
Empowering a Helper Cluster through Data-Width

Aware Instruction Selection Policies

Osman S. Unsal¹, Oguz Ergin², Xavier Vera¹, Antonio González¹

¹Intel Barcelona Research Center
Intel Labs, Universitat Politècnica de Catalunya

Barcelona, Spain
{osmanx.unsal,xavier.vera,antonio.gonzalez}@intel.com

2Department of Computer Engineering
TOBB Univ. of Economics and Technology

Ankara, Turkey
oergin@etu.edu.tr

Abstract

Narrow values that can be represented by less number
of bits than the full machine width occur very frequently in
programs. On the other hand, clustering mechanisms
enable cost- and performance-effective scaling of
processor back-end features. Those attributes can be
combined synergistically to design special clusters
operating on narrow values (a.k.a. Helper Cluster),
potentially providing performance benefits.

We complement a 32-bit monolithic processor with a
low-complexity 8-bit Helper Cluster. Then, in our main
focus, we propose various ideas to select suitable
instructions to execute in the data-width based clusters.
We add data-width information as another instruction
steering decision metric and introduce new data-width
based selection algorithms which also consider
dependency, inter-cluster communication and load
imbalance. Utilizing those techniques, the performance of
a wide range of workloads are substantially increased;
Helper Cluster achieves an average speedup of 11% for a
wide range of 412 apps. When focusing on integer
applications, the speedup can be as high as 22% on
average.

1. Introduction

As semiconductor technology scales down to deep sub
micron range, wire delays are becoming more prominent
compared to gate delays. Clustered microarchitectures
[8][9][18][19] provide an effective solution to dealing
with the problem of wire delays by partitioning processor
resources, usually into a frontend (encompassing fetch,
decode and rename) and multiple backends (schedule,
execute and commit). However, although clustered
architectures enable the scaling of instruction issue and
execution resources, this comes at an area/complexity cost
with some increased overhead compared to a monolithic
architecture, such as inter cluster copy instructions (or

bypass operations depending on implementation). Those
instructions or operations result from data dependencies
that exist when a destination and its consumer are mapped
to separate clusters.

On the other hand, narrow values (i.e. values that can
be represented by less number of bits than the full machine
width) occur very frequently in typical programs and
provide various microarchitectural optimization
opportunities [4][7][14][17]. Here, to reiterate and
illustrate the importance of narrow values, we coin a new
definition: a consumer is said to be narrow data-width
dependent if the producer value is narrow. Narrow data-
width dependency is a dominant subset of data
dependency. As an example consider Figure 1: we plot,
for Spec Int 2000 applications, the percentage of register
operands that are narrow (defined here as 8 bits) data-
width dependent. As can be observed from the figure,
there is substantial narrow data-width dependency.
Alternatively, we have found that 39.4% of regular ALU
instructions require one narrow-width operand, 3.3%
require 2 narrow operands producing a wide result and
43.5% require 2 narrow operands producing a narrow
result. Traditional clustering approaches based on
symmetry do not exploit this potential.

0

10

20

30

40

50

60

70

80

90

100

bzi
p2

cr
afty eon

gap gcc
gzi

p
m

cf

pars
er

perlb
m

k

tw
olf

vo
rt
ex vpr

A
VG

Spec Int 2000 Applications

N
a

rr
o

w
 V

a
lu

e
s

 (
in

 %
)

Figure 1- Data-width dependent values for
register operands

1-4244-0054-6/06/$20.00 ©2006 IEEE

The best aspects of monolithic and clustered
architectures can be potentially combined in an
asymmetric clustering scheme based on data-width.
However, to fully-realize this potential and achieve
substantial speedups, sophisticated data-width dependency
sensitive instruction steering schemes must be developed.

Similar to previous work [10], we propose to augment a
monolithic processor with a small narrow data-width
cluster core, which we term the Helper Cluster. The
Helper Cluster is clocked faster than a full 32-bit cluster,
potentially achieving a dramatic performance boost in
principle. In practice however, the challenge is to develop
innovative techniques to steer suitable instructions into the
helper cluster to realize this goal. In this work, we
demonstrate how to address this challenge to achieve the
performance potential of Helper Cluster. Helper Cluster
achieves an average speedup of 11% for a wide range of
412 applications. When focusing on integer applications,
the speedup can be as high as 22% on average.

