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Abstract

Because of the growing use of multimedia content over
Internet, Content-Based Image Retrieval (CBIR) has re-
cently received a lot of interest. While accurate search tech-
niques based on local image descriptors exist, they suffer
from very long execution time. We propose to accelerate
CBIR on the RDISK machine, a cluster of FPGA-enhanced
hard-drives, that follows the philosophy of smart-disks. Our
platform combines coarse and fine grain parallelism thanks
to the concurrent use of the cluster nodes and of a pro-
grammable logic device. The implementation of the CBIR
application on this mixed hardware/software platform fol-
lows a strict methodology, that was validated on realistic
data-set (image database of more than 30,000 images). This
methodology allows us to adapt the original algorithm to
suit a hardware implementation, and to select the values
of some key design parameters to maximize global perfor-
mance. Our preliminary results indicate that speed-ups be-
tween 120 and 200 could be obtained for a cluster of 32 n-
odes compared with a software implementation running on
a standard desktop PC.

1. Introduction

Content Based Image Retrieval (CBIR) is a technique
that allows one to find out images of a database that are
(at least) partly similar to a given reference image. CBIR
is drawing increasing interest due to its potential applica-
tion to problems such as image copyright enforcement. In-
deed, the large use of Internet resulted in a huge increase
of Web-available multimedia content, especially images.

∗This research was partly funded the French Ministry of Foreign Affairs
as part of Sarima project no. 2002-84.

Checking copyright is therefore a concern for image own-
ers, who must be able to identify undue use of images. This
identification process relies upon precise and fast image-
comparison algorithms, as Internet is a rapidly changing
medium, and such algorithms need to be run on a daily ba-
sis.

1.1. CBIR Systems

CBIR is mainly based on the comparison of image de-
scriptors of a reference image with those of a descriptor
database. Descriptors may be either global, i.e. they repre-
sent some global feature of an image (e.g. a grey-level his-
togram) or local, in which case they describe special points
of interest in the image (e.g. corners, color changes, etc.).
In this paper, we are concerned with local descriptors only:
recent research has shown that they provide a more robust
approach since they are less dependent to image variations
than global descriptors.

Retrieving an image consists first in associating a set of
descriptors with the reference image – typically, a few hun-
dred vectors of 24 real components, – then in computing the
distance between each one of these descriptors and those of
the database images (distance calculation stage). For each
reference descriptor, a k-nearest neighbor sorting selects
the k database descriptors whose distances are the smallest
(selection stage). Finally, votes are assigned to the images
depending on their occurrences in the k-nearest neighbor
lists (election stage): the image that has the largest number
of votes is considered to be the best match. The whole pro-
cess is extremely time consuming: retrieving an image in
a 30,000 image database requires about 1,500 seconds on a
standard workstation. This is impractical for most applica-
tions of CBIR, since they often require a low response time.

Research on smarter algorithms, based on clustering
techniques for example, although very active, has not lead

1-4244-0054-6/06/$20.00  ©2006 IEEE



to definitive results because of a phenomenon called dimen-
sion curse that affects large databases operating on higher-
dimensional data sets [2, 7].

Therefore, the only solution to improve the performance
of current CBIR systems is to accelerate the algorithm us-
ing special-purpose implementations. Accelerating the ap-
plication on a parallel machine is the most natural choice,
and has already been studied by few authors, among whom
Robles et al [18].

In this paper, we approach this problem by combining
both parallelism and special-purpose hardware. Our model
architecture is that of a so-called smart disk, whose proto-
type is RDISK [9], implemented and available at IRISA.
In short, a smart disk is a collection of disk drives, each
one controlled by a reconfigurable, FPGA-based processor,
called a filter. Filter processors handle on the fly data com-
ing out from the disk that they control and transmit those
data that are relevant to a given request to a common host
processor through a low-bandwidth network. The host pro-
cessor then performs a final combination algorithm in order
to get the results.

