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Abstract 

Narrow values that can be represented by less number 
of bits than the full machine width occur very frequently in 
programs. On the other hand, clustering mechanisms 
enable cost- and performance-effective scaling of 
processor back-end features. Those attributes can be 
combined synergistically to design special clusters 
operating on narrow values (a.k.a. Helper Cluster), 
potentially providing performance benefits.        

We complement a 32-bit monolithic processor with a 
low-complexity 8-bit Helper Cluster. Then, in our main 
focus, we propose various ideas to select suitable 
instructions to execute in the data-width based clusters. 
We add data-width information as another instruction 
steering decision metric and introduce new data-width 
based selection algorithms which also consider 
dependency, inter-cluster communication and load 
imbalance. Utilizing those techniques, the performance of 
a wide range of workloads are substantially increased; 
Helper Cluster achieves an average speedup of 11% for a 
wide range of 412 apps. When focusing on integer 
applications, the speedup can be as high as 22% on 
average. 

1. Introduction 

As semiconductor technology scales down to deep sub 
micron range, wire delays are becoming more prominent 
compared to gate delays. Clustered microarchitectures 
[8][9][18][19] provide an effective solution to dealing 
with the problem of wire delays by partitioning processor 
resources, usually into a frontend (encompassing fetch, 
decode and rename) and multiple backends (schedule, 
execute and commit). However, although clustered 
architectures enable the scaling of instruction issue and 
execution resources, this comes at an area/complexity cost 
with some increased overhead compared to a monolithic 
architecture, such as inter cluster copy instructions (or 

bypass operations depending on implementation). Those 
instructions or operations result from data dependencies 
that exist when a destination and its consumer are mapped 
to separate clusters.   

On the other hand, narrow values (i.e. values that can 
be represented by less number of bits than the full machine 
width) occur very frequently in typical programs and 
provide various microarchitectural optimization 
opportunities [4][7][14][17]. Here, to reiterate and 
illustrate the importance of narrow values, we coin a new 
definition: a consumer is said to be narrow data-width 
dependent if the producer value is narrow. Narrow data-
width dependency is a dominant subset of data 
dependency. As an example consider Figure 1: we plot, 
for Spec Int 2000 applications, the percentage of register 
operands that are narrow (defined here as 8 bits) data-
width dependent. As can be observed from the figure, 
there is substantial narrow data-width dependency. 
Alternatively, we have found that 39.4% of regular ALU 
instructions require one narrow-width operand, 3.3% 
require 2 narrow operands producing a wide result and 
43.5% require 2 narrow operands producing a narrow 
result. Traditional clustering approaches based on 
symmetry do not exploit this potential.  
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Figure 1- Data-width dependent values for 
register operands 
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The best aspects of monolithic and clustered 
architectures can be potentially combined in an 
asymmetric clustering scheme based on data-width. 
However, to fully-realize this potential and achieve 
substantial speedups, sophisticated data-width dependency 
sensitive instruction steering schemes must be developed.  

Similar to previous work [10], we propose to augment a 
monolithic processor with a small narrow data-width 
cluster core, which we term the Helper Cluster. The 
Helper Cluster is clocked faster than a full 32-bit cluster, 
potentially achieving a dramatic performance boost in 
principle. In practice however, the challenge is to develop 
innovative techniques to steer suitable instructions into the 
helper cluster to realize this goal. In this work, we 
demonstrate how to address this challenge to achieve the 
performance potential of Helper Cluster. Helper Cluster 
achieves an average speedup of 11% for a wide range of 
412 applications. When focusing on integer applications, 
the speedup can be as high as 22% on average. 

The crucial issue in a narrow datapath-width cluster is 
to balance the workload of the backends, by devising 
smart instruction steering mechanisms to keep the helper 
cluster occupied. Two important factors will enable us to 
fully exploit this performance potential. First, in general, 
the more the instructions that are executed in the faster 
narrow backend, the more the performance gain. Second, 
occasionally a consumer instruction assigned to a backend 
might need to use a value that is produced in the other 
cluster. For that purpose, we use the copy instruction 
scheme as proposed by Gonzalez et al.[6]. In this scheme a 
special copy instruction is generated by the consumer 
instruction. This copy instruction is steered to the backend 
of the producer to gather the value when it is produced and 
to copy it to the consumers’ register file. For a detailed 
discussion of the implementation details, please refer to 
[6]. Copy instructions incur an obvious performance 
overhead, so the number and time penalty of copies should 
be minimized. Thus, we want to keep in check the number 
and penalty of copies generated between the clusters. 
Next, we summarize our steering techniques: 

(1) If all the source operands and (if any) the result 
produced by the instruction is 8-bits (narrow), we steer 
those instructions to the helper cluster. In order to 
determine the width of instructions, we use a predictor to 
predict the width of operands and result. 

