
D1HT: A Distributed One Hop Hash Table ∗

Luiz R. Monnerat•,� and Claudio L. Amorim�

�COPPE - Computer and Systems Engineering •TI/TI-E&P/STEP
Federal University of Rio de Janeiro PETROBRAS

{monnerat,amorim}@cos.ufrj.br

Abstract

Distributed Hash Tables (DHTs) have been used in a va-
riety of applications, but most DHTs so far have opted to
solve lookups with multiple hops, which sacrifices perfor-
mance in order to keep little routing information and mini-
mize maintenance traffic. In this paper, we introduce D1HT,
a novel single hop DHT that is able to maximize perfor-
mance with reasonable maintenance traffic overhead even
for huge and dynamic peer-to-peer (P2P) systems. We for-
mally define the algorithm we propose to detect and notify
any membership change in the system, prove its correctness
and performance properties, and present a Quarantine-like
mechanism to reduce the overhead caused by volatile peers.
Our analyses show that D1HT has reasonable maintenance
bandwidth requirements even for very large systems, while
presenting at least twice less bandwidth overhead than pre-
vious single hop DHT.

1. Introduction
Distributed hash table systems (DHTs) provide scalable

and practical solutions to store, locate, and retrieve informa-
tion widely dispersed in huge distributed environments. For
this reason, DHTs have already been proposed as a base for
a variety of distributed and P2P applications, ranging from
grid services [23] to databases [7], showing the large accep-
tance of DHTs as a useful distributed software.

DHT systems implement a hash-table-like lookup facil-
ity where the keys (information) are distributed among the
participant nodes. In order to route a given lookup from its
origin to the node in charge of the target key, DHTs imple-
ment overlay networks with routing information stored in
each node (routing tables). Unless each routing table is large
enough to hold the IP addresses of all participant nodes, the
routing of a single lookup is likely to require multiple hops,
i.e., the lookup should hop through a number of nodes be-
fore reaching the target.

While big routing tables allow faster lookups, they re-
quire higher communication bandwidth in order to be kept

∗This research was partially sponsored by Brazilian CNPq and FINEP.

up to date as nodes join and leave the system, specially in
very dynamic systems (i.e., systems with a high frequency
of node joins and leaves). As a result, DHTs tradeoff lower
lookup’s latency (number of hops) for less bandwidth over-
head (in order to maintain the routing tables). In a soci-
ety where speed and information are critical while network
bandwidth improves over time, we think that this trade-
off should favor latency rather than bandwidth. In contrast,
most DHTs that have been proposed so far solve the lookups
with multiple hops (e.g. [14, 18, 21, 24, 25]) in an attempt to
minimize the maintenance traffic (network traffic required
to maintain the routing tables). However, recent results [10]
have shown that in some cases single-hop DHTs may gen-
erate less traffic than multi-hop ones, even for dynamic sys-
tems. Those results corroborate previous work [19], which
indicated that low-overhead multi-hop DHTs are required
only for vast and very dynamic systems. On the other hand,
there is only one proposed DHT system that ensures that
most lookups are really solved with only one hop [4], but
this system imposes high levels of load imbalance and band-
width overheads in order to maintain the routing tables.

We consider that an effective single-hop DHT must ex-
hibit the following four main properties: 1) to solve a large
fraction of all lookups with one single hop (e.g. 99%); 2)
to have low bandwidth overheads; 3) to provide good load
balance of the maintenance traffic among the nodes; 4) to
be able to adapt to changes in the system dynamics. In this
paper, we present D1HT, a novel one-hop P2P DHT sys-
tem that is able to attend all four essential characteristics
with an efficient Event Detection and Reporting Algorithm
(EDRA). We formally describe this algorithm and prove
its correctness, performance, and load balance properties.
Our analytical results show that D1HT nodes have at least
twice and up to one order of magnitude less maintenance
bandwidth requirements than those of nodes in previous
single-hop DHT [4]. Our results also show that D1HT is
able to support vast P2P systems whose dynamics are sim-
ilar to those of widely deployed P2P applications, such as
Gnutella [22] and BitTorrent [2], with reasonable mainte-
nance bandwidth demands. For instance, a huge one-million
D1HT system, with dynamics similar to BitTorrent, would
require only 3 kbps of duplex maintenance traffic to assure