The crucial issue in a narrow datapath-width cluster is
to balance the workload of the backends, by devising
smart instruction steering mechanisms to keep the helper
cluster occupied. Two important factors will enable us to
fully exploit this performance potential. First, in general,
the more the instructions that are executed in the faster
narrow backend, the more the performance gain. Second,
occasionally a consumer instruction assigned to a backend
might need to use a value that is produced in the other
cluster. For that purpose, we use the copy instruction
scheme as proposed by Gonzalez et al.[6]. In this scheme a
special copy instruction is generated by the consumer
instruction. This copy instruction is steered to the backend
of the producer to gather the value when it is produced and
to copy it to the consumers’ register file. For a detailed
discussion of the implementation details, please refer to
[6]. Copy instructions incur an obvious performance
overhead, so the number and time penalty of copies should
be minimized. Thus, we want to keep in check the number
and penalty of copies generated between the clusters.
Next, we summarize our steering techniques:

(1) If all the source operands and (if any) the result
produced by the instruction is 8-bits (narrow), we steer
those instructions to the helper cluster. In order to
determine the width of instructions, we use a predictor to
predict the width of operands and result.

(2) To increase the number of instructions steered
into the helper cluster, we consider instructions with one
narrow and one wide source and a wide result, with the
upper bits of the wide source and the result being
identical. This means that this instructions’ execution does
not change the upper order bits and that it is effectively a
narrow operation that can be done in the helper cluster.
We later discuss how such values can be predicted and the
associated predictor design.

(3) We propose to steer conditional branches that
depend on the flag produced by an instruction that has
already been executed in the helper cluster, to the helper
cluster. This minimizes the number of copies generated.

(4) We propose copy prefetching which minimizes
the time penalty of a copy instruction. The basic idea is to
predict when a producer instruction might generate a copy
instruction later on, and generate the copy earlier at the
producer, instead of at the consumer. When it needs, the
consumer instruction will most likely have the value ready
and will not block waiting for the value to arrive.

(5) We determine the amount of workload
imbalance. If the helper cluster is overloaded, we steer
narrow instructions to the wide cluster until the workload
balance is restored again. Conversely, if the helper cluster
is underloaded, we propose to split up wide, 32-bit
instructions into 8-bit chunks and steer them to the helper
cluster.

The rest of this paper is organized as follows: In section
2 we introduce the helper cluster microarchitecture. In
section 3, we discuss each of the above contributions in
detail including implementation issues; this is followed by
relevant results in each subsection. In section 4, we survey
relevant work and in section 5 present our conclusions.

2. Helper Cluster Microarchitecture

2.1. Helper Cluster Organization

We have conservatively chosen the helper cluster to be
8 bits wide, previous research shows that many 8-bit
narrow values exist in typical programs [4][7], and
therefore this is a good design point from a
performance/complexity tradeoff point of view; we
explain this further in the next section. Note that more
narrow instructions would be executed in the narrow
cluster and therefore the potential performance gains
would be even higher if it would be possible to construct a
wider than 8-bits. Figure 2 shows a monolithic processor
extended with a helper cluster. This clustered
microarchitecture executes Intel® IA-32 instructions. The
frontend reads the instructions from the upper-level cache,
the UL1; translates them into uops (henceforth referred as
instructions) and stores them in a Trace Cache, from
where they are read, decoded, and steered to any of the
backends according to the steering policy. Each backend
has its own integer register file, integer instruction queue
and ALUs. In addition, the wide backend has floating
point instruction queues and FPU’s. Floating point
functional units usually incur a high area overhead,
and operate on wider data. Therefore, for a complexity
effective design, the helper cluster has integer functional
units only. The area overhead of the helper cluster is very

Figure 2 - Processor block diagram with the
wide (32-bit), and the helper (8-bit)
backends.

small as compared to a full 32-bitwidth cluster since the
areas of typical backend structures such as the register
files [3] or ALU’s [16], scale at least linearly with the
data-width. Although there can be more than one helper
and/or wide clusters, for ease of presentation we will be
henceforth considering two backends; one wide (32-bit)
and the other narrow (8-bit).

Narrow values are detected through leading zero (or
leading one) detectors. Figure 3 shows the circuit
diagrams for 8-bit leading zero and one detectors
respectively, which employ dynamic logic for faster
operation and larger fan in.

2.2 Helper Cluster Clocking

The Integer Functional Units (ALU’s, AGU’s) in
general, and the adder and the associated bypass loop in
particular, are usually the critical path in a microprocessor
[22] and determine the limit to which the frequency can be
pushed in the backend of the cluster. For example, in
Pentium-4 [11], although the issue queue is clocked at the
fast 2X “fireball” frequency, the adder can only be clocked
at this frequency by adopting a 16-bit staggered
organization; therefore a 32-bit add takes one “slow”
cycle. The delay of this critical path scales with the
datapath width since the adder delay depends on the size
of the input operands [15]. Moreover, the adder circuit
area also depends on the operation width and that in turn is
an important factor in determining the propagation delay
of the bypass loop. Typical high-performance ALU
latencies are on the order of logN (N being the operand
width). Therefore, through considering the ALU and
bypass latencies, the 8-bit helper backend can be clocked 2
times faster than the 32-bit backend. This also ensures that
the clocks remain synchronized with respect to each other

Figure 3 - Consecutive Zero (a) and One (b)
Detection Circuits.

thus avoiding the inter-cluster clock resynchronization
costs [21]. In case the critical path is on other structures,
we performed experiments with reduced issue queue size
and issue width; the results indicate negligible impact on
performance.

