Structural and Algorithmic Issues of Dynamic Protocol Update

Olivier Riitti!, Pawel T. Wojciechowski?, André Schiper!

Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

1015 Lausanne, Switzerland

{Olivier.Rutti, Andre.Schiper}@epfl.ch

Abstract

In this paper, we study dynamic protocol update
(DPU). Contrary to local code updates on-the-fly, DPU
requires global coordination of local code replacements.
We propose a novel solution to DPU. The key idea is
to add a level of indirection between the service callers
and the service provider. This indirection level facil-
itates an implementation of simple and efficient algo-
rithms for DPU. For example, we describe an experi-
mental implementation of adaptive group communica-
tion middleware. It can switch between different atomic
broadcast protocols on-the-fly. All middleware proto-
cols, including those that depend on the updated proto-
cols, provide service correctly and with negligible delay
while the global update takes places. The switching al-
gorithm introduces very low overhead that we illustrate
by showing example measurement results.

1 Introduction

Recent years have seen a growing interest in pro-
gramming tools for adaptable systems, i.e., systems
that can be reconfigured and adapted to new envi-
ronments or changing user requirements (see [12] for
examples of such tools and techniques). In this pa-
per, we propose algorithmic tools for adaptable group
communication middleware [20, 6]. They allow soft-
ware modules or components of the middleware to be
replaced on-the-fly without service interruption. The
benefit is a decrease of software upgrade and mainte-
nance costs in systems that must run non-stop. We

Research supported by the Swiss National Science Foundation
under grant number 21-67715.02 and Hasler Stiftung under grant
number DICS-1825.

1-4244-0054-6/06/$20.00 ©2006 IEEE

2Poznan University of Technology
Institute of Computing Science
60-965 Poznan, Poland
ptw@Qcs.put.poznan.pl

believe that our work will be useful for practitioners
and system developers.

Our work focuses on the problem of dynamic update
of distributed protocols, i.e. protocols (e.g., group com-
munication protocols) that are implemented by several
identical modules located on different machines. The
dynamic protocol update (DPU) requires that all local
updates must be (eventually) consistently performed
on all machines. To avoid interference between concur-
rent versions of the protocol, some global synchroniza-
tion of local updates may be required. We would like
to minimize the impact of this global synchronization,
so that DPU efficiency and scalability is not degraded.
For instance, it is desirable that the whole system is
not blocked, and remains available while protocols are
updated.

Many systems have been developed to allow dy-
namic adaptation in the context of distributed systems
(see [8, 11, 3, 2] among others). However, majority
of such systems do not address consistent update of
distributed protocols. FExamples of existing systems
that support DPU will be discussed later in this paper.
Moreover, little work exists on the theoretical foun-
dations for DPU. We made some initial step in [21],
where we defined a formal mathematical model, and
used it to define different levels of synchrony between
local updates (different updateable protocols may re-
quire different levels).

Liu et al. [10] define several meta properties on
traces of the send and deliver events. These meta prop-
erties must be preserved by each updateable protocol
(an example is described in [1]). However, this model
of DPU strongly limits the scope of application. On the
contrary, we define in this paper two generic correctness
properties of dynamically updateable systems: stack-
well-formedness and protocol-operationability. Preserv-
ing these properties and some additional correctness

properties specific to the protocols being replaced dur-
ing dynamic update, guarantees that the update is
transparent to the users of the protocols.

In this paper, we consider two complementary di-
mensions of DPU: (1) the structural dimension, and
(2) the algorithmic dimension. The structural dimen-
sion of DPU deals with the way a replacement man-
ager is integrated into each protocol stack. The al-
gorithmic dimension of DPU deals with the algorithm
of the replacement manager. A clever integration of
the replacement manager facilitates and simplifies the
implementation of DPU algorithms. In particular, the
structural dimension of DPU in existing solutions (e.g.,
[20, 6]) is not satisfactorily addressed. For instance,
most of the existing solutions require an explicit inter-
action between the updateable protocols and the re-
placement manager, which leads to poor modularity
(since the implementation of DPU strongly depends
on the updateable protocols). We propose a solution
that solves this problem. Moreover, contrary to other
solutions where DPU requires to understand the up-
dateable protocols, our solution only requires to know
the specification of the protocols that get replaced.