1-4244-0054-6/06/$20.00 ©2006 IEEE

that 99% of the lookups are solved with just one hop. For
a 100K node D1HT system these requirements will drop to
0.4 kbps, which are negligible for most node connections.
We also presented a Quarantine mechanism that is able to
reduce the overhead caused by volatile nodes, but requires
that lookups issued by recently connected nodes take two
hops to be solved.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the D1HT design. Section 3 describes EDRA
and proves its correctness and performance properties. Sec-
tion 4 shows how EDRA behaves in the presence of mes-
sage delays and other practical issues. In Section 5, we an-
alyze D1HT performance. Section 6 discuss related work
and Section 7 concludes the paper.

2. System Design
A D1HT system is composed of a set D of n peers1 and

maps items (or keys) to peers based on consistent hashing
[8], where both peers and keys are hashed to integer identi-
fiers (IDs) in the same ID space [0..N], N � n. Typically
a key ID is the cryptographic hash SHA-1 of the key value,
a peer ID is based on the SHA-1 hash of it’s IP address (or
the SHA-1 hash of the user name), and N = 2160 − 1. For
simplicity, from now on we will refer to the peers and keys
IDs as the peers and keys themselves.

As in Chord[24], D1HT uses a ring topology where ID 0
succeeds ID N , and the successor and predecessor of an ID
i are respectively the first living peers clockwise and coun-
terclockwise from i in the ring. Each key is assigned to the
key’s successor and is replicated on the following log2(n)
peers clockwise in the ring.

Each peer in a D1HT system maintains a routing table
with the IP addresses of all peers in the system, and so any
lookup is trivially solved with just one hop, provided that
the local routing table is up to date. Note that if a peer p
does not acknowledge an event caused by a membership
change in the system, p may route a lookup to a wrong peer
or to a peer that has already left the system. In the former
case, the peer that received the lookup will forward it ac-
cording to its own routing table. In the latter, a time out will
occur and p will re-issue the lookup to the successor of the
original target. In both cases, the lookup should eventually
succeed, but it will take longer than initially expected. As
one of the main goals of one hop DHTs is performance, we
should try to keep those routing failures2 to a minimum, by
means of an algorithm that allows fast dissemination of the
events without high bandwidth overheads and load imbal-
ance. This algorithm will be presented in Section 3.

D1HT adds small memory overhead to each peer by ex-

1Since D1HT uses a pure P2P architecture, we will refer to the D1HT
nodes simply as peers.

2As the lookup will eventually succeed, we do consider it as routing
failure instead of lookup failure.

ploiting the fact that the ID space is sparsely occupied so
that each peer can store its routing table as a local hash ta-
ble. The table index is based on the first bits of the peer IDs,
avoiding the need to store the IDs themselves. In this way,
D1HT routing tables will require approximately 4n bytes,
plus some extra space to allow D1HT peers to treat the even-
tual collisions.

To join a D1HT system a peer should first be able to lo-
cate just one peer pany already in the system. The joining
peer then hashes its IP address (or the local user name) to
get its ID p and asks pany to issue a lookup for p, which
will return the IP address of p’s successor psucc. The join-
ing peer p will then contact psucc in order to be inserted in
the ring and to get the information about the keys it will be
responsible for. To feed its routing table, p will ask psucc

for the addresses of a number of peers in the system. Peer p
will then ping each one of those peers and choose the near-
est ones to ask for the routing table. In Section 4.3 we will
present an alternative joining method aiming to reduce the
overhead caused by volatile peers. To track peer crashing,
each peer is in charge of detecting if its predecessor has left
the system.

In this paper, we will not address issues related to ma-
licious nodes and network attacks, although it is clear that,
due to their high out degree, one hop DHTs are naturally
less vulnerable to those kinds of menaces than low-degree
multi-hop DHTs.

Before proceeding to the next sections, we will introduce
a few functions to make the presentation clearer. For any
i ∈ N and p ∈ D, the ith successor of p is given by the
function succ(p, i), where succ(p, 0) = p and succ(p, i) is
the successor of succ(p, i − 1)) for i > 0. Note that for
i ≥ n, succ(p, i) = succ(p, i−n). In the same way, the ith
predecessor of a peer p is given by the function pred(p, i),
where pred(p, 0) = p and pred(p, i) is the predecessor of
pred(p, i − 1)), for i > 0. As in [14], for any p ∈ D and
k ∈ N, stretch(p, k) = {∀pi ∈ D | pi = succ(p, i) ∧ 0 ≤
i ≤ k}. Note that stretch(p, n − 1) = D for any p ∈ D.