1.2. Related Work

The poor performance of current CBIR systems is rec-
ognized by the CBIR community as an important problem
that limits the spread of these techniques. However, as ac-
knowledged by Datta et al [5], only limited efforts were
put in that direction. While a few papers report parallel
implementation of CBIR on shared memory machines and
PC clusters [18], there has been almost no work on special
purpose hardware for this application domain. Moreover,
none of the few noticeable exceptions address the problem
in the context of a real-life hardware system (e.g with its
communication interface, I/O bandwidth constraints, etc.)
[11, 19, 14].

The remaining of this paper is organized as follows. Sec-
tion 2 presents the RDISK platform, from both the system
level and architectural point of view. Section 3 briefly de-
scribes the problems that needed to be addressed to obtain
an efficient implementation, and the methodology that we
used to solve them. Section 4 presents some of the algorith-
mic transformations we used (floating-point to fixed-point
format conversion, and distance metric change), and Sec-
tion 5 focuses on the derivation of the hardware filter ar-
chitecture. Section 6 describes the performance model that
served as a baseline for all our design choices, and the op-
timization problems resulting from this modeling. Prelimi-
nary results are given and discussed in Section 7, and con-
clusion and future work directions are then sketched.
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Figure 2. The RDISK System on Chip Internal
Organization.

2. The RDISK Cluster Architecture

RDISK is a reconfigurable smart disk cluster research
prototype that has been developed at IRISA since 2001 and
that borrows from the smart-disk concept. Although the
concept of such processing capable storage devices dates
back to the 70s [3], it has drawn an increasing attention
at the end of the 90s [17, 10, 12, 1] thanks to the emer-
gence of Storage Area Network (SAN) and Network At-
tached Storage (NAS). The basic idea of a smart disk is to
take advantage of the often underused computing power that
is available on disk controllers, in order to implement some
of the search operations directly on data as they flow out of
the disk. RDISK elaborates on this concept by building an
architecture where each disk controller is a reconfigurable
FPGA-based processor.

The RDISK system [9] was designed to provide high per-
formance with low-cost hardware components. Our initial
goal was to build a system whose nodes would cost no more
than one tenth of a PC cluster (i.e. approximately $200).
RDISK consists (see Fig. 1) in a number of nodes – typ-
ically, a few tens; a node contains a 40 GB IDE disk, a
100 Mbps Ethernet controller, 16 MB of SDRAM, a 8051
micro-controller, and an FPGA chip that serves as the filter
processor.

The filter processor allows data coming from the disk to
be processed on the fly in order to select those data that are
relevant for some application algorithm, e.g. a search query.
Filtered data are then sent to a post-processing host through
a 100 Mbps Ethernet switch.

Fig. 2 depicts the internal organization of the RDISK
FPGA. The chip is a Spartan-II FPGA from Xilinx, and
it offers an equivalent density of 200,000 logic gates. It is
used to implement a generic System on a Chip design, the
fixed part of which includes a hard disk-drive controller, a
16-bit RISC embedded CPU, and an Ethernet chip-set inter-
face (for more details, see Guyetant et al. [9]). The recon-
figurable (i.e. the application specific) element constitutes
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Figure 1. The system level view of an RDISK cluster

the hardware filter component. This filter is designed ac-
cording to the template interface described in Fig. 2. Its
rôle is to process in real-time the data stream coming from
the disk drive and to send its output to the embedded CPU.
This embedded CPU then performs a post-filtering process
and sends the final results to the host through the Ether-
net network. Programming an RDISK node thus consists
in designing an application dependent hardware filter (in
VHDL, Verilog, or higher level languages such as Handel-
C), in writing a post-filtering C program to be run on the
embedded CPU, and in writing a post-processing program
for the host processor.

