topology, (e.g. 2-D mesh, hypercube, etc.), or to
provide a communication matrix. Such representations
are too coarse and can not describe the communication
topologies accurately. They also fail to disclose tempo-
ral information. Our communication pattern represen-
tation scheme is designed specifically to avoid this lim-
itation and to effectively represent the temporal and
spatial properties of the pattern.

We define all the communication operations of an
application as a communication pattern. When the
execution is partitioned into phases, the communica-
tions within each phase need to be specified. There
are two types of communications in MPI applications:
collective communications and point-to-point commu-
nications. In order to represent the collective commu-
nications in a pattern, we define a c-enumeration to
describe the set of collective communication functions
invoked in a parallel application.

Definition A c-enumeration is a list of all the col-
lective communications that appear in a parallel ap-
plication. Each collective communication is repre-
sented by a pair, the function name and optionally
the corresponding communicator. The communica-
tor is omitted if it is the default MPI communicator.
For each related MPI communicator, the same collec-
tive MPI functions have exactly one instance in the
c-enumeration. Each communication pattern retains a
unique c-enumeration.

Example 3: CEE = {AA, AR , (AR, commul), RD}
indicates that there are three different types of col-
lective communications in the application. The first
two and the last operations are performed in the de-
fault MPI communicator while the third operation,
MPI_Allreduce, is performed in a user-defined commu-
nicator commul. The communication detection compo-
nent of the compilation framework is responsible for
building c-enumerations.

A communication pattern consists of a sequence of
phases. A basic communication phase is described by a
c—vector and a p—matrix that represent all the collec-
tive and point-to-point communications, respectively.
A phase may also be a loop of a sequence of phases that
repeat in any execution instance of an application.

Definition A c—wvector corresponds to a c-
enumeration. Each element of the vector represents the
weight of the corresponding collective communication
in the c-enumeration.

Definition A p—matriz is a communication matrix
that describes a set of point-to-point communications.
Each entry of a p—matriz represents the weight of the
corresponding point-to-point communication.

Definition § represents any unknown values, variable,
vector, or matrix.

A p—matriz is deterministic if the total number
of processors N is known at compile-time and each en-
try of the p—matriz is a constant. A deterministic
p—matriz is used to represent static communications.
Persistent communications can always be described by
formula lists. They can also be described by a N x N
matrix with symbolic entries if IV is known at compile-
time, referred as a symbolic p—matriz.

Example 4: Figure 5 shows the deterministic
p—matriz in phase 2 of the communication pattern
of IS in Table 2.

1

Figure 5. p—matriz PM_IS(with 8 processors).

Table 2. The communication pattern of IS.
{AR,AA AV, RD}

c—enumeration

Phases c—wvector p—matriz
phase 0 <1,1,1,0> NULL
phase 1 <1,1,1,0> NULL
phase 2 <0,0,0,1> PM.IS

As shown in Figure 6, PM_A and PM_B are a for-
mula list and a deterministic p—matriz, respectively.
PM_A describes a communication pattern in which
each processor rank sends to rank + x and rank — x if
rank — x > 0 where x is determined at run-time and
N is the total number of processors. In the case z =1



< (rank +x) mod N ) ( v )
rank>z : (rank — z) mod N Lot

(a) PM_A (b) PM_B
Figure 6. A p—matriz PM_A described by a
formula list and the corresponding determin-
istic p—matriz P-matrix_B.

and N = 4, we infer a deterministic p—matriz PM_B
from PM_A.

In the above definitions of p—matrices and
c—wvectors we do not enforce a specific meaning for
the communication weight. However, some options in-
clude (1) a single bit value to indicate if point-to-point
communications from the source processor to the des-
tination processor exists (2) the message volume or (3)
message count. In the case that the compiler cannot
construct even a symbolic expression for a point-to-
point communication the § symbol is used in the sym-
bolic expression for that matrix entry.

if (myrank < nprocs/2) {
MPI_Send(buf,1, MPI_INT_TYPE,
myrank+1,1000,MPI_COMM_WORLD) ;
} else {
MPI_Send(buf,1,MPI_INT_TYPE,
myrank-1,1000,MPI_COMM_WORLD) ;

}

(a) Decision point code.