(2) To increase the number of instructions steered 
into the helper cluster, we consider instructions with one 
narrow and one wide source and a wide result, with the 
upper bits of the wide source and the result being 
identical. This means that this instructions’ execution does 
not change the upper order bits and that it is effectively a 
narrow operation that can be done in the helper cluster. 
We later discuss how such values can be predicted and the 
associated predictor design. 

(3) We propose to steer conditional branches that 
depend on the flag produced by an instruction that has 
already been executed in the helper cluster, to the helper 
cluster. This minimizes the number of copies generated. 

(4) We propose copy prefetching which minimizes 
the time penalty of a copy instruction. The basic idea is to 
predict when a producer instruction might generate a copy 
instruction later on, and generate the copy earlier at the 
producer, instead of at the consumer. When it needs, the 
consumer instruction will most likely have the value ready 
and will not block waiting for the value to arrive.  

(5) We determine the amount of workload 
imbalance. If the helper cluster is overloaded, we steer 
narrow instructions to the wide cluster until the workload 
balance is restored again. Conversely, if the helper cluster 
is underloaded, we propose to split up wide, 32-bit 
instructions into 8-bit chunks and steer them to the helper 
cluster. 

The rest of this paper is organized as follows: In section 
2 we introduce the helper cluster microarchitecture. In 
section 3, we discuss each of the above contributions in 
detail including implementation issues; this is followed by 
relevant results in each subsection. In section 4, we survey 
relevant work and in section 5 present our conclusions. 

2. Helper Cluster Microarchitecture 

2.1. Helper Cluster Organization 

We have conservatively chosen the helper cluster to be 
8 bits wide, previous research shows that many 8-bit 
narrow values exist in typical programs [4][7], and 
therefore this is a good design point from a  
performance/complexity tradeoff point of view; we 
explain this further in the next section. Note that more 
narrow instructions would be executed in the narrow 
cluster and therefore the potential performance gains 
would be even higher if it would be possible to construct a 
wider than 8-bits. Figure 2 shows a monolithic processor 
extended with a helper cluster. This clustered 
microarchitecture executes Intel® IA-32 instructions. The 
frontend reads the instructions from the upper-level cache, 
the UL1; translates them into uops (henceforth referred as 
instructions) and stores them in a Trace Cache, from 
where they are read, decoded, and steered to any of the 
backends according to the steering policy. Each backend 
has its own integer register file, integer instruction queue 
and ALUs. In addition, the wide backend has floating 
point instruction queues and FPU’s. Floating point 
functional units usually incur a high area overhead,        
and operate on wider data.  Therefore,  for a complexity 
effective design, the helper cluster has integer functional 
units only.   The area overhead of the helper cluster is very   



Figure 2 - Processor block diagram with the 
wide (32-bit), and the helper (8-bit) 
backends. 

small as compared to a full 32-bitwidth cluster since the 
areas of typical backend structures such as the register 
files [3] or ALU’s [16], scale at least linearly with the 
data-width.  Although there can be more than one helper 
and/or wide clusters, for ease of presentation we will be 
henceforth considering two backends; one wide (32-bit) 
and the other narrow (8-bit).  

Narrow values are detected through leading zero (or 
leading one) detectors. Figure 3 shows the circuit 
diagrams for 8-bit leading zero and one detectors 
respectively, which employ dynamic logic for faster 
operation and larger fan in. 