To validate our ideas, we have implemented sup-
port of the dynamic replacement of protocols that sat-
isfy the atomic broadcast specification [7]. The choice
of this type of protocols was not accidental: atomic
broadcast protocols are good representatives of non-
trivial distributed algorithms, and so our results (e.g.
within the structural dimension) extend to other types
of protocols. Moreover, atomic broadcast is considered
to be an important building block for group communi-
cation middleware systems [13]. Such systems are used
for implementing replicated non-stop services. Thus,
the solutions presented in this paper can be valuable
for developers of highly available non-stop systems.

We have implemented our adaptive group communi-
cation middleware using our SAMOA protocol frame-
work [22], and have experimented with switching on-
the-fly between different atomic broadcast protocols.
In this paper, we present the results of experiments
evaluating the impact of dynamic protocol replacement
on system performance. The results show that the cost
of switching between different protocols is negligible.

The rest of the paper is organized as follows. Sec-
tion 2 describes the composition model that we use
in the paper. Section 3 defines generic correctness
properties related to DPU. Section 4 presents struc-
tural aspects of our solution for DPU, and compares it
with existing solutions. Section 5 describes the replace-
ment algorithm for switching on-the-fly between dif-
ferent atomic broadcast protocols. Section 6 presents
performance results, and Section 7 concludes.

2 Model

In this section we introduce a simple model that dif-
ferentiates services (specifications of distributed pro-
tocols) from protocols (implementations of distributed
protocols). In the following sections, we use our model
to describe the correctness properties and the imple-
mentation of DPU.

Basic definitions We consider distributed protocols.
Protocols are implemented by a set of identical mod-
ules, each module running on a different machine (or
site). A module describes the exchange of messages
across the network, and may contain some local data.
The set of all modules located on a machine is called a
protocol stack.

A protocol P can be seen as the implementation of
some service p. We say that protocol P provides service
p on each stack. For example, the protocol p-atomic-
broadcast, represented by a module m-atomic-broadcast
on each stack, provides the service s-atomic-broadcast
on each stack. A protocol providing some service may
require some other services.

Stack 1 Stack 2 Stack 3
p p Protocol P
‘ P4 ‘ ‘ P2 ‘ Ps
q q q
I I I
/a\ /a\ /a\ Protocol Q
Al &A1 [&
r r JALIAN
VA /[\ Protocol R
‘ R1 ‘ ‘ R2 ‘ Rs
Net Net Net
T T i

| |
Network (Net)

Figure 1. An example protocol architecture.

Figure 1 shows an example system. Protocols are
represented with capital letters P, 2 and R, and ser-
vices with small letters p, ¢ and r. We write P; to
denote a module of the protocol P, which is part of
stack ¢ (i = 1,2,..). Modules are illustrated in figures
as boxes. Services that are required by a module are
named in a gray trapezoid inside the box representing
the module. Similarly, services that are provided by a
module are named in white trapezoids that are aligned
outside the box of the module. For example, module
Q1 provides service ¢ and requires service r (see Fig. 1).
Note that the network is also a service (named Net).

Module bindings A module can be dynamically
bound to a service that it provides. It can be later
unbound. Unbinding a module does not remove it from

the stack. Stacks may contain several modules that
provide the same service. At most one module in a
stack is bound to a service at a time.

Service calls When we make a service call, the mod-
ule that is bound to the service is executed. If no mod-
ule is bound, the service call is blocked until some mod-
ule is bound to the service.

Service responses Consider a call of a service ¢,
which has been made by some module P; (see Fig. 2).
The service ¢ is provided by module @);. We define the
response to this call to be any invocation of a module
P; by (); in some stack j (j =i or j # i) that results
from the initial call. If P; is not currently in stack j,
then the invocation made by @); is completed when P;
is added to stack j. Note that a module @); can respond
to a service call even if (); has been unbound.

p p p Protocol P

P1 P2 Ps

q Lo\ Lo\
call A 1 A

| response iresponse iresponse

q)\ ! a\ | /a\ | Protocol Q
Al (A [&]

r r LT\

Figure 2. Service calls and responses.

Figure 2 illustrates service calls and responses. The
call of a service ¢ made by module P; is shown with
a solid arrow. Responses to this call are represented
with dashed arrows. Note that responses can occur in
one or many stacks. We say that P; interacts locally
with module Q1 on every call of service q. Responses
to the call of service ¢ lead to a remote interaction of
P1 with P2 and P3.