An important point of RDISK is its reconfigurability: at
any time, upon receipt of a specific command from the host,
an RDISK node can switch to another hardware configura-
tion and its associated hardware filter. This reconfiguration
is handled by the 8051 micro-controller which reconfigures
the FPGA from a bit-stream file stored on the hard-disk.
Each node can store up to 256 hardware configurations, and
a custom file system allows configurations to be added or
removed from the drive by the host.

The RDISK cluster thus takes advantage of two levels
of parallelism: coarse grain parallelism through the concur-
rent use of the nodes, and fine grain parallelism within each
hardware filter; we shall indeed see that a large amount of
fine grain parallelism can be used when designing a hard-
ware filter for the FPGA processor.

Our RDISK cluster prototype is fully functional and has
already proved to be a very promising platform: two ap-
plications of computing biology have been successfully im-
plemented and speed-ups of two orders of magnitude have
been reported [9].

3. CBIR Implementation on RDISK: Problems
and Methodology

The basic mapping scheme of CBIR on the RDISK
n-node cluster is quite straightforward. The database de-
scriptors are equally distributed among the n nodes of the

cluster. Each filter gets a fraction q0 of the q descriptors
associated to the query image and computes the distance
between each one of the q0 descriptors and a subset b0 of
the database descriptors.

As the distances are computed, they are also sorted and
only the k-smallest distances are kept. These distances are
then sent to the host processor where the final election stage
is performed. This simple scheme raises however several
questions, that we list now.

1. As the filter processor is based on the FPGA technolo-
gy, efficient implementations cannot be obtained us-
ing floating-point calculations, a mere translation of
the initial software description. Therefore, an analysis
of the calculation precision requirements is mandatory.
We do it in Section 4.

2. The second question is how to efficiently implemen-
t the distance computation step on the FPGA. Given
that most FPGA design operate at frequencies below
100 MHz, the only way to reach good performance is
to take advantage of fine grain parallelism within the
FPGA. Section 5 will show how this can be done effi-
ciently.

3. Finally, we have to solve the problem of performance
at the system level. We do so by providing a detailed
performance model in Section 6. This allows us to es-
timate global performance, and to optimize the hard-
ware filter design.

4. Optimizations for Hardware Implementa-
tion

The software implementation of an algorithm often re-
quires important modifications when it is to be implemented
as application specific hardware. In this section we present
the two main transformations that we applied on the initial
CBIR specification: the conversion from floating-point to
fixed-point arithmetics, and the use of the L1 distance as an
alternative to the Euclidian (L2) distance.



4.1 Using Fixed-Point Arithmetics

While floating-point has very good hardware support on
modern CPUs, it is very poorly suited to an FPGA imple-
mentation. Although floating-point operators can be im-
plemented in programmable logic [8], their realization is
very costly in terms of resource usage, and they provide on-
ly limited performance compared to most fixed-point arith-
metics implementations. For instance, a single precision
floating-point adder requires 80 times the area of a 8-bit
fixed-point adder. As far as CBIR is concerned, encoding
the descriptors using an 8-bit fixed-point format also re-
duces the database size by a factor of almost 4. This in
turn speeds up the database scanning time. The ability to
use fixed-point arithmetics should hence help us to increase,
thanks to higher parallelism and I/O bandwidth, the overall
level of performance of our hardware implementation.

4.2 Conversion Methodology

Moving from floating-point to fixed-point is not straight-
forward. Such a conversion generally induces a loss of pre-
cision in the computations (due to quantization and round-
ing errors) which may in turn impact the Quality of Results
(QoR) of the algorithm. Using analytical models, it is pos-
sible to quantify, in terms of Signal to Quantization Noise
Ratio (SQNR), the impact of a conversion to fixed-point
format [13]. However this modeling is useful only when
it is possible to determine an upper bound of the acceptable
SQNR for the application at hand (this is very often the case
in signal processing applications).

Unfortunately, in the context of CBIR, there is no way to
directly relate the SQNR to the quality of the search results.
The only solution is hence to use extensive simulation and
observe experimentally the impact of a conversion scheme
on the search results. Ultimately, we expect to determine the
narrowest fixed-point encoding that will preserve the CBIR
accuracy. To do so, we first defined a metric for quantifying
the CBIR answer accuracy, and then we explored various
possibilities of fixed-point encoding to efficiently combine
scaling and saturation.