2.2 Helper Cluster Clocking 

The Integer Functional Units (ALU’s, AGU’s) in 
general, and the adder and the associated bypass loop in 
particular, are usually the critical path in a microprocessor 
[22] and determine the limit to which the frequency can be 
pushed in the backend of the cluster. For example, in 
Pentium-4 [11], although the issue queue is clocked at the 
fast 2X “fireball” frequency, the adder can only be clocked 
at this frequency by adopting a 16-bit staggered 
organization; therefore a 32-bit add takes one “slow” 
cycle. The delay of this critical path scales with the 
datapath width since the adder delay depends on the size 
of the input operands [15]. Moreover, the adder circuit 
area also depends on the operation width and that in turn is 
an important factor in determining the propagation delay 
of the bypass loop. Typical high-performance ALU 
latencies are on the order of logN (N being the operand 
width). Therefore, through considering the ALU and 
bypass latencies, the 8-bit helper backend can be clocked 2 
times faster than the 32-bit backend. This also ensures that 
the clocks remain synchronized with respect to each other 

Figure 3 - Consecutive Zero (a) and One (b) 
Detection Circuits. 

thus avoiding the inter-cluster clock resynchronization 
costs [21]. In case the critical path is on other structures, 
we performed experiments with reduced issue queue size 
and issue width; the results indicate negligible impact on 
performance. 

3. Evaluation of Steering Techniques 

3.1 Simulation Methodology 

Results provided in this section were collected from an 
IA-32 trace-driven simulator modeling an Intel Pentium®

4 - like processor. Due to simulation time for detailed 
analysis, we use 12 traces generated from SPEC Integer 
2000 benchmarks; for final analysis we discuss the results 
over a wider range of workloads. Each trace is composed 
of 100 million instructions. To skip the initialization 
section, we split each benchmark into 10 equal slices and 
start executing from the fourth slice. The performance 
results are given with respect to a baseline monolithic 
processor which has the same resources as the frontend 
and the wide backend of the cluster. As discussed in the 
previous section, the Helper Cluster augments the baseline 
with the narrow cluster. Table 1 lists the parameters used 
in the experiments. For calculating power/energy, we 
utilize an in-house wattch-like [2] power simulator, 
modified to take into account the helper cluster power, 
including the 8-bit datapath and the clock network as well 
as the width predictors. 



Trace Cache(TC)  32Kuops,4w 

Level-1 DCache (DL0) 32KB,8w,3cycle,2R/Wport 

Level-2 Cache (UL1) 4MB,16w,13cycle,1R/Wport 

Integer Execution 32 entry scheduler, 3 issue 

Fp Execution 32 entry scheduler, 3 issue 

Commit Width 6 instructions 

Main Memory 450 cycles 

Table 1 - The monolithic baseline processor 
parameters 

3.2 All source operands and output narrow (8-8-8)

If we predict that all the operands and the output are 
narrow (8 bits), then we steer that instruction into the 
helper cluster. The predictor uses a simple table-based 
tagless scheme. The table is indexed by the PC; the 
predictor occupies 1 bit per entry, the width predictor logic 
predicts the width of a result of an instruction by storing a 
single bit to remember the last generated width. We have 
experimented with various table sizes, a size of 256 entries 
was found to be a good compromise between complexity 
and performance, therefore this size was selected for the 
final design. Please see Figure 4 for an embodiment of the 
width predictor showing the modifications on the datapath 
structures. 

Regarding the source widths, width information is 
stored inside a field in the rename table called width table 
(which is 1-bit wide) and is updated with correct outcome 
later while updating the width predictor to improve the 
prediction accuracy for the source operands. When a new 
instruction is decoded, the width prediction for the 
destination register is read out. For the source operand 
width, the actual width is read if the producer instruction 
has already written back the result; if not, the prediction is 
read. If the instruction has any immediate fields we obtain 
the actual width. If all source operands and output of an 
instruction need values of 8 bits or less, the instruction is 
sent to the helper cluster.  

The width prediction accuracy is around 93.5% on 
average, decreasing the percentage of the cases that need 
recovery because of a misprediction, see Figure 5. Note 
that recovery is only necessary in the case of a 
misprediction for an instruction that has been steered to 
the narrow backend (we term this a fatal misprediction); a 
misprediction for an instruction that has been steered to 
the wide backend (which could be otherwise executed in 
the narrow backend) is a missed opportunity and does not 
require recovery. In case of a misprediction requiring 
recovery, the impacted instructions have to be squashed in 
the narrow backend and resteered into the wide     
backend.  We adopt a flushing scheme which squashes all 
instructions starting from the mispredicted one. Although 
simple,  this scheme  has a high  performance  overhead in 