Service calls and responses to service calls are the
two kinds of interactions between modules. A service
call is a local interaction between the service caller and
the service provider. A response to a call is an interac-
tion between the service caller and the (local or remote)
module that is receiving the response.

3 Generic Dynamic Update Properties

In this section, we define several generic correctness
properties of dynamic replacement of distributed pro-
tocols. Firstly, we define a property that ensures cor-
rect local interactions. We consider two levels of this
property: strong and weak. The former one ensures
that a service call is never blocked. Preserving the lat-
ter level means that a service call may be blocked, but
not infinitely.

Strong stack-well-formedness A stack is strongly
well-formed if and only if whenever a module calls a
service, the service is bound to one module.

Weak stack-well-formedness A stack is weakly
well-formed if and only if whenever a module calls a
service, the service is eventually bound to one module.

Stack-well-formedness is a local property. Below
we define the protocol-operationability property, which
describes remote interactions. It ensures that whenever
a service is called, then all possible responses to this call
(in non-crashed stacks) are guaranteed to occur. We
again consider two levels of this property: strong and
weak.

Strong protocol-operationability A protocol P is
strongly operational in a set of stacks II, if and only if
whenever a module P; is bound in some stack ¢, then
all non-crashed stacks j in II contain a module P;.

Weak protocol-operationability A protocol P is
weakly operational in a set of stacks II, if and only if
whenever a module P; is bound in some stack ¢, then all
non-crashed stacks j in II eventually contain a module
p;.

The strong protocol-operationability implies weak
protocol-operationability. With synchronous networks,
which impose time requirements on protocol interac-
tions, the strong level of both stack-well-formedness
and protocol-operationability must be ensured. In the
remainder of the paper, we consider only the weak
properties, since we consider asynchronous networks.

4 Structural Aspect of DPU

We describe now our solution to integrate a manager
for dynamic protocol replacement. We illustrate our
solution with an example group communication mid-
dleware. Then, we compare our solution with other
existing solutions.

4.1 Our Solution

Description The main idea is to add a replacement
module that implements a level of indirection between
service calls and the protocol that provides the service.
The replacement module intercepts service calls and
responses to the service calls, so that it can provide
synchronization, which is necessary to ensure the DPU
correctness properties.

In addition to the generic properties described in
Section 3, some additional properties must be satis-
fied; these properties are specific to the service pro-
vided by the modules being updated. The structural

aspect of our solution (with interception of service calls
and responses) facilitates the implementation of algo-
rithms that ensure the properties specific to the ser-
vice. Moreover, the interception of service calls and
responses makes the algorithm dependent only on the
specification of the protocol that gets replaced.

q r
Q1 R
q r r-p r—-p
Q1 R
P P =P
Repl-P,
P L
F:‘ / P\ /P \
P4 newPs
t u

Figure 3. The module composition without
a replacement module (left) and with the re-
placement module Repl (right).

Figure 3 shows an example stack without a replace-
ment module (on the left) and with the replacement
module Repl-P; (on the right), where 1 denotes a stack
number. The modules Repl-P; are used to replace a
protocol P by a protocol newP: both provide service p
but may require different services. Note that modules
Repl-P; require service p. Modules @)1 and R; are two
modules that may call service p. In the updateable
system, the service p is not called directly, but via an
interface r-p that is provided by Repl-P;.

On the right of Figure 3, we show the replacement of
protocol P; by protocol newP;. Protocol P; is bound
to the service p. The dashed lines connecting mod-
ules Repl-P; and newP; shows that Repl-P; will bind
newP; to the service p after having unbound module
Py from that service.

Example Figure 4 shows the architecture of our
adaptive middleware; it builds on the Fortika group
communication stack described in [13].

e The UDP module provides an interface to the
UDP (unreliable) protocol.

e The RP2P module implements reliable point-
to-point communication between distributed pro-
cesses.

e The FD module implements a failure detector; we
assume that it ensures the properties of the ¢S
failure detector [4].

e The CT module provides a distributed consensus
service using the Chandra-Toueg ¢S consensus al-
gorithm [5] based on a rotating coordinator.

e The ABcast module implements atomic broadcast,
a group communication primitive that delivers
messages to all processes in the same order; the
module requires the consensus service.

e The GM module provides a group membership ser-
vice that maintains consistent membership among
all group members; the module requires the atomic
broadcast service (see [17] for the details).

e The Repl module implements the replacement al-
gorithm dedicated to the atomic broadcast service
(see Section 5).