3. Routing Table Maintenance
As each peer in a D1HT system should know the IP ad-

dress of every other peer, any event (from now on we will
refer to peer joins and leaves simply as events) should be ac-
knowledged3 by all peers in the system in a timely fashion
in order to avoid stale entries in routing tables. On the other
hand, as we address large and dynamic systems, we should
avoid fast but naı̈ve ways to disseminate information about
the events (e.g., broadcast), as they can easily overload the
network and create hot spots. In that way, the detection and
propagation of events impose three important challenges

3We define that a peer acknowledges an event when either it detects the
join (or leave) of its predecessor or when it receives a message notifying
an event.

to D1HT: minimize bandwidth consumption, provide fair
load balance, and assure an upper bound on the fraction of
stale entries in routing tables. To accomplish these require-
ments, we propose the Event Detection and Report Algo-
rithm (EDRA for short) that is able to notify an event to
the whole system in logarithmic time and yet to have good
load-balance properties coupled with very low bandwidth
overhead. Additionally, EDRA is able to dynamically adapt
to changes in system behavior to continuously satisfy a pre-
defined upper bound on the fraction of routing failures.

3.1. Event Dissemination

We will begin this section with a brief description of
EDRA, and we will then formally define it. To disseminate
the information about the events, each peer p sends up to ρ
propagation messages at each Θ secs time interval, where
ρ = �log2(n)	 and Θ is based on the system dynamics
(as it will be seen in Section 4.2). Each message M(l) will
have a Time-To-Live (TTL) counter l in the range [0..ρ),
and will be addressed to succ(p, 2l). Besides, p will include
in each message M(l) all events brought to p by any mes-
sage M(j), j > l, received in the last Θ secs. To initiate an
event report, the successor of the peer suffering the event
will include it in all messages sent at the end of the current
Θ interval. Figure 1, which will be further described in Sec-
tion 3.2, illustrates the dissemination of an event in a D1HT
system with 11 peers.

The rules below formally define the EDRA algorithm we
described above:
Rule 1: Every peer will send at least one and up to ρ mes-

sages at the end of each Θ secs interval (Θ interval),
where ρ = �log2(n)	.

Rule 2: Each message will have a Time To Live counter
(TTL) in the range 0 to ρ − 1, and carry a number of
events. All events brought by a message with TTL = l
will be acknowledged with TTL = l by the receiving
peer.

Rule 3: A message will only contain events acknowledged
during the ending Θ interval. An event acknowledged
with TTL = l, l > 0, will be included in all messages
with TTL < l sent at the end of the current Θ inter-
val. Events acknowledged with TTL = 0 will not be
included in any message.

Rule 4: The message with TTL = 0 will be sent even if
there is no event to report. Messages with TTL > 0
will only be sent if there are events to be reported.

Rule 5: If a peer does not receive any message from its pre-
decessor for Tdetect secs, it assumes that the predeces-
sor has left the system.

Rule 6: When a peer detects an event in its predecessor (it
has joined or left the system), this event is considered
to have been acknowledged with TTL = ρ, and so is
reported through ρ messages according to rule 3.

Rule 7: A peer p will send all messages with TTL = l to
succ(p, 2l).

Rule 8: Before sending a message to succ(p, k), p will dis-
charge all events related to any peer in stretch(p, k).

3.2. EDRA Correctness

The above rules ensure that EDRA will deliver any event
to all peers in a D1HT system in logarithmic time, as we
will show in Theorem 3.1 shortly. For that theorem we will
ignore message delays and we will consider that all peers
have synchronous intervals, i.e., the Θ intervals of all peers
start at exactly the same time. In Section 4.1 we will take
into account those effects. The absence of message delays
means that any message will arrive immediately at its des-
tination, and since we are also considering synchronous Θ
intervals, any message sent at the end of a Θ interval will
arrive at its destination at the beginning of the subsequent
Θ interval (as represented in Figure 2, Section 4.1).