(b) Conservative matrix. (c) Matrix considering

) decision point.
Figure 7. A phase and p—matrices.

Decision Points are an important code structure
when constructing p—matrices because they can re-
strict the set of eligible processors to perform commu-
nication operations. Figure 7 shows an example of a
decision point impacting the communication matrix.
The code for the example is shown in Figure 7(a) where
myrank holds the processor rank and nprocs holds the
total number of processors. For this example, we show
the case where nprocs = 8. If the decision point is
ignored the resulting conservative p — matriz is shown
in Figure 7(b), which contains several non-existing con-
nections. This technique assumes that each processor
will take both the then and else branches and re-
quires two connections for each processor. However,
by static analysis it is possible to determine the exact
paths taken by each processor. Figure 7(c) shows the
optimized p—matriz where each processor now only
communicates with a single destination.

This communication pattern representation scheme

can be used to represent both compile-time identified
communication patterns and the communication pat-
terns identified from execution traces. The main ad-
vantage of our pattern representation scheme is that it
captures the time evolving, or phased, property of com-
munication patterns. The concepts of phases suggests
the need to manipulate the communication patterns
from different phases and to schedule the communica-
tions in the pattern at different granularities according
to parameters of the target system.

4.3. Phase Partitioning

One of the crucial tasks for identifying communi-
cation patterns is to effectively partition the program
into communication phases. Application designers and
developers usually have precise knowledge about differ-
ent phases. However, requiring the developer to specify
such information may reduce their productivity. More-
over, we do not want the user to worry about the under-
lying network parameters. For instance, if large num-
ber of connections can be established simultaneously,
larger communication phases may be possible. Hence,
we want the compiler to do the phase partitioning au-
tomatically.

We observed that loops and decision points are im-
portant code artifacts that have to be considered while
partitioning communication phases. In our compiler,
we use the following rules to partition phases:

e All the communications in an outermost decision
point, which is also not enclosed in any loop, fall
into the same communication phase.

e All the communications in an innermost loop un-
constrained by any decision point form an initial
communication phase.

e All the communications in the maximum inter-
val between two immediately adjacent pairs of the
above phases forms a communication phase.

Communication phase partitioning is performed by
the communication analysis component in our compi-
lation framework following the above rules. For each
partitioned communication phase, the communication
analysis component builds a global c—vector and a
global p—matrizx.

Rather than the above partitioning rules we cur-
rently use, other potential strategies exist. For in-
stance, it is also practical to partition phases mainly
according to outermost loops and decision points. We
can also start from identifying each communication op-
eration from the source code and treating each of them
as a tiny communication phase. Then we might merge
these tiny communication phases to construct addi-
tionally coarse phases until the granularity of phases
reaches a desired threshold. Our current design can be
extended to allow different phase partitioning policies.

Besides supporting phase partitioning, information
from control and data flow analysis, especially when the



destinations are re-calculated, is crucial to determine if
the communications are static, persistent, or dynamic.

4.4. Manipulating Patterns

A communication phase can more precisely repre-
sent an active connection working set. One strategy
to determine the communication phases in the pro-
gram is to assume that each loop in the application
is a phase and to manipulate these initial phase de-
cisions to group the communications into new phases
that are best suited to the capacity of the network. For
instance, we may want to combine two adjacent phases
if the network capacity is large enough to hold both of
them; we may want to remove some infrequently used
connections if the newly combined phase is slightly be-
yond the capacity of the network. We define four core
operations required to deal with different communica-
tion phases:

Merge combines the p—matrices and ¢ —vectors of
two adjacent phases of a communication pattern into a
new phase. If no communication weights are included,
this is equivalent to an OR operation.

Filter removes connections below a threshold from
a phase of a communication pattern.