/ UDP\ RP2P
UDP ‘ RP2P
Stack i Net Net

I I
Network (Net)

Figure 4. Architecture of the group communi-
cation stack.

Note that our ABcast module is not implemented
on top of a view synchrony protocol as it is often the
case. However, our replacement algorithm is general
and works also for atomic broadcast protocols imple-
mented on top of a view synchrony protocol.

4.2 Existing Solutions

Many solutions for DPU exist [20, 6, 18, 9, 15]. How-
ever, some of these solutions (e.g. [18] and [9]) are
clearly not satisfactory. In [18] the authors propose a
solution that uses a centralized manager, which limits
its tolerance to failures. On the other hand, the solu-
tion proposed in [9] provides facilities to replace only a
single module of a protocol.

We present now two example solutions to DPU,
which are represented by Maestro [20] and Grace Adap-
tation [6], and compare them with our approach. An
approach described in [15] is similar to Maestro but im-
plemented within the Appia [14] protocol framework.

Maestro [20] Maestro supports only the replacement
of complete protocol stacks, i.e. in order to replace a
single protocol, the whole stack (containing the proto-
col) has to be replaced.

The main idea of their solution is to install on each
machine a stack switch module (SS module). The SS
module is in charge to dynamically replace stacks. Its
main role is to (1) finalize the local old stack, and (2)
coordinate the start of the new stack as soon as pos-
sible. In order to finalize the old stack, some protocol
modules must be eztended with a method finalize that
properly terminates the protocols. The method finalize
is called by the SS module each time a stack replace-
ment is required.

Graceful Adaptation [6] In this solution, each
adaptive module implementing some service consists
of a Component Adaptor (CA), and several Adaptive-
Aware Components (AACs) that provide alternative
implementations of the service. Upon a service call,
only the AAC component that is activated is executed.
Only one AAC component can be activated at a time.

The role of the component adaptor is to dynami-
cally switch between the different AAC components,
thus changing the algorithm that is used to provide
the service. This is done by (1) deactivating the AAC
component that is currently activated, and (2) activat-
ing a new AAC. Each of these operations is performed
by AAC itself. The CA component only coordinates
the operations, as follows:

1. The CA asks the old and the new AAC to prepare
respectively deactivation and activation.

2. Once all stacks terminate the preparation phase,
the CA starts the deactivation of the old AAC.

3. Once the old AAC deactivates itself, it starts the
activation of the new AAC.

In order to perform these three steps, the old AAC,
the new AAC and the CA communicate with each
other. Thus, each AAC must be extended in order to
be able to communicate with the CA and some other
AAC during the replacement procedure.

Note that each AAC in a module m can only use
the services required by m. This limits the possible
replacements, since AACs that require other services
cannot be part of m.

Comparison with our solution Our solution has
several advantages over existing solutions due to the
way we address the structural aspect of DPU. The main
advantage is that our implementation of the dynamic
protocol update does not depend on the algorithm of
the updateable protocols, but only on the specification

of these protocols. In Maestro and Graceful Adapta-
tion, for each dynamic protocol update, the program-
mer has to extend the protocol modules that get up-
dated. In order to extend correctly these modules, the
programmer of DPU must have a clear understanding
of the algorithms of the protocol modules that get re-
placed. Moreover, in our solution, the switching al-
gorithm is implemented entirely by the replacement
module. Protocol modules are not even aware that
the protocol replacement takes place. Our solution is
therefore modular in contrast to existing solutions that
require to extend each updateable module.

Another advantage of our solution is that it is highly
flexible. In contrary to Graceful Adaptation, our solu-
tion does not limit the possible replacements by impos-
ing any restrictions on the services that a newly added
protocol may require. Unlike Maestro, replacement of
a single protocol in our system does not require a whole
protocol stack to be also replaced.

5 Algorithmic Aspect of the Atomic
Broadcast Protocol Replacement

In this section we present the specification ensured
by the atomic broadcast protocols. Then, we describe
the algorithm for the replacement of Atomic Broadcast
(ABcast) protocols. The algorithm is implemented by
the Repl module presented in Figure 4. Finally, we
discuss the advantages of our solution over other algo-
rithmic solutions for DPU. These advantages are the
result of an elegant integration of the replacement al-
gorithms in our framework.