Theorem 3.1. An event ε that is acknowledged by a peer
p with TTL = l, and by no other peers in D, will be for-
warded by p through l messages in a way that ε will be ac-
knowledged exactly once by all peers in stretch(p, 2l − 1)
and by no other peer in the system. The average time Tsync

for a peer in stretch(p, 2l − 1) to acknowledge ε will be at
most l · Θ/2 secs after p had acknowledged ε.

Proof: By strong induction in l. For l = 1 the rules im-
ply that p will only forward ε through a message with
TTL = 0 addressed to succ(p, 1). As this message should
be sent at the end of the current Θ interval, succ(p, 1) will
acknowledge ε at most Θ secs after p had acknowledged
it, making the average time for peers in stretch(p, 1) =
{p, succ(p, 1)} to be Tsync = Θ/2 (at most). So the claim
holds for l = 1.

For l > 1, the rules imply that p will forward ε through
l messages at the end of the current Θ interval, each one
with a TTL in the range 0 to l − 1. In that way, after Θ secs
each peer pk = succ(p, 2k), 0 ≤ k < l, will have acknowl-
edged ε with TTL = k. Applying the induction hypothesis
to each of those l acknowledgements, we have that each ac-
knowledgment made by a peer pk will imply that all peers
in stretch(pk, 2k−1) will acknowledge ε exactly once. Ac-
counting for all l − 1 acknowledgments made by the peers
pk, and remembering that rule 8 will prevent ε to be ac-
knowledged twice by any peer in stretch(p, 2ρ−n), we will
have that ε will be acknowledged exactly once by all peers
in stretch(p, 2l − 1). As none of those peers will forward
ε to a peer outside this range, ε will not be acknowledged
by any other peers in the system. The induction hypothe-
sis also assures that the average time for the peers in each
stretch(pk, 2k − 1) to acknowledge ε will be k · Θ/2 secs
(at most) after the respective peer pk had acknowledged it,

Fig. 1. Event propagation in a D1HT system with 11 peers (ρ=4), where Pi = succ(P, i), 1 ≤ i ≤ 9.

which will lead to Tsync = l · Θ/2 (at most) for peers in
stretch(p, 2l − 1). �

Applying Theorem 3.1 and the EDRA rules to a peer join
(or leave) that is acknowledged by its successor p, we will
have that this event will be further acknowledged exactly
once by all peers in stretch(p, n − 1) = D. Besides, the
average acknowledge time will be ρ · Θ/2 secs (at most).
We can also show that the last peer to acknowledge the event
will be succ(p, n− 1), ρ ·Θ secs after p had acknowledged
the event.

Figure 1 shows how EDRA disseminates information
about events and illustrates the properties that Theorem
3.1 has proved. The figure presents a D1HT system with
11 peers (ρ = 4), where peer Pp crashes and this event
ε is detected and reported by its successor P . The peers
are shown in a line instead of a ring to facilitate the pre-
sentation. Note that P acknowledges ε after Tdetect secs
(rule 5) with TTL = ρ (rule 6). According to rules 3 and
7, P will forward ε with ρ = 4 messages addressed to
P1 = succ(P, 20), P2 = succ(P, 21), P4 = succ(P, 22),
and P8 = succ(P, 23), as represented by the solid arrows
in the figure. Peers P2, P4, and P8 will acknowledge ε
with TTL > 0 (rule 2) and so those peers will forward
ε with messages addressed to P3 = succ(P2, 20), P5 =
succ(P4, 20), P6 = succ(P4, 21), and P9 = succ(P8, 20)
represented by the dashed arrows in the figure. As P6 will
acknowledge ε with TTL = 1, it will further forward it to
P7 = succ(P6, 20) (doted arrow). Note that rule 8 prevents
P8 to forward ε to succ(P8, 21) and succ(P8, 22), which in
fact are P and P3, avoiding these two peers to acknowledge
ε twice.

3.3. Load Balance and Performance

Theorem 3.1 not only proves that all peers will receive
the necessary information to maintain their routing tables in
logarithmic time, but also assures that no peer will receive
redundant information. These results confirm that EDRA
makes good use of the available bandwidth and provide per-
fect load balance in terms of incoming traffic.