3. Evaluation of Steering Techniques

3.1 Simulation Methodology

Results provided in this section were collected from an
IA-32 trace-driven simulator modeling an Intel Pentium®

4 - like processor. Due to simulation time for detailed
analysis, we use 12 traces generated from SPEC Integer
2000 benchmarks; for final analysis we discuss the results
over a wider range of workloads. Each trace is composed
of 100 million instructions. To skip the initialization
section, we split each benchmark into 10 equal slices and
start executing from the fourth slice. The performance
results are given with respect to a baseline monolithic
processor which has the same resources as the frontend
and the wide backend of the cluster. As discussed in the
previous section, the Helper Cluster augments the baseline
with the narrow cluster. Table 1 lists the parameters used
in the experiments. For calculating power/energy, we
utilize an in-house wattch-like [2] power simulator,
modified to take into account the helper cluster power,
including the 8-bit datapath and the clock network as well
as the width predictors.

Trace Cache(TC) 32Kuops,4w

Level-1 DCache (DL0) 32KB,8w,3cycle,2R/Wport

Level-2 Cache (UL1) 4MB,16w,13cycle,1R/Wport

Integer Execution 32 entry scheduler, 3 issue

Fp Execution 32 entry scheduler, 3 issue

Commit Width 6 instructions

Main Memory 450 cycles

Table 1 - The monolithic baseline processor
parameters

3.2 All source operands and output narrow (8-8-8)

If we predict that all the operands and the output are
narrow (8 bits), then we steer that instruction into the
helper cluster. The predictor uses a simple table-based
tagless scheme. The table is indexed by the PC; the
predictor occupies 1 bit per entry, the width predictor logic
predicts the width of a result of an instruction by storing a
single bit to remember the last generated width. We have
experimented with various table sizes, a size of 256 entries
was found to be a good compromise between complexity
and performance, therefore this size was selected for the
final design. Please see Figure 4 for an embodiment of the
width predictor showing the modifications on the datapath
structures.

Regarding the source widths, width information is
stored inside a field in the rename table called width table
(which is 1-bit wide) and is updated with correct outcome
later while updating the width predictor to improve the
prediction accuracy for the source operands. When a new
instruction is decoded, the width prediction for the
destination register is read out. For the source operand
width, the actual width is read if the producer instruction
has already written back the result; if not, the prediction is
read. If the instruction has any immediate fields we obtain
the actual width. If all source operands and output of an
instruction need values of 8 bits or less, the instruction is
sent to the helper cluster.

The width prediction accuracy is around 93.5% on
average, decreasing the percentage of the cases that need
recovery because of a misprediction, see Figure 5. Note
that recovery is only necessary in the case of a
misprediction for an instruction that has been steered to
the narrow backend (we term this a fatal misprediction); a
misprediction for an instruction that has been steered to
the wide backend (which could be otherwise executed in
the narrow backend) is a missed opportunity and does not
require recovery. In case of a misprediction requiring
recovery, the impacted instructions have to be squashed in
the narrow backend and resteered into the wide
backend. We adopt a flushing scheme which squashes all
instructions starting from the mispredicted one. Although
simple, this scheme has a high performance overhead in

Figure 4- Data width predictor

80

82

84

86

88

90

92

94

96

98

100

bzi
p
2

cr
af

ty
eon

gap gcc
gzi

p
m

cf

par
se

r

perlb
m

k

tw
olf

vo
rt
ex vp

r

A
V
G

Spec Int 2000 Applications

P
e
rc

e
n

t

Non-Fatal Misprediction

Fatal Misprediction

Correct Prediction

Figure 5 – Width prediction accuracy

the case of a misprediction. Therefore, to decrease the
misprediction rate, we augment the predictor with a 2-bit
per-entry confidence interval estimator. We only take the
decision to steer the predicted narrow instruction to the
helper cluster if the prediction is with high-confidence.
This fine-tuning decreased the misprediction requiring
recovery to 0.83% from 2.11%. As a result, 15% of the
instructions are steered to the helper cluster, with a 6.2%
performance boost compared to the baseline; see Figures 6
and 7. Examining the figures, note that this scheme
generates a relatively large number of copy instructions
since the generated narrow value is likely to be used in the
wide cluster for addressing or indexing purposes. Also
note that the application with the worst performance
(bzip2) has a very high copy/narrow instruction ratio,
while the application with the best performance gain (gcc)
has a low copy/narrow instruction ratio. The results here
may seem to contrast with the results in Figure 1, where
we established that on average 65% of the consumers are