Fixed-point encoding consists in mapping any value r

belonging to R to an signed integer domain [−B,B − 1]
where B = 2w−1 and w is the targeted fixed-point format
bitwidth. This conversion uses two parameters: the domain
bound B and the target bit width w. Let Q(r) denote the
converted value. This conversion is done according to the
expression:

Q(r) =

⎧⎨
⎩

⌊
2w−1r

⌋
if r ∈ [−B, B − 1]

B − 1 if r ≥ B

−B if r < −B

(1)
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Figure 3. Descriptor component distribution
histogram

in figure 3, one can observe that this distribution is concen-
trated within a very narrow interval; this suggests that map-
ping the initial dataset to a short interval will have limited
impact on accuracy. In the following, we choosed the map-
ping interval such that 97% of the initial descriptor compo-
nents would belong to it.

4.3 Changing the Distance Metric

Another typical transformation when dealing with a
hardware implementation is strengh reduction. It consists in
replacing a costly operation (say multiplication, or division)
by a simpler one (usually addition or shift) that is function-
ally equivalent to the initial operation. In this work, we per-
formed a somewhat similar transformation: we proposed to
substitute the standard Euclidian (L2) distance by the Sum
of Absolute Difference (SAD, L1) distance. This allows
the square-accumulate operation to be replaced by a sim-
ple substract-accumulate with much lower resource usage.
Note that this transformation does not lead to a functionally
equivalent implementation. Therefore, its effect had to be
checked by simulation.

4.4 Validation Methodology

To perform this validation, we used an accuracy test that
is based on the work of Amsaleg et al [2]. We consider a
random image Iref taken from the image database. From
this image, we derive a set of image variations (includ-
ing Iref ) using a set of transformations (cropping, rotation,
JPEG encoding, etc.) taken from the Stirmark benchmark
[15]. Each of these images is then used as a query for the
database.

According to the CBIR algorithm, the election step re-
sults in a list of pairs (Ii, si) in which Ii corresponds to an
image of the database and si to its score (i.e. the number of
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Figure 4. Relative accuracy for various fixed
point encoding format

votes received by the image). This list is sorted according
to the number of votes, I1 beeing the image with the higher
score. The accuracy of the search is then defined by:

Acc(Ir) =

{
1 if I1 = Iref and s1 > 2s2 ,

0 otherwise .
(2)

To determine the global accuracy, we computed the av-
erage accuracy score for a set of query images containing
several hundreds of images. This test corresponded to sev-
eral weeks of computation on a standard workstation.

4.5 Results

Figure 4 shows the relative accuracy obtained for various
fixed-point bit width format using the L1 distance compared
to the original floating-point implementation using the L2

distance. For bitwidths of 8 and above we obtain results
which are almost identical to those of the original software
implementation (whose global accuracy is 85%). We can
hence take advantage of this information during the hard-
ware filter design stage to reduce the resource usage and
increase the implementation performance.

5. Parallel Implementation

In this Section, we turn to the problem of implementing
efficiently distance calculations using the fine-grain paral-
lelism that is available on the FPGA.

5.1. Deriving a Parallel Architecture

Our approach is inspired from systolic-array design
methodologies [16] and especially partitioning techniques.
The parallelization methodology in itself is out of the scope
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Figure 5. A 2D systolic array for distance
computations

of this paper: we will therefore limit ourselves to show its
results (e.g. the parallel processor arrays on which the dis-
tance are computed) and provide an intuitive explanation.

Fig. 5 depicts a straightforward 2D systolic architecture
for the distance computation. A network of 24×N elemen-
tary processors, where N is the number of reference de-
scriptors, allows each distance to be computed in a pipeline
fashion, from the top to the bottom: each column of this
array computes the distance between a database descriptor
{bk,m}0≤k≤23 that is input to the left of the array, and one
reference descriptor. The resulting distances appear at the
bottom of the array.