5.1 Atomic Broadcast

Atomic broadcast is defined by the two primitives
ABcast and Adeliver, that satisfy the following prop-
erties [7]:

o Validity: If a correct process ABcasts a message
m, then it eventually Adelivers m.

e Uniform agreement: If a process Adelivers a mes-
sage m, then all correct processes eventually Ade-
liver m.

e Uniform integrity: For any message m, every pro-
cess Adelivers m at most once, and only if m was
previously ABcast.

e Uniform total order: If some process Adelivers
message m before it Adelivers message m’, then
every process Adelivers m’ only after it has Ade-
livered m.

Algorithm 1 Replacement of ABcast: code of stack 1.

1: Initialisation:
2: wundelivered «— 0

{set of messages not yet Adelivered}
3 curABcast < current ABcast protocol
4: seqNumber =0 {sequence number}
5: upon changeABcast(prot) do

6: ABcast(newABcast, seqNumber, prot)
7

8

: upon rABcast(m) do
: undelivered «— undelivered Um
9: ABcast(nil, segNumber, m)

10: upon Adeliver(newABcast, sn, prot) do
11: seqNumber «— seqNumber + 1

12: unbind(curABcast)

13: create_module(prot)

14: curABcast < prot

15: for all m € undelivered do

16: ABcast(nil, segNumber, m)

17: upon Adeliver(nil, sn, m) do
18: if (sn = seqNumber) then

19: if (m € undelivered) then
20: undelivered «— undelivered \ m
21: rAdeliver(m);

22: procedure create_module(p)
23: createp

24: bind p

25: for all s € services required by p do

26: if no module is bound to service s in stack i then
27: find a module g providing service s

28: create_module(q)

5.2 Our Solution

Below we describe an algorithm for replacement of
all protocols that satisfy the specification in Section 5.1
(see Algorithmm 1 and Figure 4). Then, we prove that
it satisfies our generic correctness properties and some
additional specific properties.

5.2.1 The Replacement Algorithm

Replacement of the Atomic Broadcast (ABcast)
protocol is initiated by the call changeABcast(prot),
where prot is the new ABcast protocol (see Al-
gorithm 1, line b5). This call triggers a call
ABcast(newABcast, segNumber, prot) (line 6), where
newABcast indicates the request to replace the ex-
isting ABcast protocol, and seqNumber identifies the
current version of the ABcast protocol. The global
variable seg Number is initiated to 0 (line 4) and incre-
mented with every replacement of ABcast.

The lines 7-9 define a call rABcast(m):
firstly, the message m is added to the set
undelivered of undelivered messages, then the
call ABcast(nil, segNumber,m) is made, where nil
indicates an ordinary call of the ABcast primitive.

The lines 10-16 implement, the Adeliver primitive for
the messages with tag newABcast, and the lines 17-21
for the messages with tag nil, as follows.

If a replacement is requested (lines 10-16), then the
seqNumber global variable is incremented (line 11),
the old module (curABcast) is unbound and the new
module prot (of the new ABcast protocol) is cre-
ated and bound (lines 12-14). Finally, all undelivered
messages are reissued using the new ABcast protocol
(lines 15-16).

If no replacement is requested (lines 17-21), then a
test is performed (in line 18) to avoid that message m
is Adelivered twice: a message with a sequence number
corresponding to an older ABcast protocol is discarded,
otherwise it is delivered by rDeliver(m) (line 21).

5.2.2 Proof

It is easy to see that the replacement protocol sat-
isfies weak stack-well-formedness and weak protocol-
operationability.

Weak stack-well-formedness This property is
trivially ensured by the fact that the unbind of line 12
is immediately followed by a new binding triggered by
line 13. O

Weak protocol-operationability If a module
newABcast is created and bound in stack i (line 13),
then stack 7 has Adelivered the message (newABcast,
sn, prot) (line 10). Since the uniform agreement prop-
erty of atomic broadcast ensures that a message Ade-
livered in a correct stack is also Adelivered by all other
correct stacks, all non-crashed stacks eventually create
module newABcast. [

In addition, we need to prove properties specific to the
replacement of atomic broadcast: we need to prove that
the properties of atomic broadcast (Sect. 5.1) are sat-
isfied across the replacement protocol (assuming that
each ABcast protocol satisfies the properties of Sec-
tion 5.1).

The first observation is that, since the protocol
change is handled by ABcast, the protocol identified
by the sequence number sn in stack ¢ is the same as
the protocol identified with sn in stack j. So we can
unambiguously identify a protocol by a sequence num-
ber sn.