As no peer will exchange maintenance messages with

any other peer outside D, we may assert that the aver-
age outgoing and incoming bandwidth requirements are the
same, as well as the total number of messages sent and re-
ceived. On the other hand, at first glance EDRA seems not
to provide good balance in terms of outgoing traffic. For in-
stance, an event ε with a peer p will be reported by its suc-
cessor ps through ρ messages, while ps’s successor will not
even send a single message reporting ε. It is easy to show
that in relation to the outgoing traffic to report one event,
the maximum load will be on the successor of the peer that
the event occurred, and it will be O(log(n)) greater than the
average load. However, this punctual load imbalance is not
a main concern, as our target is large and dynamic systems,
in which several events happen at every second, so that we
should not be too concerned with the particular load that is
generated by a single event. Nevertheless, we must guaran-
tee good balance in respect to the aggregate traffic that is
necessary to disseminate information about all the events as
they happen.

In a D1HT system the load balance in terms of number
of messages and outgoing bandwidth will rely on the ran-
dom distribution properties of the hashing function it uses.
The chosen hash function is expected to randomly distrib-
ute the peers IDs along the ring, which can be accomplished
by using a cryptographic hash function such as SHA-1[16].
Then, as in many other studies (e.g. [4, 9, 10, 12, 14, 24]),
we will assume that the events are oblivious to the peers
IDs, leading to a randomly distributed rate of r events per
second in the system, and so the average amounts of incom-
ing and outgoing traffic per peer will be (including message
acknowledgments):

(2 · Nmsgs · v + r · m · Θ)/Θ bits/secs (3.1)

where Nmsgs is the average number of messages a peer
sends (and receives) per Θ interval, m is the average num-
ber of bits necessary to describe an event, and v is the bit
overhead per message.

We should point out that Equation 3.1 does not require
r to be fixed. In fact, r will vary even in our simplest ap-
proach, since we will assume that the dynamics of a given
D1HT system can be represented by its average session

length Savg , as in [4]. Here we refer to session length as
the amount of time a peer is continuously connected to the
D1HT system, i.e., the amount of time between a peer join
and its subsequent leave. As each peer will generate two
events per session (one join and one leave), the event rate
can be calculated as follows:

r = 2 · n/Savg (3.2)

Since the average session lengths of a number of differ-
ent P2P systems have already been measured [2, 22], the
equation above allows us to calculate event rates that are
representative of widely deployed P2P applications.

3.4. Number of Messages

Equation 3.1 requires us to know the average number of
messages a peer sends and receives, which is exactly the
purpose of the following theorem.

Theorem 3.2. The set of peers S for which a generic peer p
acknowledges events with TTL ≥ l is such that |S| = 2ρ−l.

Proof: By induction on j, where j = ρ − l. For j = 0,
rule 2 assures that there is no message with TTL ≥ l = ρ.
Then the only events that p acknowledges with TTL ≥ ρ
are those related to its predecessor (rule 6), and so S =
{pred(p, 1)} and |S| = 1 = 20 = 2ρ−l.

For j > 0, l = ρ − j < ρ. As S is the set of events
that peer p acknowledged with TTL ≥ l, we can say that
S = S1 ∪ S2, where S1 and S2 are the sets of events
that were acknowledged with TTL = l and TTL > l,
respectively. From the induction hypothesis, we have that
|S2| = 2ρ−(l+1). As l < ρ, S1 will not include the p pre-
decessor (rule 6) and, as rule 7 assures that p only receives
message with TTL = l from a peer k, k = pred(p, 2l),
we have that S1 will be the set of events that k sent through
messages with TTL = l. From rule 3, we then have that S1
is the set of events that k acknowledged with TTL = l + 1
and, as the induction hypothesis also applies to the peer k,
we have that |S1| = 2ρ−(l+1). From Theorem 3.1 we know
that peer p acknowledges each event only once, assuring
that S1 and S2 are disjoints and so |S| = |S1| + |S2| =
2ρ−(l+1) + 2ρ−(l+1) = 2ρ−l. �

Rules 3 and 4 assure that a peer p will only send a mes-
sage with TTL = l > 0 if it acknowledges at least one
event with TTL ≥ l + 1. Based on Theorem 3.2 we can
then say that p will only send a message with TTL = l > 0
if at least one in a set of 2ρ−l−1 peers suffers an event. As
the probability of a generic peer to suffer an event in a Θ in-
terval is Θ · r/n, and with the help of Equation 3.2, we can
assure that the probability P (l) of a generic peer to send a
message with TTL = l > 0 at the end of each Θ interval
is:

P (l) = 1 − (1 − 2Θ/Savg)k, with k = 2ρ−l−1 (3.3)

As the message with TTL = 0 will be sent in every Θ inter-
val, we will then have that the average number of messages
sent (and received) by each peer per Θ interval is:

Nmsgs = 1 +
ρ∑

l=2

P (l) (3.4)

Equations 3.1, 3.3, and 3.4 allow us to calculate the average
maintenance traffic per peer based on the rate of events r,
the system size n, and the duration of the Θ interval.

4. Practical Aspects
In this section, we will show how EDRA performs in

the presence of message delays and asynchronous intervals,
and how it can be tuned to adapt to changes in the system
dynamics. We will also present the Quarantine mechanism
to minimize the overheads caused by volatile peers.

4.1. Message Delays and Asynchronous In-
tervals

In Theorem 3.1, we did not consider the effects of mes-
sage delays and asynchronous Θ intervals, so we will turn
to them in this section.

Figures 2 and 3 show timelines representing the propaga-
tion of an event ε in ideal circumstances and in the presence
of message delays and asynchronous Θ intervals. Each of
those two figures illustrates three Θ intervals for each peer.
Figure 2 shows the ideal situation where there is no message
delay and the Θ interval of all peers starts simultaneously,
and the dotted arrows indicate the messages reporting ε. In
this hypothetical situation, each peer will add exactly Θ secs
on the propagation time for ε, leading to Tsync = ρ · Θ/2
secs, as shown in Theorem 3.1.

Figure 3 illustrates a typical situation where the various
Θ intervals are not synchronized and each message suffers a
delay. We will consider an average message delay δavg for
the whole system (which includes the average time spent
with retransmissions). In this case, on average each message
will take δavg secs to reach the target peer and will arrive
at the middle of the Θ interval. So, each peer in the event
dissemination path will add δavg + Θ/2 secs on average
to the event propagation time, leading to the adjusted value
Tasync = ρ · (2 · δavg +Θ)/4 secs. Note that Tasync has not
yet considered the time to detect the event. As a peer will
take up to Tdetect secs to detect an event in its predecessor,
the average acknowledge time will be Tdetect +Tasync secs
after the event had happened.

From now on, we will consider that Tdetect = 2Θ,
which reflects the case where after one missing message
with TTL = 0, a peer p will probe its predecessor pp and,
once it has confirmed that the pp had left the system, p will
report pp failure at the end of the next Θ interval. So we can
calculate the expected average acknowledge time for any

Fig. 2. Propagation of an event ε with syn-
chronous Θ intervals and in the absence of
message delays.

Fig. 3. Propagation of an event ε with asyn-
chronous Θ intervals and message delays.

event:

Tavg = 2 · Θ + ρ · (Θ + 2 · δavg)/4 secs (4.1)

Equation 4.1 is conservative since it only considers the
worst case of peer failures, while Tdetect = 0 for joins and
voluntary leaves.

4.2. Tuning EDRA

By following the results as presented in [4], in this sec-
tion we will show how to tune the event detection and re-
porting algorithm used by D1HT (EDRA) in order to assure
that a high fraction of lookups (e.g. 99%) will be solved in
the first attempt. In other words, our goal will be to assure
that the fraction of the routing failures is below an accept-
able maximum f as defined by the user (e.g. f = 1%).

As the lookups are solved with just one hop, to achieve
f it is enough to assure that the hops will fail with proba-
bility f at most. Assuming that the lookup targets are ran-
domly spread along the ring (as in many other studies, e.g.
[4, 9, 12, 10, 13, 15, 24]), the average fraction of routing
failures will be a direct result of the number of stale rout-
ing tables’ entries. In that manner, to satisfy a pre-defined
average fraction of routing failures f , it suffices4 to assure
that the average fraction of stale routing table entries is kept
below f [4].

4In fact it is another conservative assumption. Since each key is repli-
cated along ρ consecutive peers, the lookup will probably succeed in the
first attempt even if the peer issuing the lookup is not aware of the joining
of up to ρ − 1 consecutive peers.