A quick evaluation showed that this architecture is not
suited to RDISK. First, it uses too much logic resource to be
considered for the actual Spartan II FPGA chip. Second, the
bandwidth necessary to feed this processor array is about
600 M descriptors per second for a hardware filter running
at 25 MHz, which is far beyond the 15 MBps available from
the disk drive.

5.2. Partitioning the Architecture

A partitioning transformation of this architecture allows
one to adjust the resources and the bandwidth of the hard-
ware filter to the RDISK architecture. The Locally Sequen-
tial Globally Parallel (LSGP) partitioning scheme (see [6])
consists in grouping together processors into so-called tiles,
and to merge these tiles. Computations are then executed
sequentially for each tile by a unique processor. For ex-
ample, Fig. 6 shows the architecture of Fig. 5 after LSGP
partitioning using a 24 × 3 tile. This new architecture has
therefore N

3
physical processors: one processor takes care

of 3 successive columns of the initial network. Thus, it read-
s an average of one word of a reference descriptor every 3
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sor array
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cycles. As a counterpart, it needs to store three complete
descriptors, which increases its memory resource cost.

Note that this partitioning results in a linear array, since
the first dimension is equal to the height (24) of the array.
Doing so has several advantages: it simplifies the hardware
interface with the hard-disk FIFO, and it allows further op-
timizations that will be described in Subsection 5.3. From
now on we will hence only consider tiles of the form 24×σ.

In addition to this transformation, we also pipelined the
internal structure of each processor using cut-set retiming,
as shown in Fig. 7: combining this with partitioning pro-
vides very efficient implementations [6].

5.3. Sorting and Thresholding

As seen in Section 5, the goal of the hardware filter is to
find out, for each reference descriptor, a list of k database
descriptors that provide the best k distances. This requires

distance calculation to be followed by a sorting. Imple-
menting sorting as a fine grain parallel architecture would
be possible (for example, using a sorting systolic array), but
it would be resource consuming and inefficient.

We therefore made the choice to implement this sorting
stage as part of the post-filtering step on the embedded CPU.
In this procedure, the data for post-filtering are transmitted
to the post-processing host only once the node has finished
scanning its local database.

One important assumption of this design choice is that
we expect the post-filtering not to be a performance bottle-
neck. In our case, since no communication occur between
the host and the node during the scan, the network process-
ing workload on the embedded CPU is very limited. This
leaves almost all its processing power for performing this
post-filtering step. We also know (from benchmarking) that
our embedded CPU is able to sustain the sorting and inser-
tion of at least 65 103 distance scores per second (with worst
case insertion complexity).

In the original distance computation processor array,
each database descriptor produces as many distance scores
as there are query descriptors stored in the array. This leads
to a throughput far above the CPU processing capabilities.
To reduce this throughput, we use the fact that the distance
of the k-th element of the distance list constitutes a natural
threshold for the distance calculation processors: any par-
tial accumulated distance that exceeds this threshold will
not appear on the final distance list, and can therefore be
discarded. As a consequence, the filter only outputs those
database descriptors, whose scores are below at least one of
the query descriptors (we call such a descriptor a match).

Using execution traces, we observed that the average
probability for a database descriptor to be a match for a
given query descriptor is p = 1.89 10−5. From there, we
derived an estimation of the actual filter selectivity which
depends on the number of query descriptors handled by the
filter (the more query descriptors the higher the chance to
have a match). This lead to an average of 10.67nd matches
per second (with nd beeing the number of query descriptors
handled by the array). In other words, the CPU is able to
sustain post-processing for a hardware filter handling up to
several thousands query descriptors.