Validity Consider a correct process p; that executes
ABcast(m) using protocol sn of stack 7. Since the AB-
cast protocol satisfies validity, the only reason for m
not to be Adelivered is the replacement of the protocol
sn by a new protocol sn’ > sn (by line 18, m can be
discarded). However, if m is discarded by line 18, m
is reissued by the new protocol sn’ (line 16). By the

validity property of the new protocol, m is eventually
Adelivered by p;. O

Uniform agreement Consider a process p; that
Adelivers m using protocol sn of stack i. Since the
ABcast protocol satisfies uniform agreement, all cor-
rect processes eventually Adeliver m, unless m is dis-
carded by line 18. However, the protocol sn can only
be changed by issuing an ABcast with the same pro-
tocol sn. By the uniform total order property of sn, if
p; Adelivers m before a protocol change message, then
every process Adelivers the protocol change message
only after it has Adelivered m. So no stack discards
m by line 18 in the context of the protocol sn, i.e., all
correct processes eventually Adeliver m. [

Uniform integrity Since every atomic broadcast
protocol satisfies integrity, we have only to prove that
the replacement of atomic broadcast does not lead
some message m to be Adelivered twice, i.e., by two
different protocols sn and sn’. Let sn < sn/, and as-
sume that m is Adelivered by protocol sn. Since m is
Adelivered by the protocol sn, message m is not reis-
sued at line 16. Moreover, since m is issued by the
protocol sn, line 18 prevents m from being Adelivered
by a protocol different from sn. O

Uniform total order Let message m be Adelivered
before message m’ by process p; using stack . The uni-
form total order property trivially holds if the two mes-
sages are Adelivered by the same protocol. So assume
that m is delivered in stack ¢ by protocol sn and m’ by
protocol sn’, with sn < sn’. Since stack i has changed
its ABcast protocol, it must have Adelivered a proto-
col change message (newABcast, sn,prot) at line 10
(after m and before m’). Assume now that stack j
Adelivers m/. Stack ¢ Adelivers m’ by protocol sn’;
so, because of line 18, stack j can only Adeliver m’
by protocol sn’. So stack 7 must have Adelivered the
message (newABcast, sn, prot) before Adelivering m’
(otherwise m’ would be delivered by the same proto-
col sn) (*). However, the protocol sn satisfies the uni-
form total order property, and has Adelivered m before
(newABcast, sn, prot). So stack j can only Adeliver
(newABcast, sn, prot) after it has Adelivered m (**).
By (*) and (**), if stack j it has Adelivered m/, it must
have Adelivered m earlier. [J

5.3 Comparison with Existing Solutions

Our solution has advantages over existing solutions.
Firstly, the replacement protocol only requires ABcast.

Contrary to other solutions, it does not require ad-
ditional mechanisms such as barrier synchronization
(Graceful Adaptation [6]) or group membership (Mae-
stro [20] and Appia [15]). Note that even if the barrier
synchronization is run in parallel with message flow in
Graceful Adaptation, the use of barrier synchroniza-
tion should be avoided because of its implementation
complexity in an asynchronous network. The second
main advantage of our solution is that the application
on top of the stack is never blocked, which is not the
case in the Maestro solution.

6 Performance

In this section, we present measurements showing
the impact of updating the atomic broadcast protocol
on the overall performance of our group communication
stack (see Figure 4).

6.1 Instrumentation

Our implementation uses SAMOA [22] — a Java pro-
tocol framework that we have designed in our previous
work. The framework can be used to implement net-
work protocols as a collection of modules as described
in Section 2.

We have made performance tests using a cluster of 7
PCs running Red Hat Linux 7.2 (kernel 2.4.18), where
each PC has a Pentium III 766 MHz processor and
128MB of RAM. All PCs are interconnected by a 100
Base-TX duplex Ethernet switch.

6.2 Benchmark

In our experiment, we have compared the average
latency [19] of Atomic Broadcast (ABcast), which is
defined as follows. Consider a message m sent using
ABcast. We denote by t;(m) the time between the
moment, of sending m and the moment of delivering m
on machine (stack) i. We define the average latency of
m as the average of t;(m) for all machines (stacks) i.

In our experiments — involving 3 or 7 machines
(stacks) — messages of 4Mb were ABcast under a con-
stant load by all machines (stacks). In the middle of
the experiment, any process triggers the replacement of
ABcast and continues to issue ABcast messages. We
consider that the replacement starts when any process
triggers a replacement and finishes when all machines
have replaced the old modules by new modules.