Figure 4- Data width predictor 
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Figure 5 – Width prediction accuracy 

the case of a misprediction. Therefore, to decrease the 
misprediction rate, we augment the predictor with a 2-bit 
per-entry confidence interval estimator. We only take the 
decision to steer the predicted narrow instruction to the 
helper cluster if the prediction is with high-confidence. 
This fine-tuning decreased the misprediction requiring 
recovery to 0.83% from 2.11%. As a result, 15% of the 
instructions are steered to the helper cluster, with a 6.2% 
performance boost compared to the baseline; see Figures 6 
and 7. Examining the figures, note that this scheme 
generates a relatively large number of copy instructions 
since the generated narrow value is likely to be used in the 
wide cluster for addressing or indexing purposes. Also 
note that the application with the worst performance 
(bzip2) has a very high copy/narrow instruction ratio, 
while the application with the best performance gain (gcc) 
has a  low copy/narrow  instruction  ratio.  The results here 
may seem to contrast with the results in Figure 1, where 
we established  that  on average  65% of the consumers are 
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Figure 6 Performance of 8_8_8 scheme 
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narrow-width dependent on the producer. However, we 
need to consider that all the input operands (which can be 
more than 2 in the IA-32 internal machine state) and the 
result value of a particular instruction must to be narrow to 
use this steering mechanism. It is clear that this particular 
combination occurs less frequently. The observations 
above motivate us to develop and explore a mechanism to 
steer more instructions into the helper cluster while trying 
to minimize copies. We introduce such a mechanism 
based on dependencies in the next section.   

3.3 Branches Dependent on Narrow-Value 

Condition (BR) 

We can leverage another data-width sensitive 
characteristic to steer more instructions to the helper 
cluster and decrease generated copies. The idea is based 
on the fact that many conditional branches, such as those 
at loop boundaries, depend on a narrow value. In other 
words, the conditional branch (that checks the flags 
register) usually depends on an arithmetic instruction 
(which produces the write to the flags register) that is 
narrow.  Now  we discuss  how  to steer  those  conditional 
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Figure 8 – Decrease in copy percentage due 
to use of BR scheme. 

branches to the helper cluster. We propose to move some 
of the conditional branch address resolution to the 
frontend; this enables more branches that depend on 
narrow values to be steered to the narrow backend. Many 
conditional branches calculate their target address through 
the addition of an immediate operand value with the value 
kept in the register of the code segment and the instruction 
pointer (EIP register). This addition can be done in the 
frontend since the value of the code segment register does 
not change and the EIP register contains the offset within 
the code segment. Those conditional branches can be 
easily tagged since they have a unique operand. In consort 
with this framework, the steering scheme works as 
follows:  if the instruction that last wrote to the flags 
register has been steered to the narrow backend, we can 
also steer the dependent conditional branch to the narrow 
backend. If this branch were steered to the wide backend 
instead, a copy would be generated to fetch the flags 
register from the narrow backend; we avoid this overhead, 
increase helper cluster instructions and decrease the 
number of copies. Adding this new technique, we steer 
19.5% of the instructions to the narrow cluster, with 
10.8% copy percentage, which yields a performance boost 
of 9%. As seen in Figure 8, BR effectively leverages 
dependency and data-width information to simultaneously 
steer more instructions into the helper cluster while 
decreasing the copy percentage. 

3.4 Load Replication (LR)  

Since there is a single Memory Order Buffer (MOB), 
registers could be allocated in both clusters for loads; thus 
minimizing copies. This is beneficial in cases where the 
load has to be done in one backend (e.g., in 32-bit cluster 
because the address resolution might require a 32bit add), 
and the result used in the other (e.g., in 8-bit cluster 
because the loaded value is  8-bit wide).   Load replication 
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Figure 9 - Minimization in copy percentage 
due to use of LR scheme. 

can also help when too many copies are generated 
between the 32-bit and helper clusters. Copies are avoided 
by duplicating loads for such cases as an 8-bit value being 
used in the 32-bit cluster later on.   

Multiple load replication schemes can be considered. 
One such scheme would replicate the register value on the 
helper cluster for loads that are steered to the 32-bit cluster 
if they are predicted to load an 8-bit value. Another, more 
complexity-effective scheme would duplicate 8-bit loads 
on the wide cluster; here we adopt this scheme. Load 
replication decreases copies to 6.4% from 10.8%, see 
Figure 9 . 