Additionally, if processor say Pn, while computing the
distance between reference descriptor number n and some
database descriptor, detects that the accumulated distance
exceeds this threshold, it can ignore the remaining of the
database descriptor and immediately jump to the next one,
hence saving computation time. In the rest of this paper we
call threshold overflow such an event.

The threshold overflow optimization is currently used in
the software implementation of the CBIR application, and
it has proved to be very efficient, since it reduces the com-
putation volume by 8 and the execution time by a factor



of 4. Unfortunately this optimization is not that efficient
when used in our parallel architecture. Because it behaves
as an SIMD architecture, the array cannot proceed to the
next descriptor unless all processors have overflowed their
corresponding threshold. This observation has a severe im-
pact on the actual efficiency of our architecture: the more
we add processors to the array, the longer we have to wait,
as synchronization is done on the worst case.

A quantitative analysis of this phenomenon can be de-
rived using a simple probabilistic model. Fig. 8.(a) shows
the probability Pthr(i), that during a distance computation,
a threshold overflow occurs at iteration i, that is to say, af-
ter reading the ith component of the descriptor. One can
observe that this probability is concentrated in the very s-
mall values of i. Let now Pthr(i, p) be the probability, for
an array of p processors, that a threshold overflow occurs at
iteration i, then:

Pthr(i, p) =

(
i∑

k=1

Pthr(i)

)p

−

(
i−1∑
k=1

Pthr(i)

)n

. (3)

From (3), we can easily derive the average number of
iterations φ(p) that are performed by an array of p proces-
sors:

φ(p) = E[P (p, i)] =
24∑

k=1

Pthr(p, i) × i (4)

Figure 8.(b) shows how φ(p) evolves when p grows. It
can be observed that φ(p) grows very fast for small values
of p.

This suggests that for very small values of p, adding a
processor to the array brings almost no performance benefit,
since the positive effect of this additionnal processing power
on the execution time is annihilated by the synchronization
overhead it induces.

6. System Level Optimization

Although we now have a relatively accurate architectural
model, we still need to determine the set of design parame-
ters that will allow optimal performance. Such a model is to
be established at the system level, and must integrate sever-
al aspects: available hardware resource, algorithm behavior,
I/O requirements, etc.

In the following, we propose such a performance model,
and solve its associated optimization problem in the context
of the RDISK cluster with an arbitrary number of nodes.

6.1. Modeling RDISK Node Execution
Time

In this Subsection, we model the execution time by tak-
ing into account both computations and I/O timing informa-
tions.

Let us call Tio the time required to read a descriptor of
size Sdesc from the hard-drive, and Tbyte the average access
time for a byte on the disk, we can write Tio = SdescTbyte.
On the RDISK prototype, we have a sustained hard-drive
I/O bandwidth of 15 MBps that leads to Tbyte = 66 ns, and a
descriptor size of Sdesc = 26 bytes (24 bytes for its compo-
nents plus one 16-bit word for its associated image index).
We thus have Tio = 1716 ns.

Let now Tprc be the time required by the hardware fil-
ter to process a single database descriptor. This value de-
pends on several parameters: the filter clock speed Tclk,
the partitioning parameter σ, the processor pipeline depth
L and φ(p) the average number of useful iterations in the
distance computation loop, that itself depends on the num-
ber of physical processors p in the filter. So far p, σ, and
Tclk have no predefined values (they are part of the design
parameters). We have

Tprc = Tclk [φ(p) + L] σ . (5)

Since I/O and computation are completely overlapped
(thanks to the use of internal FIFO buffers), the actual
descriptor processing time Tcalc is defined by Tcalc =
max(Tio, Tprc). Since we have p physical processors work-
ing in parallel in the array, each one computing σ distance
scores, the average time for a distance computation is then
given by:

Tavg =
max(Tio, Tprc)

pσ
. (6)

6.2. Hardware Implementation Optimiza-
tion

We have to take into consideration the resource con-
straints of our target FPGA: number of logic cells avail-
able for implementing the elementary processor datapath,
and number of memory blocks (BlockRam) available to s-
tore the query descriptors components along with their cor-
responding list threshold.