-5

0

5

10

15

20

25

30

35

40

bzi
p2

cr
af

ty
eo

n
gap gcc

gzi
p

m
cf

pars
er

per
lb

m
k

tw
olf

vo
rt
ex vp

r

A
V
G

Spec Int 2000 Applications

P
e
rf

o
rm

a
n

c
e
 i

n
c
re

a
s
e

 (
in

 %
)

Figure 6 Performance of 8_8_8 scheme

0%

5%

10%

15%

20%

25%

30%

bzi
p2

cra
fty eon

gap
gcc

gzi
p

m
cf

pars
er

per
lb

m
k

tw
olf

vo
rt
ex vp

r

A
VG

Spec Int 2000 Applications

P
e

rc
e

n
t

Helper Cluster Instructions

Copy Instructions

Figure 7 Percentage of instructions steered
to the helper cluster, and of inter-cluster
copies

narrow-width dependent on the producer. However, we
need to consider that all the input operands (which can be
more than 2 in the IA-32 internal machine state) and the
result value of a particular instruction must to be narrow to
use this steering mechanism. It is clear that this particular
combination occurs less frequently. The observations
above motivate us to develop and explore a mechanism to
steer more instructions into the helper cluster while trying
to minimize copies. We introduce such a mechanism
based on dependencies in the next section.

3.3 Branches Dependent on Narrow-Value

Condition (BR)

We can leverage another data-width sensitive
characteristic to steer more instructions to the helper
cluster and decrease generated copies. The idea is based
on the fact that many conditional branches, such as those
at loop boundaries, depend on a narrow value. In other
words, the conditional branch (that checks the flags
register) usually depends on an arithmetic instruction
(which produces the write to the flags register) that is
narrow. Now we discuss how to steer those conditional

0%

5%

10%

15%

20%

25%

bzi
p2

cr
af

ty
eo

n
gap gcc

gzi
p

m
cf

par
se

r

per
lb

m
k

tw
ol

f

vo
rt
ex vp

r

A
V
G

SpecInt 2000 Applications

P
e

rc
e

n
ta

g
e

 o
f

C
o

p
ie

s

8_8_8

8_8_8+BR

Figure 8 – Decrease in copy percentage due
to use of BR scheme.

branches to the helper cluster. We propose to move some
of the conditional branch address resolution to the
frontend; this enables more branches that depend on
narrow values to be steered to the narrow backend. Many
conditional branches calculate their target address through
the addition of an immediate operand value with the value
kept in the register of the code segment and the instruction
pointer (EIP register). This addition can be done in the
frontend since the value of the code segment register does
not change and the EIP register contains the offset within
the code segment. Those conditional branches can be
easily tagged since they have a unique operand. In consort
with this framework, the steering scheme works as
follows: if the instruction that last wrote to the flags
register has been steered to the narrow backend, we can
also steer the dependent conditional branch to the narrow
backend. If this branch were steered to the wide backend
instead, a copy would be generated to fetch the flags
register from the narrow backend; we avoid this overhead,
increase helper cluster instructions and decrease the
number of copies. Adding this new technique, we steer
19.5% of the instructions to the narrow cluster, with
10.8% copy percentage, which yields a performance boost
of 9%. As seen in Figure 8, BR effectively leverages
dependency and data-width information to simultaneously
steer more instructions into the helper cluster while
decreasing the copy percentage.

3.4 Load Replication (LR)

Since there is a single Memory Order Buffer (MOB),
registers could be allocated in both clusters for loads; thus
minimizing copies. This is beneficial in cases where the
load has to be done in one backend (e.g., in 32-bit cluster
because the address resolution might require a 32bit add),
and the result used in the other (e.g., in 8-bit cluster
because the loaded value is 8-bit wide). Load replication

0%

5%

10%

15%

20%

25%

bzi
p2

cr
af

ty
eo

n
gap gcc

gzi
p

m
cf

par
se

r

per
lb

m
k

tw
olf

vo
rt
ex vp

r

A
V
G

SpecInt 2000 Applications

P
e
rc

e
n

ta
g

e
 o

f
C

o
p

ie
s

8_8_8

8_8_8+BR

8_8_8+BR+LR

Figure 9 - Minimization in copy percentage
due to use of LR scheme.

can also help when too many copies are generated
between the 32-bit and helper clusters. Copies are avoided
by duplicating loads for such cases as an 8-bit value being
used in the 32-bit cluster later on.

Multiple load replication schemes can be considered.
One such scheme would replicate the register value on the
helper cluster for loads that are steered to the 32-bit cluster
if they are predicted to load an 8-bit value. Another, more
complexity-effective scheme would duplicate 8-bit loads
on the wide cluster; here we adopt this scheme. Load
replication decreases copies to 6.4% from 10.8%, see
Figure 9 .