As the average acknowledge time is Tavg , the average
number of stale entries in the routing tables will be given by
the numbers of events occurred in the last Tavg seconds, i.e.,
Tavg ·r. This implies that to accomplish a given f we should
satisfy the inequality Tavg · r/n ≤ f . With this inequality
and Equations 3.2 and 4.1, we have that the maximum value
of Θ to satisfy a given f will be:

Θ =
2 · f · Savg − 2 · ρ · δavg

8 + ρ
secs (4.2)

where both Savg and δavg should be expressed in seconds.
As we have already pointed out in Section 3.3, it is not

reasonable to expect r to be constant, and Equation 4.2 pro-
vides a way for EDRA to adapt to changes in the system
dynamics, as it allows each peer to dynamically calculate Θ
based on the rate of events that is observed locally.

4.3. Quarantine

In any DHT system, peer joins are costly as the joining
peer has to collect information about its keys and the IP ad-
dresses to fill in its routing table, and this joining overhead
may be useless if the peer quickly departs from the system.
This problem is aggravated in the case of single hop DHTs
as any joining peer should be acknowledged by the whole
system. On the other hand, P2P measurement studies [3, 22]
have shown that the statistical distributions of peer session
lengths are usually heavy tailed, which means that peers that
are connected to the system for a long time are likely to re-
main alive longer than newly arrived peers. To address those
issues we proposed a Quarantine mechanism, where a join-
ing peer will not be granted to immediately take part of the
D1HT overlay network, though it will be allowed to per-
form lookups at any moment.

In the basic D1HT joining mechanism, a joining peer p
retrieves the keys and IP addresses not only from its suc-
cessor but also from a number of nearby peers (as described
in Section 2). With Quarantine, those peers simply wait for
a pre-defined quarantine period Tq before sending the keys
and IP addresses to p, postponing its insertion in the D1HT
overlay network. While p does not receive its keys and the
necessary IP addresses, its join will not be reported and it
will not be responsible for any key, but p will already be
able to perform lookups by forwarding them to one of those
nearby peers. In that way, we avoid the join overhead for
peers with session lengths smaller than Tq, but newly in-
coming peers will have their lookups solved with two hops.
We consider this extra hop penalty to be acceptable as the
additional hop will be addressed to a nearby peer, while we
expect to significantly reduce the impact of join overheads
on D1HT. Besides, Quarantine may help to prevent mali-
cious attacks, as we could tune it in a way that suspicious
peers would take longer to be fully accepted by the D1HT
overlay network.

Parameter OneHop D1HT Description
n [105, 106] [105, 106], [104, 107] Number of nodes in the system.

Savg 174 60, 174, 300, 780 Average session duration in minutes.
v 160 160 Overhead per message (headers, etc.), in bits.
m 80 80 Number of bits necessary to describe an event.
f 1% 1%, 5%, 10% Maximum acceptable fraction of routing failures.

δavg - 0.280 Average message delay in seconds.

Table 1. Parameters we used in our analysis. The underlined values were used only in Section 5.4.

In a Quarantine D1HT system with n peers, only the q
peers with session lengths longer than Tq will effectively
take part of the overlay network and have their events re-
ported, allowing a reduction in the maintenance traffic. We
can quantify this maintenance traffic reduction by replacing
n by q in Equation 3.2, leading to:

r = 2 · q/Savg (4.3)

As the results from all other equations presented do not de-
pend on n, they remain valid with Quarantine.

5. Analysis
In this section, we will quantify the amount of bandwidth

required to maintain the routing tables in D1HT, and com-
pare those results with the one hop DHT (OneHop) results
as presented in [4]. In Section 5.4 we will present an ex-
tended D1HT analysis.

5.1. The OneHop DHT

OneHop was the first proposed DHT to assure that a high
fraction of the lookups are solved with only one hop. In con-
trast to the pure P2P D1HT approach, the dissemination of
the events in OneHop is based on a hierarchy, where the
nodes5 are grouped in units, which in turn are grouped in
slices. As each unit and slice has a leader, the imposed hi-
erarchy divides the nodes in three levels: slice leaders, unit
leaders, and ordinary nodes. The propagation of events im-
poses the highest maintenance load on the slice leaders and
the lowest load on the ordinary nodes. More details about
OneHop can be found in [4].