3.5 Carry Width Prediction (CR) 

To further increase the percentage of instructions that 
are steered into the helper cluster, we exploit the 
instructions whose operation only works with the lower 
order 8-bits of the inputs and there is no carry propagation 
beyond the lower order 8 bits. We term this scheme CR. 
As an example consider load instructions whose address is 
calculated by adding a small offset to the large base 
address with only the lower order bits of the large base 
address changed.  Figure 10 illustrates this case for a load 
address calculation on an Address Generation Unit 
(AGU). Here, contents of the base register R2 is added to 
the offset register R3 to get the address. In this case the 
address calculation can be done in the helper cluster. We 
have done an analysis of such instructions (with two 
sources, one 8-bit and the other 32-bit wide, and with one 
32-wide result) to determine the percentage in which the 
carry is not propagated. The results, shown in Figure 11 
for loads and certain arithmetic instructions such as add or 
subtract indicate that CR has substantial potential. 

For such cases, we extend the data value width 
predictor to predict when carry does not propagate beyond 
the  8 bits.  An instruction  is eligible  to be  considered  as  

8-bit AGU

32-bit 
operand

8-bit 
operand

8-bit LSB of 
address

Loadbyte R1, (R2+R3)

R2 =      (FFFC4A02)

R3 =      (00000001C)

R2+R3 = (FFFC4A1E)

Figure 10 - Example for Carry Not Propagated. 
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“carry will not be propagated”, if its result is predicted to 
be 32 bits and only one of its sources is either predicted to 
be or is actually 32-bits wide. This is obtained from the 
width predictor. Along with this information, an additional 
bit in the width predictor has to be used to indicate if the 
last occurrence of this instruction had operated with only 8 
bits. This bit is set at writeback if the previous 
preconditions are satisfied. The new instruction is steered 
to the narrow backend if the predictor indicates that 
previous occurrence did not propagate a carry beyond 8 
bits. Similar to the 8-8-8 case, a 2-bit confidence estimator 
is used to decrease the fatal misprediction rate. Since we 
utilize the carry signal to catch fatal mispredictions, such 
arithmetic operations as divide and multiply are not 
eligible to be considered for this technique. To reconstruct 
the 32-bit value, the rename table entry associated with the 
newly allocated destination physical register is appended 
with an extra tag  that  points  to  the  register  holding the 
upper 24-bits of the produced value in the wide cluster. 
The register deallocation mechanism must be modified  as 
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Propagated (CR) scheme 

well: a counter is associated with the wide physical 
register. The counter is incremented when an 8-32-32 
condition is detected. The decrement occurs when the 
renamer of the destination register of the 8-32-32 
instruction deallocates the definition. The 32-bit register is 
then deallocated only when its renamer commits and the 
counter associated with it is zero. This check does not 
incur any additional delay since it requires a simple zero 
check which can be done in parallel with the renamer 
commit check. Adding the CR mechanism, the results 
indicate that 47.5% percent of the instructions are 
executed in the helper cluster with a 15.7% copy 
percentage; the performance improvement compared to 
the baseline is 14.5%, see Figure 12.  

3.6 Copy Prefetching (CP)  

BR and LR schemes aimed to decrease the percentage 
of copies; however the copy instructions also have an 
associated time penalty, we address this penalty next. To 
decrease the copy time penalty, we propose Copy 
Prefetching (CP) for narrow backends. Prefetching the 
copy at the producer may lead to a performance gain, 
since the value needed by the consumer is prefetched to 
the consumers’ backend, thus reducing the stalling time of 
the consumer. This gain depends on the distance between 
the producer and the consumer instructions. If this 
distance is very small, then the effectiveness of copy 
prefetching is diminished. If the distance is very large, the 
prefetched copy instructions will waste backend resources 
while waiting for the consumer. As seen in Figure 13, the 
IA-32 architecture has good producer-consumer distance 
characteristic for prefetching.  

As discussed before, the implemented CP mechanism 
generates a copy at the producer if the CP predictor 
predicts that a copy might be generated later on. The 
predictor, which is last value based, is orthogonal to the 
previous predictors and can be constructed by adding a  bit  
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Figure 13 – The average producer-consumer 
distance for IA-32. 

to the base width predictor. If a producer instruction incurs 
a copy later on, its CP prediction bit is set at writeback. 
This triggers a prefetch at the next iteration of this 
instruction. Although the CP predictor can be used to 
predict copies in both directions, this tends to increase the 
copy percentage. Therefore, we found that hybrid policies 
can further boost performance so we use the CP predictor 
to predict narrow-to-wide copies. To predict wide-to-
narrow copies, we use the existing result width predictor 
for identifying narrow values produced in the wide 
backend (this could be the result of a load-byte instruction 
that is executed in the 32 bit backend); and then 
prefetching them to the narrow backend since those values 
will most likely be copied into the narrow backend. Our 
studies indicate that the CP predictor has an accuracy of 
90% percent. While increasing the copy percentage to 
21.4%, CP increases the performance gain to 16.7%. 