3.5 Carry Width Prediction (CR)

To further increase the percentage of instructions that
are steered into the helper cluster, we exploit the
instructions whose operation only works with the lower
order 8-bits of the inputs and there is no carry propagation
beyond the lower order 8 bits. We term this scheme CR.
As an example consider load instructions whose address is
calculated by adding a small offset to the large base
address with only the lower order bits of the large base
address changed. Figure 10 illustrates this case for a load
address calculation on an Address Generation Unit
(AGU). Here, contents of the base register R2 is added to
the offset register R3 to get the address. In this case the
address calculation can be done in the helper cluster. We
have done an analysis of such instructions (with two
sources, one 8-bit and the other 32-bit wide, and with one
32-wide result) to determine the percentage in which the
carry is not propagated. The results, shown in Figure 11
for loads and certain arithmetic instructions such as add or
subtract indicate that CR has substantial potential.

For such cases, we extend the data value width
predictor to predict when carry does not propagate beyond
the 8 bits. An instruction is eligible to be considered as

8-bit AGU

32-bit
operand

8-bit
operand

8-bit LSB of
address

Loadbyte R1, (R2+R3)

R2 = (FFFC4A02)

R3 = (00000001C)

R2+R3 = (FFFC4A1E)

Figure 10 - Example for Carry Not Propagated.

0

10

20

30

40

50

60

70

80

90

100

bzi
p2

cr
af

ty
eo

n
gap gcc

gzi
p

m
cf

par
se

r

per
lb

m
k

tw
olf

vo
rt
ex vp

r

A
V
G

Spec Int 2000 Applications

P
e

rc
e

n
t

Arith

Load

Figure 11 – For instructions with two
sources, (8-bit and 32-bit), and with one
result (32-bit); the percentage that the carry
is not propagated

“carry will not be propagated”, if its result is predicted to
be 32 bits and only one of its sources is either predicted to
be or is actually 32-bits wide. This is obtained from the
width predictor. Along with this information, an additional
bit in the width predictor has to be used to indicate if the
last occurrence of this instruction had operated with only 8
bits. This bit is set at writeback if the previous
preconditions are satisfied. The new instruction is steered
to the narrow backend if the predictor indicates that
previous occurrence did not propagate a carry beyond 8
bits. Similar to the 8-8-8 case, a 2-bit confidence estimator
is used to decrease the fatal misprediction rate. Since we
utilize the carry signal to catch fatal mispredictions, such
arithmetic operations as divide and multiply are not
eligible to be considered for this technique. To reconstruct
the 32-bit value, the rename table entry associated with the
newly allocated destination physical register is appended
with an extra tag that points to the register holding the
upper 24-bits of the produced value in the wide cluster.
The register deallocation mechanism must be modified as

-5

0

5

10

15

20

25

30

35

40

45

bz
ip

2

cr
af

ty
eo

n
gap gcc

gz
ip

m
cf

par
se

r

per
lb

m
k

tw
olf

vo
rt
ex vp

r

A
V
G

Spec Int 2000 Benchmarks

P
e

rf
o

rm
a
n

c
e

 i
n

c
re

a
s

e
 (

in
 %

)

8_8_8

8_8_8+BR+LR+CR

Figure 12 – Performance of Carry Not
Propagated (CR) scheme

well: a counter is associated with the wide physical
register. The counter is incremented when an 8-32-32
condition is detected. The decrement occurs when the
renamer of the destination register of the 8-32-32
instruction deallocates the definition. The 32-bit register is
then deallocated only when its renamer commits and the
counter associated with it is zero. This check does not
incur any additional delay since it requires a simple zero
check which can be done in parallel with the renamer
commit check. Adding the CR mechanism, the results
indicate that 47.5% percent of the instructions are
executed in the helper cluster with a 15.7% copy
percentage; the performance improvement compared to
the baseline is 14.5%, see Figure 12.

3.6 Copy Prefetching (CP)

BR and LR schemes aimed to decrease the percentage
of copies; however the copy instructions also have an
associated time penalty, we address this penalty next. To
decrease the copy time penalty, we propose Copy
Prefetching (CP) for narrow backends. Prefetching the
copy at the producer may lead to a performance gain,
since the value needed by the consumer is prefetched to
the consumers’ backend, thus reducing the stalling time of
the consumer. This gain depends on the distance between
the producer and the consumer instructions. If this
distance is very small, then the effectiveness of copy
prefetching is diminished. If the distance is very large, the
prefetched copy instructions will waste backend resources
while waiting for the consumer. As seen in Figure 13, the
IA-32 architecture has good producer-consumer distance
characteristic for prefetching.