In our experiment, we replace the Chandra-Toueg
ABcast [5] protocol by the same protocol, while per-
forming all steps of the replacement algorithm (e.g.,
unbinding the old module, creating a new module, etc).

1800 —F
-
1600 - " A R
+ o, A
S
1400 | w BT
2
@ B i o
£ 1200 |- Lo R
~ - PR et .
%) " + Ty ey e
g N o ++ % $ + E .
+ + + + F+ o+ + }
T 1000 F o+ +T ot 3
K < * * *i PR A : hnd
Py + Lt + H
[* +*++#+++ + #+++++ o s
T 8o st e 4
]
>
B3 :

600

400

200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time of ABcast [ms]

Figure 5. Latency as a function of the time at
which ABcast is issued.

This allows us to measure the exact impact of the re-
placement algorithm.

6.3 Measurement Results

The benchmark was executed for several values of
the parameters. Figure 5 shows the results of an ex-
periment where the impact of the replacement is clearly
visible. The figure shows the average latency of atomic
broadcast as a function of the time (in milliseconds) at
which the atomic broadcast is issued. The experiment
is with 3 machines, 75 messages ABcast per second,
and the replacement algorithm invoked at time 5000.
We show the result of several experiments with the
same parameters, which is why several latency values
are shown on the vertical axis for a given time ¢ on the
horizontal axis. We can observe that the average la-
tency increases around t = 5000, but quickly stabilizes
to reach the level it had before the replacement. More-
over, there is no interruption in the service availability.
It should be added that the relatively large latency
values are due to a non-optimized atomic broadcast al-
gorithm (e.g., consensus is executed on messages and
not on message identifiers).

Figure 6 shows the latency as a function of the load
for various group sizes n (n = 3 or n = 7), where the
load is the number of ABcast calls per second. The
solid graphs represent the normal latency values, i.e.,
a group communication stack without a replacement
layer. The dashed graphs represent the latency before
the replacement in a group communication stack with
a replacement layer. The dotted graphs represent the
latency during the replacement (i.e., after the replace-

3000 T T
Dunng veplacement n=7 ---a---
Normal, with replacement layer, n=7 ---a-
Normal, without replacement layer, n=7 —&—
ing replacement, n=3 ---~+-

- - Normal, with r@blacement layer =3 -===t-=-
25001,/ """ - Tl §..---Norifial, without replacement layer, n=3 —+—

2000 —

15008

Average latency [ms]

1000 4

10 20 30 40 50 60 70 80 90 100
Load [msg/s]

Figure 6. Latency as a function of the load.

ment request and before the new module replaces the
old module in all stacks). Figure 6 shows that the cost
of adding a replacement layer (approximately 15%) is
not, so important. It also shows the overhead of the
replacement on the latencies. Note that this overhead
lasts during a short period (approximately one second).

7 Conclusion

Updating middleware protocols on-the-fly is more
difficult than purely local updates of software modules,
since it requires global synchronization or coordination
of local updates. We proposed a novel approach to this
problem that is fully modular and highly flexible.

We have validated our approach by implementing
a group communication middleware system using the
SAMOA protocol framework. Our middleware enjoys
a clear separation of concerns: updateable protocols
can be implemented as usual, with the replacement al-
gorithm implemented separately and executed in the
background. We made several experiments in a LAN.
The results of these experiments are very encouraging.
The overhead of switching on-the-fly between different
implementations of distributed agreement protocols is
negligible.

We plan to work in the future on more generic re-
placement algorithms to allow replacement of a larger
set of protocols. We have already designed an algo-
rithin to replace consensus protocols [16], another es-
sential building block of our group communication mid-
dleware.

Acknowledgments

We would like to thank Richard Ekwall for his com-
ments on an earlier version of the paper. We also thank
Sergio Mena for the implementation of several modules
of our adaptive group communication middleware.

References

(1]

9]

(10]

M. Bickford, C. Kreitz, R. van Renesse, and R. L. Con-
stable. An experiment in formal design using meta-
properties. In Proc. DISCEX-II ’01: the 2nd DARPA
Information Survivability Conference and Ezrposition.

IEEE, June 2001.
G. S. Blair, L. Blair, V. Issarny, P. Tuma, and

A. Zarras. The role of software architecture in con-
straining adaptation in component-based middleware
platforms. In Proc. Middleware 2000, volume 1795 of
LNCS. Springer, Apr. 2000.