3.7 Instruction Splitting for Imbalance Reduction 

(IR) 

Although 47.5% of instructions are steered to the helper 
cluster, it might be the case that the helper cluster might be 
under/over utilized. Intuitively speaking, one is tempted to 
declare that the helper cluster is underutilized. This 
intuition is based on the fact that the performance-optimal 
ratio (in the absence of copies and dependences) is 66% of 
the instructions being executed in the 2X faster helper 
cluster. However, we have to test whether this intuition 
holds. One standard technique to measure this imbalance 
is the NREADY metric [18][19]. According to this metric, 
the workload imbalance at a given instant of time is 
defined as the total number of ready instructions that 
cannot issue, but could have issued in the other cluster. If 
the helper cluster is underutilized there is comparatively 
more wide-to-narrow imbalance; if the helper cluster is 
overutilized the narrow-to-wide imbalance dominates. The 
results indicate that with the current steering schemes, 



there is little narrow-to-wide imbalance (about 2%), but a 
significant wide-to-narrow imbalance (about 22%) exists. 

The above conclusion establishes that the helper cluster 
is underutilized and more wide instructions could be 
steered to the narrow cluster. On the surface, it may seem 
that splitting up a wide instruction into four and executing 
them on the 2X faster narrow cluster may not be very 
advantageous. However, note that by splitting-up wide 
instructions when there is wide-to-narrow  load imbalance 
and by steering the split up instructions to the temporarily 
underutilized helper cluster, we can achieve considerable 
speedups. To that end, we developed a complete design 
which splits up “wide instructions” into 4 multiple 
“narrow instructions” in the decode stage. Those narrow 
instructions are the same in every respect with the wide 
replica, except that they use 8-bit register sources and 
destinations so that they can execute in the helper cluster. 
Therefore, if the wide instruction has a destination 
register, the four split-up narrow instructions allocate four 
register entries at the rename stage.  Another required 
modification is that each split narrow instruction is made 
dependent on each other in a chain fashion from the 
instruction that calculates the least-significant byte to the 
one that processes the most significant byte. This ensures 
that the split narrow instructions are executed back-to-
back in the correct order. It is very likely that the result is 
used as a source operand in the wide cluster later on; 
therefore the full 32-bit register value is prefetched by 
dispatching four 8-bit copy instructions to the wide 
cluster.   

Whenever wide-to-narrow imbalance exists (as 
indicated by the discrepancy of the issue queue occupancy 
rates of the clusters); we use the above scheme to split up 
instructions and steer them to the narrow cluster. We 
achieve a speedup of 22.1% with 72.4% of instructions 
steered to the narrow cluster while the wide-to-narrow 
imbalance decreases to 2.3% from 22%. 

A fine tuning could be applied the above heuristic by 
splitting up instructions when imbalance exists and the 
instruction has no destination register. This heuristic 
achieves a balance between imbalance reduction and 
communication costs: the wide-to-narrow imbalance 
increases to 5.1% from 2.3%, however the copy 
instructions incurred drops to 24.4% from 36.9%. A 
speedup of 21.3% is achieved with 63.6% of instructions 
steered to the narrow cluster. A further future extension to 
the above idea is a helper cluster that operates with a 
looser granularity: complete blocks of wide instructions 
are split up and sent in their entirety to the narrow cluster, 
thus minimizing copies while decreasing imbalance. 

Finally, we have done an energy-delay² comparison of 
the monolithic baseline with helper cluster in its most 
resource aggressive configuration (i.e., the configuration 
in this section), the results indicate that helper cluster is 
5.1% more energy-delay efficient than the baseline.  

3.8. Wrap-up 

We conclude the section with a study comparing the 
baseline with the best performing steering, the IR 
mechanism. We selected a comprehensive category of 
workloads and we simulated 10 million consecutive IA-32 
instructions for each benchmark. The details are given in 
Table 2. 