As discussed before, the implemented CP mechanism
generates a copy at the producer if the CP predictor
predicts that a copy might be generated later on. The
predictor, which is last value based, is orthogonal to the
previous predictors and can be constructed by adding a bit

0

1

2

3

4

5

6

7

bz
ip

2

cr
af

ty
eo

n
gap gcc

gz
ip

m
cf

par
se

r

per
lb

m
k

tw
ol

f

vo
rt
ex vp

r

A
V
G

Spec Int 2000 Applications

D
is

ta
n

c
e
 i
n

 I
n

s
tr

u
c
ti

o
n

s

Figure 13 – The average producer-consumer
distance for IA-32.

to the base width predictor. If a producer instruction incurs
a copy later on, its CP prediction bit is set at writeback.
This triggers a prefetch at the next iteration of this
instruction. Although the CP predictor can be used to
predict copies in both directions, this tends to increase the
copy percentage. Therefore, we found that hybrid policies
can further boost performance so we use the CP predictor
to predict narrow-to-wide copies. To predict wide-to-
narrow copies, we use the existing result width predictor
for identifying narrow values produced in the wide
backend (this could be the result of a load-byte instruction
that is executed in the 32 bit backend); and then
prefetching them to the narrow backend since those values
will most likely be copied into the narrow backend. Our
studies indicate that the CP predictor has an accuracy of
90% percent. While increasing the copy percentage to
21.4%, CP increases the performance gain to 16.7%.

3.7 Instruction Splitting for Imbalance Reduction

(IR)

Although 47.5% of instructions are steered to the helper
cluster, it might be the case that the helper cluster might be
under/over utilized. Intuitively speaking, one is tempted to
declare that the helper cluster is underutilized. This
intuition is based on the fact that the performance-optimal
ratio (in the absence of copies and dependences) is 66% of
the instructions being executed in the 2X faster helper
cluster. However, we have to test whether this intuition
holds. One standard technique to measure this imbalance
is the NREADY metric [18][19]. According to this metric,
the workload imbalance at a given instant of time is
defined as the total number of ready instructions that
cannot issue, but could have issued in the other cluster. If
the helper cluster is underutilized there is comparatively
more wide-to-narrow imbalance; if the helper cluster is
overutilized the narrow-to-wide imbalance dominates. The
results indicate that with the current steering schemes,

there is little narrow-to-wide imbalance (about 2%), but a
significant wide-to-narrow imbalance (about 22%) exists.

The above conclusion establishes that the helper cluster
is underutilized and more wide instructions could be
steered to the narrow cluster. On the surface, it may seem
that splitting up a wide instruction into four and executing
them on the 2X faster narrow cluster may not be very
advantageous. However, note that by splitting-up wide
instructions when there is wide-to-narrow load imbalance
and by steering the split up instructions to the temporarily
underutilized helper cluster, we can achieve considerable
speedups. To that end, we developed a complete design
which splits up “wide instructions” into 4 multiple
“narrow instructions” in the decode stage. Those narrow
instructions are the same in every respect with the wide
replica, except that they use 8-bit register sources and
destinations so that they can execute in the helper cluster.
Therefore, if the wide instruction has a destination
register, the four split-up narrow instructions allocate four
register entries at the rename stage. Another required
modification is that each split narrow instruction is made
dependent on each other in a chain fashion from the
instruction that calculates the least-significant byte to the
one that processes the most significant byte. This ensures
that the split narrow instructions are executed back-to-
back in the correct order. It is very likely that the result is
used as a source operand in the wide cluster later on;
therefore the full 32-bit register value is prefetched by
dispatching four 8-bit copy instructions to the wide
cluster.

Whenever wide-to-narrow imbalance exists (as
indicated by the discrepancy of the issue queue occupancy
rates of the clusters); we use the above scheme to split up
instructions and steer them to the narrow cluster. We
achieve a speedup of 22.1% with 72.4% of instructions
steered to the narrow cluster while the wide-to-narrow
imbalance decreases to 2.3% from 22%.

A fine tuning could be applied the above heuristic by
splitting up instructions when imbalance exists and the
instruction has no destination register. This heuristic
achieves a balance between imbalance reduction and
communication costs: the wide-to-narrow imbalance
increases to 5.1% from 2.3%, however the copy
instructions incurred drops to 24.4% from 36.9%. A
speedup of 21.3% is achieved with 63.6% of instructions
steered to the narrow cluster. A further future extension to
the above idea is a helper cluster that operates with a
looser granularity: complete blocks of wide instructions
are split up and sent in their entirety to the narrow cluster,
thus minimizing copies while decreasing imbalance.

Finally, we have done an energy-delay² comparison of
the monolithic baseline with helper cluster in its most
resource aggressive configuration (i.e., the configuration
in this section), the results indicate that helper cluster is
5.1% more energy-delay efficient than the baseline.

3.8. Wrap-up

We conclude the section with a study comparing the
baseline with the best performing steering, the IR
mechanism. We selected a comprehensive category of
workloads and we simulated 10 million consecutive IA-32
instructions for each benchmark. The details are given in
Table 2.