Our System on Chip implementation leaves 9 Block-
Ram, and roughly 3,300 logic cells available for the hard-
ware filter implementation. Each BlockRam can store up to
4 kbit and can be used to implement either four 128× 8-bit,
two 256 × 8-bit, a single 512 × 8-bit or half a 1024 × 8-bit
memories.

As mentioned in 5.2, the elementary processor internal
memory size grows linearly with partitioning parameter σ.
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Figure 8. (a) probability of threshold overflow as a function of the dimension index, (b) average
number of iterations as a function of the number of processors.

The memory depth of a elementary partitioned processor
can therefore be expressed as Smem = 26σ × 8. Because
of the rather large size of this local memory, it is likely that
the most stringent resource constraint is the limited number
of BlockRam. Ignoring the logic cell resource constraints,
we can therefore write the maximum number of elementary
processors Npe that can be implemented given σ , memory
block depth Dmem, and a higher bound on memory block
resource Nmem as

Npe =

⎢⎢⎢⎢⎢⎣
⌈

26σ

Dmem

⌉
Nmem

⎥⎥⎥⎥⎥⎦ . (7)

Using the model given in (6), we can now derive an es-
timate of the global performance as a function of the parti-
tioning parameter σ and of the filter clock speed Tclk. This
estimate is shown in Fig. 9. We can observe that the fil-
ter clock speed has little impact on the overall performance.
This suggests that our implementation performance is rather
limited by other factors: (i) the hard-drive I/O bandwidth,
and (ii) the FPGA memory resources.

6.3. Modeling the Cluster Level Perfor-
mance

According to the model presented previously, we can
give an estimate of the average query processing time
(Tquery) as a function of Nnode, the number of nodes in
the RDISK cluster, and q the number of descriptors in the
query. Assuming that each node is able to handle q0 query
descriptors, the database can then be distributed among Ng

groups of nodes, where Ng is given by:
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Figure 9. Performance model for various pa-
rameters performances

Ng =

⎢⎢⎢⎢⎢⎣Nnode⌈
q

q0

⌉
⎥⎥⎥⎥⎥⎦ (8)

From there, knowing each RDISK node start-up time
(approximately 2.5 s, caused by the FPGA hardware recon-
figuration time), we can derive the average query execution
time Tquery , given a query size q and the database size B:

Tquery = Tstart up +
B

Ng

Tavg (9)



7. Results

In this section we present some experimental results and
discuss the actual benefits of our implementation.

7.1. RDISK FPGA Implementation

We have successfully implemented an RDISK SoC sys-
tem that includes a hardware filter consisting of 36 elemen-
tary processors. We used SynplifyPro 7.3 as synthesis tool
and Xilinx ISE 7.1 for placing and routing. This design was
specified in VHDL and uses 2350 out of 2352 available s-
lices, and supports operating frequency up to 25 MHz. Any
attempt to fit a higher number of PE failed due to FPGA
resource overuse (in terms memory blocks).

The hardware filter in itself occupies approximately 65%
of the chip area, and the place and route software reports
indicate that the filter alone can be clocked above 50 MHz.
Thanks to the results summarized in Fig.8 we realized that it
was not worth decoupling the hardware filter clock from the
rest of the system (that operates at 25 MHz): while requir-
ing an important design effort, such a modification would
only have a very limited payoff (approximately 20% per-
formance improvement).

So far the design has not been completely tested in a real-
life situation (these tests are on the run), however the hard-
ware filter was functionally validated at the register transfer
level (using a VHDL simulator), and we expect to provide
detailed performance results in the forthcoming months.