T. Bloom and M. Day. Reconfiguration and module
replacement in Argus: theory and practice. Software
Engineering Journal, 8(2):102-108, 1993.

T. D. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus. Journal
of the ACM, 43(4):685-722, 1996.

T. D. Chandra and S. Toueg. Unreliable failure de-
tectors for reliable distributed systems. Journal of the
ACM, 43(2):225-267, 1996.

W.-K. Chen, M. A. Hiltunen, and R. D. Schlichting.
Constructing adaptive software in distributed systems.
In Proc. ICDCS ’01: the 21st IEEE International
Conference on Distributed Computing Systems, Apr.
2001.

V. Hadzilacos and S. Toueg. A modular approach to
fault-tolerant broadcasts and related problems. Tech-
nical Report 94-1425, Department of Computer Sci-
ence, Cornell University, Ithaca NY, 1994.

J. Hallstrom, W. Leal, and A. Arora. Scalable evolu-
tion of highly available systems. Transactions of the
IEICE: the Institute for Electronics, Information and
Communication Engineers, IEICE/IEEE Joint Spe-
cial Issue on Assurance Systems and Networks, E86-
B(10):2154-2166, 2003.

Y.-F. Lee and R.-C. Chang. Developing dynamic-
reconfigurable communication protocol stacks using
Java. Software Practice & Ezxperience, 35(6):601-620,
2005.

X. Liu, R. van Renesse, M. Bickford, C. Kreitz, and
R. Constable. Protocol switching: Exploiting meta-
properties. In Proc. Workshop on Applied Reliable
Group Communication (WARGC °01), Apr. 2001.

(11]

[12]

(13]

[14]

[15]

[16]

(17]

18]

[19]

[20]

21]

(22]

J. Magee, J. Kramer, and M. Sloman. Constructing
distributed systems in Conic. IEEE Transactions on
Software Engineering, 15(6):663—675, June 1989.

P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H.
Cheng. Composing adaptive software. IEEE Com-
puter, 37(7):56-64, 2004.

S. Mena, A. Schiper, and P. T. Wojciechowski. A step
towards a new generation of group communication sys-
tems. In Proc. Middleware 03, volume 2672 of LNCS.
Springer, June 2003.

H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flex-
ible protocol kernel supporting multiple coordinated
channels. In Proc. ICDCS '01: the 21st IEEE Interna-
tional Conference on Distributed Computing Systems,
Apr. 2001.

J. Mocito, L. Rosa, N. Almeida, H. Miranda, L. Ro-
drigues, and A. Lopes. Context adaptation of the com-
munication stack. In Proc. the 3rd Workshop on Mo-
bile Distributed Computing (MDC ’05), June 2005.
O. Ritti, P. T. Wojciechowski, and A. Schiper. Dy-
namic update of distributed agreement protocols.
Technical Report IC-2005-012, School of Computer
and Communication Sciences, FEcole Polytechnique
Fédérale de Lausanne (EPFL), Mar. 2005.

A. Schiper. Dynamic Group Communication. To ap-
pear in ACM Distributed Computing, 2006.

N. Sridhar, S. M. Pike, and B. W. Weide. Dynamic
module replacement in distributed protocols. In Proc.
ICDCS ’03: the 23rd IEEFE International Conference
on Distributed Computing Systems, May 2003.

P. Urban. Ewaluating the Performance of Distributed
Agreement Algorithms: Tools, Methodology and Case
Studies. PhD thesis, School of Computer and Com-
munication Sciences, Ecole Polytechnique Fédérale de
Lausanne (EPFL), Aug. 2003.

R. van Renesse, K. Birman, M. Hayden, A. Vaysburd,
and D. Karr. Building adaptive systems using Ensem-
ble. Software Practice & Experience, 28(9):963-979,
1998.

P. T. Wojciechowski and O. Riitti. On correctness
of dynamic protocol update. In Proc. FMOODS
05: the Tth IFIP Conference on Formal Methods for
Open Object-Based Distributed Systems, volume 3535
of LNCS. Springer, June 2005.

P. T. Wojciechowski, O. Riitti, and A. Schiper.
SAMOA: A framework for a synchronisation-
augmented microprotocol approach. In Proc. IPDPS
’04: the 18th IEEE International Parallel and Dis-
tributed Processing Symposium, Apr. 2004.