Unwrap extracts the loop body from the control to
facilitate other operations such as phase merging.

Collective to point-to-point (C2P) decomposes
collective operations into a matrix of point-to-point
operations. This allows explicit overlaps between the
p—matrixz and c—vector to be explored.

Because these representations do not include tem-
poral information, it is not possible to sub-divide a
communication phase into multiple phases. However,
the analysis may revert back to the initial loop par-
titions to rebuild simpler phases. Additionally, other
operations are omitted when they can be created from
groups of existing transformations, (e.g. delete can be
implemented by a combination of merge and filter).

5. Results

We have developed an experimental compiler that
implements the compilation framework described in
Section 3. Our compilation framework provides three
key contributions beyond current approaches in the lit-
erature. In Section 5.1 we examine the impact of con-
sidering persistent communications in addition to pre-
vious approaches which consider only static and dy-
namic communications. This knowledge is leveraged
in the compiler to determine the communication pat-
tern for these benchmark applications in Section 5.2.

5.1. NAS Parallel Benchmark Results

We used our experimental compiler to profile the
communication statistics of the NAS Parallel Bench-
marks v2.4.1. The percentage of static, persistent, and
dynamic communications are shown for point-to-point
operations in Table 3 and for collective operations in
Table 4. All of the data obtained for these charts were
acquired through compile-time analysis alone with the

exception of IS and FT’s collective operations which
were added through prior 128 node traces.

Table 3. The percentages of different point-to-
point communications in NAS benchmarks.

Benchmark Static Persistent Dynamic
IS 100% 0% 0%
CG 100% 0% 0%
MG 0% 100% 0%
BT 0% 100% 0%
SP 0% 100% 0%
LU 100% 0% 0%

For the point-to-point operations, IS, CG and LU
contain only static communications. MG, BT, SP
contain only persistent communications. For BT and
SP, the destination set for each node is calculated
prior to all point-to-point communications and are used
through application completion. For MG, there are two
communication stages. In each stage, the destination
set for each node is calculated prior to the communi-
cations and is retained until each stage completes.

In the case of collective operations both IS and FT
contain all-to-all communications. While the num-
ber of total nodes increases, the all-to-all communi-
cations dominates the message volume. So the ratio of
static communications (e.g. point-to-point) to collec-
tive communications becomes very low and almost can
be ignored.

Table 4. The percentages of different collec-
tive communications in NAS benchmarks.

Benchmark Static Persistent Dynamic

IS 0.4% 0% 99.6%
CG 100% 0% 0%
MG 100% 0% 0%
EP 100% 0% 0%
FT 0% 100% 0%
BT 100% 0% 0%

SP 100% 0% 0%
LU 100% 0% 0%

5.2. Identifying Communication Patterns

To show the capability of our compiler to iden-
tify communication patterns, we consider one applica-
tion LBMHD (Lattice Boltzmann model of magneto-
hydrodynamics) and the IS, LU, MG and CG bench-
mark programs from the NAS parallel benchmark
suite. While information for the entire benchmark suite
can be generated, we demonstrate only 4 due to space
limitations.

IS: The compiler identified communication pattern
for IS has been shown in Table 2 and Figure 5. The
weights in c—vectors and p—matrices are binary val-
ues. In phase 0, collective operations AR, AA, and AV are
executed with no point-to-point communication. This
is similar for phase 1. Phase 2 combines the RD col-
lective operation with the point-to-point matrix shown



in Figure 5. By using Merge and Unwrap operations,
phase 0 and 1 can be combined.

LBMHD: The communication pattern of applica-
tion LBMHD is shown in Figure 8 and Figure 9. Our
compiler identified a single communication phase. Be-
cause the number of processors N and the processor
rank rank are not known at compile-time, we generate
a formula list in Figure 8 to describe the p—matriz.
Each processor has a set of four other processors with
which it communicates. Since N and rank are the
only symbols in the expression, this matrix is consid-
ered statically known as it may be entirely resolved at
load-time to execution. Thus it is possible to entirely
configure the network for LBMHD based on compiler
analysis prior to execution. Figure 9 shows the pattern
from a run on 64 processors.