Workloads #traces Description/Examples 

Encoder (enc) 62 Audio/video encode 

SpecFP2K (sfp) 41 Spec FP’s 

Kernels (kernels) 52 VectorAdd, FIRs 

Multimedia (mm) 85 WMedia, photoshop 

Office (office) 75 Excel, word, ppt 

Productivity (prod) 45 Internet content  

Workstation (ws) 49 VectorAdd, FIRs 

Table 2 – The various categories of 
workloads used in the study 

The results in Figure 14 show that Helper Cluster 
consistently increases performance, with workloads with 
comparatively regular control flow (such as multimedia) 
and many arithmetic operations (kernels, sfp) benefiting 
more than office or productivity applications.   
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4. Related Work 

Making use of narrow values has been proposed before 
in the context of monolithic, non-clustered systems. Canal, 
González and Smith observed that typical applications use 
many data values that are narrow and studied compression 
schemes to encode narrow values in the context of an in-
order processor to save power [4]. Packing multiple 
narrow values into wide function units is discussed in [1]. 
That approach assumes that the value widths are known at 
instruction issue time. On the other hand, [13] argued that 
the operand widths cannot be known at issue time and 
proposed using a width predictor in order to identify 
instructions with narrow operands. A similar width 
prediction mechanism was proposed by Nakra et al., [17] 
for a VLIW-style machine. Some techniques propose 
optimizations for power efficiency [23], where the 
presence of zero bytes was exploited for reducing the 
cache energy consumption. In [14] and [20], narrow width 
operands were exploited to reduce the power requirements 
of a value predictor. A software-controlled operand gating 
is proposed in [5], where the ISA is extended to include 
the opcodes that specify operand widths. In [12], Lipasti et 
al. introduced a technique for reducing register file 
pressure that exploits significance compression [23].  In 
their technique, narrow width results are stored in the 
rename table entry itself. Packing multiple narrow values 
into wide registers was proposed in [7]. Those approaches 
examine narrow values in the context of non-clustered 
systems.  

A very recent work [10] has proposed considering 
narrow values in the context of clustering. Instead of 
adding a narrow cluster to a monolithic processor, the 
authors start with a homogeneous cluster and shirk one of 
the 64-bit clusters to 20-bits. Targeting the Alpha 
architecture, more than 80% of the instructions are 
executed in this 20-bit narrow cluster. They utilize an 
inter-cluster bypass scheme to forward values across 
clusters and propose a replicated register file. A history-
based prediction scheme is used to predict narrow 
instructions which are then steered to execute in the 
narrow cluster. In case a predicted narrow instruction turns 
out to require wide cluster resources, they propose a replay 
mechanism to recover from this misprediction. To deal 
with the data invariant-portion of load/store address 
calculations a special address register file is proposed 
which is shared across clusters. In comparison, we propose 
and evaluate a suite of steering mechanisms which 
consider inter-cluster load balancing and producer-value 
prefetching mechanisms on an Intel® IA-32 clustered 
architecture. Regarding complexity, both approaches 
present different challenges: On one hand, our 
microarchitecture does not require the register file to be 
replicated, although we study smart mechanisms for load 
value replication. We also avoid the synchronization and 

complexity issues associated with resources that are 
shared across clusters such as the address register file. 
This centralized register file can be challenging to 
implement, especially if low-latency operation is required. 
In the case of mispredictions we adopt a flushing 
mechanism; and use a confidence-interval based scheme; 
instead of using replay-based schemes which can be 
costly. On the other hand, we use a copy instruction 
scheme to communicate values across clusters. This 
scheme requires the addition of a special copy 
microinstruction, as well as requiring its own scheduling 
resources.  

5. Concluding Remarks 

We propose data-width aware instruction steering, 
splitting and copy prefetching mechanisms for achieving 
substantial performance gains through the addition of a 
low complexity 8-bit helper cluster operating on narrow 
data widths. The techniques exploit data-width 
dependencies (a subset of data dependency) for 22% 
average performance improvement for Spec Int 2000 
applications. Beyond the five new data-width aware 
techniques proposed in this paper; to the best of our 
knowledge, this is the first work that proposes copy 
instruction prefetching or instruction split-up for clustered 
microarchitectures.  Proposed extensions to this work 
include designing a simple core working with narrow data 
and operands on a CMP.   
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