Workloads #traces Description/Examples

Encoder (enc) 62 Audio/video encode

SpecFP2K (sfp) 41 Spec FP’s

Kernels (kernels) 52 VectorAdd, FIRs

Multimedia (mm) 85 WMedia, photoshop

Office (office) 75 Excel, word, ppt

Productivity (prod) 45 Internet content

Workstation (ws) 49 VectorAdd, FIRs

Table 2 – The various categories of
workloads used in the study

The results in Figure 14 show that Helper Cluster
consistently increases performance, with workloads with
comparatively regular control flow (such as multimedia)
and many arithmetic operations (kernels, sfp) benefiting
more than office or productivity applications.

0

5

10

15

20

25

30

enc sfp kernels mm office prod ws

Workload Category

P
e
rf

o
rm

a
n
c
e
 I
n
c
re

a
s
e
 (
in

 %
)

0

0.5

1

1.5

2

2.5

3

1 101 201 301 401

Applications

P
e
rf
o
rm

a
n
c
e
 I
n
c
re

a
s
e
 (
B
a
s
e
li
n
e
=
1
)

Figure 14 – Helper Cluster performance for
various workloads

4. Related Work

Making use of narrow values has been proposed before
in the context of monolithic, non-clustered systems. Canal,
González and Smith observed that typical applications use
many data values that are narrow and studied compression
schemes to encode narrow values in the context of an in-
order processor to save power [4]. Packing multiple
narrow values into wide function units is discussed in [1].
That approach assumes that the value widths are known at
instruction issue time. On the other hand, [13] argued that
the operand widths cannot be known at issue time and
proposed using a width predictor in order to identify
instructions with narrow operands. A similar width
prediction mechanism was proposed by Nakra et al., [17]
for a VLIW-style machine. Some techniques propose
optimizations for power efficiency [23], where the
presence of zero bytes was exploited for reducing the
cache energy consumption. In [14] and [20], narrow width
operands were exploited to reduce the power requirements
of a value predictor. A software-controlled operand gating
is proposed in [5], where the ISA is extended to include
the opcodes that specify operand widths. In [12], Lipasti et
al. introduced a technique for reducing register file
pressure that exploits significance compression [23]. In
their technique, narrow width results are stored in the
rename table entry itself. Packing multiple narrow values
into wide registers was proposed in [7]. Those approaches
examine narrow values in the context of non-clustered
systems.

A very recent work [10] has proposed considering
narrow values in the context of clustering. Instead of
adding a narrow cluster to a monolithic processor, the
authors start with a homogeneous cluster and shirk one of
the 64-bit clusters to 20-bits. Targeting the Alpha
architecture, more than 80% of the instructions are
executed in this 20-bit narrow cluster. They utilize an
inter-cluster bypass scheme to forward values across
clusters and propose a replicated register file. A history-
based prediction scheme is used to predict narrow
instructions which are then steered to execute in the
narrow cluster. In case a predicted narrow instruction turns
out to require wide cluster resources, they propose a replay
mechanism to recover from this misprediction. To deal
with the data invariant-portion of load/store address
calculations a special address register file is proposed
which is shared across clusters. In comparison, we propose
and evaluate a suite of steering mechanisms which
consider inter-cluster load balancing and producer-value
prefetching mechanisms on an Intel® IA-32 clustered
architecture. Regarding complexity, both approaches
present different challenges: On one hand, our
microarchitecture does not require the register file to be
replicated, although we study smart mechanisms for load
value replication. We also avoid the synchronization and

complexity issues associated with resources that are
shared across clusters such as the address register file.
This centralized register file can be challenging to
implement, especially if low-latency operation is required.
In the case of mispredictions we adopt a flushing
mechanism; and use a confidence-interval based scheme;
instead of using replay-based schemes which can be
costly. On the other hand, we use a copy instruction
scheme to communicate values across clusters. This
scheme requires the addition of a special copy
microinstruction, as well as requiring its own scheduling
resources.

5. Concluding Remarks

We propose data-width aware instruction steering,
splitting and copy prefetching mechanisms for achieving
substantial performance gains through the addition of a
low complexity 8-bit helper cluster operating on narrow
data widths. The techniques exploit data-width
dependencies (a subset of data dependency) for 22%
average performance improvement for Spec Int 2000
applications. Beyond the five new data-width aware
techniques proposed in this paper; to the best of our
knowledge, this is the first work that proposes copy
instruction prefetching or instruction split-up for clustered
microarchitectures. Proposed extensions to this work
include designing a simple core working with narrow data
and operands on a CMP.

References

[1] Brooks, D. and Martonosi, M., “Dynamically Exploiting
Narrow Width Operands to Improve Processor Power and
Performance”, in Proceedings of the International

Symposium on High Performance Computer Architecture
(HPCA-5), 1999.