7.2. Comparing with PC Implementation

As mentioned in the introduction, a direct software im-
plementation of the CBIR application on a 2.4 GHz Pentium
4 processor requires an average processing time of 1500
seconds for each query (with an average of 693 descrip-
tors per query). We considered as a comparison a cluster
of 32 nodes, processing queries ranging from 250 to 1500
descriptors (these are typical bounds for images). Using our
performance model, we computed some estimates of the ex-
pected speed-up that are represented in Fig. 10. To sum-
marize our results, we obtain speed-ups varying between
150 and 200 depending on the query size for the 32 node
cluster. For a single RDISK node, the speed-ups vary be-
tween 4 and 6. Given that the cost of a 32-RDISK cluster
can be estimated to $12,000 (including Ethernet switches,
power supplies, and Rack Cabinet)1, and assuming a cost
of $400,000 for a 200 PC cluster, we can roughly estimate
the price/performance ratio to 40 in the favor of the RDISK
cluster.

1Our actual RDISK cluster has 48 nodes, its costs is approximately
$15000
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On the other hand, most recent processors now integrate
SIMD instruction sets targeted to multimedia application-
s. These instruction sets operate on short fixed-point data
types (8, 16 or 32-bit). As an example, the MMX instruc-
tion set provides instructions that can perform up to 8×8-bit
operations in parallel. It can therefore be objected that the
performance results presented in this work for the RDISK
platform should be compared with software implementa-
tions that would take advantage of such architectural im-
provements, since they are very likely to significantly boost
up software performance.

However these instructions were reported to provide on-
ly limited performance improvement [4], with speed-up on-
ly seldom above 2. In our case, as described in Section 8,
this limited efficiency is worsen by the computation volume
overhead induced by the SIMD execution model. For exam-
ple, when using MMX instructions to compute 8 distance
scores in parallel, the average number of useful iterations
grows by a factor of almost 3, hence annihilating all the
performance improvements due to parallelism.

7.3. Impact of Technology Improvement

As mentioned in Section 2, the RDISK prototype was
designed using a low-cost FPGA of year 2001. However,
FPGA technology is known to evolve very quickly with ev-
er increasing density and prices dropping significantly every
year. To understand the impact of this evolution, we con-
sidered an hypothetical implementation of RDISK using a
2004 FPGA (namely the Spartan-3 FPGA). For the same
cost this new family offers five times the logic density of
the current RDISK FPGA, with clock speed improvements
in the range of 50%. According to our modeling, the op-



year 32-node RDISK desktop PC speedup
2001 ~<100 s 30000 s(est.) 300
2004 ~<10 s (est.) 15000 s ~1500

Table 1. Technological projections for FPGA
versus CPU performance for a database of
30,000 images

timal implementation in this case is a 75-processor array
operating at 66 MHz with a partitioning parameter σ = 20
(such a hardware filter can handle up to 1500 descriptors).

Following the same principle, we also considered a soft-
ware implementation on a 2001 mid-end Intel processor
(namely the Intel PIII-900 MHz). We used a very approxi-
mative estimate (50 % the performance of the P4). These
estimates are summarized in Table 1. They show that
when comparing 2001 technology (e.g. PIII against curren-
t RDISK) top 2004 technology (e.g. P4 against Spartan-3
based RDISK), we can observe that there is a growing gap
between the software and the FPGA implementation perfor-
mance in favor of the latter one. This suggests that an FPGA
implementation of CBIR is likely to become more and more
attractive compared with a software implementation.

8. Conclusion

In this paper we have proposed a parallel implementa-
tion for a Content Based Image Retrieval application on the
RDISK cluster. This implementation combines the benefit
of fine and coarse grain parallelism, with projected speed-
up up to 200. It is however to note that the scope of this
work goes beyond a simple implementation work: our de-
sign approach followed a strict methodology that was val-
idated on real-life data sets. This methodology allowed us
to derive an a priori optimal hardware realization, by taking
into account several system level parameters (resource us-
age, bandwidth, etc.). So far, we have restricted ourselves to
images databases. However, we believe that other types of
multimedia content-based search applications could benefit
from a hardware acceleration on RDISK. We are currently
investigating this direction.
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