((lrank/Ny] +1) mod N + (rank — [rank/Ny| * Ny)
((lrank/Ny] —1) mod N + (rank — [rank/Ny]| * Ny)
|rank/Ny| * Ny + ((rank — |rank/Ny] * Ny) 4+ 1) mod Ny
|rank/Ny| * Ny + ((rank — |rank/Ny] * Ny) — 1) mod Ny

Figure 8. LBMHD p—matriz described by a
formula list where N = N, « N,,.

Figure 9. LBMHD p—matriz for 64 processors.

While compiling any NAS parallel benchmarks, the
total number of processors, referred as N here, has to
be given as a build parameter. Therefore, N is known
at compile-time. We show the analysis results for CG
and MG running on N = 128 processors.

CG: The compiler initially identified two communi-
cation phases from the source code. It turns out that
each of these phases are identical and can be merged.
The p—matrixz for the compiler predicted communica-
tion pattern is shown in Figure 10.

MG: When analyzing MG, the compiler discov-
ered that the communication destinations depend on
run-time input data. However, after the topologies
are determined, they are used for an extended period
of time. Hence the communication pattern is persis-
tent. Therefore, it is only possible to construct sym-
bolic p—matrices or formula lists from the source code.
However, the input data for the program is provided
by a pre-generated input file, it is possible to use these
values to construct deterministic p—matrices.

Using values in a particular input file in compile-
time analysis, We constructed 12 p-matrices shown

a
B
&
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2
g
B

Figure 10. The p—matriz of CG (128 nodes).

in Figure 11. p—matrices 0, 1, 6-10 correspond
to Figure 11(a), p—matrices 2 and 11 correspond
to Figure 11(b), p—matriz 3 corresponds to Fig-
ure 11(c), and p—matriz 4 corresponds to Fig-
ure 11(d). p—matriz 5 is empty because the branches
containing zero point-to-point communications were
taken in the decision points in this case.

(a) p—matrices 0,1,6-10.

1] 0 & ] ] w o 1;

(¢) p—matriz 3.

(d) p—matriz 4.

Figure 11. Predicted p—matrices of MG.

The experimental compiler is also capable of auto-
matically generating traces to help verify the detected
communication patterns. First the compiler identifies
the communication pattern. Second, it inserts trace
generation instructions for communication operations.
The resulting MPI program is annotated with trace
generation statements. This code can be compiled and
executed normally to generate trace files. This tech-



nique was used to verify our results for the LBMHD,
CG, and MG benchmarks.

6. Conclusions

In this paper we have presented a compiler frame-
work analysis of communication operations for parallel
application. This framework can identify communica-
tion patterns directly from source code. Additionally,
the compiler framework can automatically insert net-
work configuration instructions and/or trace genera-
tion instructions directly into the application for set-
ting up network configurations and collecting traces,
respectively. An experimental compiler has been im-
plemented based on the SUIF compiler infrastructure.

One of the main contributions of this work is the de-
velopment of a communication pattern representation
scheme for our experimental compiler. This scheme
is flexible and can be easily tailored to many types of
communication analysis. It also provides the power
to easily manipulate the granularity of communication
phases and/or translate collective communications to
point-to-point communications using a set of proposed
operations on the patterns.

Applying our experimental compiler on the NAS
parallel benchmark suite, we found a large portion of
communications which are classified as dynamic [8] to
actually be persistent. This provides opportunities for
pre-configuring network to reduce communication over-
head.

Potential future work includes enhancing the con-
trol and data flow analysis to more accurately detect
persistent communications within an application. Ad-
ditionally, the compiler can be used with a variety of
different types of network topologies to evaluate the
performance impact of predicting the communication
pattern at compile-time. Finally, this idea can be ex-
panded for non-message passing software layers such
as distributed shared memory architectures that give
the appearance of shared memory but require actual
messages to traverse the network.
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