[2] Brooks D., Tiwari V., Martonosi M., “Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations”, in Proceedings of the 27th Annual
International Symposium on Computer Architecture
(ISCA), 2000.

[3] Bunchua S., “Fully Distributed Register Files for
Heterogeneous Clustered Microarchitectures”, Ph.D.

Thesis, Georgia Tech., July 2004.
[4] Canal R., González A., Smith J.E., “Very Low Power

Pipelines Using Significance Compression”, in
Proceedings of 33th International Symposium on
Microarchitecture (MICRO-33), Portland, USA,
December 2000.

[5] Canal, R., González, A., Smith, J., “Software-Controlled
Operand Gating”, in Proc. of the Intl. Symp. On Code

Generation and Optimization, 2004.
[6] Canal R., Parcerisa J. M., González A., "A Cost-Effective

Clustered Architecture", Proc. of the 1999 International

Conference on Parallel Architectures and Compilation
Techniques (PACT-99), October 1999.

[7] Ergin, O., Balkan, D., Ghose, K. and Ponomarev, D.,
“Register Packing: Exploiting Narrow-Width Operands
for Reducing Register File Pressure”, in Proceedings of

37th International Symposium on Microarchitecture
(MICRO-37), December 2004.

[8] Farkas K.I., Chow P., Jouppi N.P., Vranesic Z., “The
Multicluster Architecture: Reducing Cycle Time through
Partitioning”, in Proceedings of the 30th Iinternational
Symposium on Microarchitecture (MICRO-30), Dec.
1997.

[9] Gwennap L., “Digital 21264 Sets New Standard”,
Microprocessor Report, 10(14), Oct. 1996.

[10] González R., Cristal A., Pericas M., Valero M.,
Veidenbaum A., “An Asymmetric Clustered Processor
Based on Value Content”, in Proceedings of the 19th ACM
International Conference on Supercomputing (ICS-2005),
June 2005.

[11] Hinton, G., Upton, M., Sager, D., Boggs, D., Carmean,
D., Roussel, P., Chappell, T. I., Fletcher, T. D., Milshtein,
M. S., Sprague, M., Samaan, S. and Murray, R., “A 0.18-
µm CMOS IA-32 Processor With a 4-GHz Integer
Execution Unit”, IEEE Journal of Solid State Circuits,
Vol. 36, No. 11, November 2001, pp.1617-1627.

[12] Lipasti, M., et.al., “Physical Register Inlining”, in Proc.
of the Int’l. Symp. On Computer Architecture (ISCA),
2004.

[13] Loh, G., “Exploiting Data-Width Locality to Increase
Superscalar Execution Bandwidth”, in Proc. of the
International Symposium on Microarchitecture, 2002.

[14] Loh, G., “Width Prediction for Reducing Value Predictor
Size and Power”, in First Value Pred. Wksp, ISCA 2003.

[15] Lu S.-L., “Speeding Up Processing with Approximation
Circuits”, in IEEE Computer, March 2004.

[16] Miyaoka Y., et al., “Area/Delay Estimation for Digital
Signal Processor Cores”, in ASP-DAC '01: Proceedings of
the 2001 Conference on Asia South Pacific Design

Automation, 2001.
[17] Nakra, T., et.al., “Width Sensitive Scheduling for

Resource Constrained VLIW Processors”, Workshop on
Feedback Directed and Dynamic Optimizations, 2001.

[18] Parcerisa J. M., González A., “Reducing Wire Delay
Penalty through Value Prediction”, in Proceedings of the
33th International Symposium on Microarchitecture
(MICRO’00), December 2000.

[19] Parcerisa J. M., Sauquillo J., González A., Duato J.,
“Efficient Interconnects for Clustered
Microarchitectures”, in Proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques (PACT’02), September 2002.

[20] Sato, T., Arita, I., “Table Size Reduction for Data Value
Predictors by Exploiting Narrow Width Values”, in Proc.
of the International Conference on Supercomputing,
2000.

[21] Semeraro, G., Magklis, G., Balasubramonian, R.,
Albonesi, D. H., Dwarkadas, S., and Scott, M. L.,
“Energy-Efficient Processor Design Using Multiple
Clock Domains with Dynamic Voltage and Frequency
Scaling”, In Proceedings of the Eighth international

Symposium on High-Performance Computer Architecture
(Hpca'02), Feb. 2002.

[22] Sprangle E., Carmean D., “Increasing Processor
Performance by Implementing Deeper Pipelines”, in
Proceedings of the International Conference on Computer

Architecture, June 2002.
[23] Villa, L., Zhang, M. and Asanovic, K., “Dynamic Zero

Compression for Cache Energy Reduction", in Micro-33,
Dec. 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