5.2. Methodology

The evaluations of both D1HT and OneHop presented
here are based on analytical results. The D1HT results are
derived from Equations 3.1, 3.2, 3.3, 3.4 and 4.2. For One-
Hop we will present the analytical results reported in [4],
which do not consider messages delays nor the overheads
caused by slice and group leaders failures. In contrast, the
D1HT results presented are based on proven properties and
do consider messages delays and failures of any type of
node. The results from both systems assume that the events
and lookup targets are randomly distributed along the ring.

5As it imposes a hierarchy among the nodes, we will avoid the term
peer for OneHop.

The results were obtained with the parameters listed in
Table 1 (the D1HT’s underlined values will only be used
in Section 5.4). For simplicity we will express the Savg

values in minutes or hours instead of seconds. To assure
fairness, the parameters used in Section 5.3 for both sys-
tems were taken from [4], where the average session du-
ration was based on a study of Gnutella behavior[22]. The
only exception is δavg , as the OneHop results do not con-
sider message delays. For D1HT we used 0.280 secs for
δavg (which already incorporates the average overhead due
to message retransmissions), which is quite conservative in
relation to the results presented in [22]. As in [4], the event
rates were based on the average session length Savg , ac-
cording to Equation 3.2.

We should point out that while results based on sim-
ulations or real implementations are usually the preferred
choice for systems evaluation, we argue that in our case
the analytical results have special value, as they allow the
study of very large systems. Note that it is not feasible to
implement or even simulate a system with millions of peers
just to evaluate a new proposal. In fact, so far most DHT
evaluations based on real implementations used a hundred
physical nodes at most (e.g. [7, 25]), while the DHT sim-
ulations presented are usually restricted to a maximum of
20K nodes (e.g. [4, 5, 7, 9, 10, 11, 15, 17, 24, 25]), and so
they are not representative of popular P2P systems, which
are able to support up to millions of users [1]. On the other
hand, we believe that to be accepted as good estimates of
real implementations, the analytical results should be based
on proven properties and consider the most common and
important real world problems, such as messages delays and
retransmissions, which is the case with the D1HT results
presented in this paper.

5.3. Comparative Analysis

In this section, we will study the maintenance bandwidth
demands of D1HT and OneHop analytically. We will com-
pare the demands of a D1HT peer against those of the best
(ordinary nodes) and worst (slice leaders) OneHop cases.

We limited our comparison to system sizes in the range
[105, 106], since it was the interval with analytical results as
reported in [4]. The OneHop analytical outgoing bandwidth
requirements reported for ordinary nodes and slice leaders
were respectively 3.84 kbps and 35 kbps for n = 105, rais-

Fig. 4. Outgoing bandwidth demands for
OneHop and D1HT.

Fig. 5. D1HT peer bandwidth demands for
f = 1% and different Savg values.

ing linearly up to 38 kbps and 350 kbps for n = 106 [4].
Those results are plotted in Figure 4 (both axes are logarith-
mic), as well as the requirements for a D1HT peer.

Figure 4 shows that the outgoing bandwidth require-
ments for an OneHop ordinary node and a slice leader are at
least twice and one order of magnitude higher, respectively,
than those from a D1HT peer. For example, for n = 105 the
demands for a D1HT peer, a OneHop ordinary node, and a
slice leader are 1.8 kbps, 3.8 kbps, and 35 kbps respectively,
growing to 16 kbps, 38 kbps and 350 kbps for n = 106.

5.4. Extended Analysis

In this section, we will study the D1HT sensitivity to
variations in some analysis parameters according to the un-
derlined values in Table 1. We will also study the Quar-
antine mechanism presented in Section 4.3, and extend the
range of system sizes to [104, 107], which are representative
of current popular P2P systems like Gnutella, FastTrack,
Overnet and eDonkey [1].

In the previous section, we showed both D1HT and One-
Hop requirements for systems with 2.9 hours of average
session duration, as it was the value used in [4] based on
the Gnutella behavior. However, recent measurements [2]
have shown that other systems have much less dynamics,
as the measured average session length for BitTorrent was
13 hours. On the other hand, we believe that a DHT sys-
tem should also be prepared to face systems with smaller
session lengths as well. To analyze those issues we studied
the maintenance bandwidth requirements for a D1HT peer
in systems with average sessions of 60, 174, 300, and 780
minutes. Besides being representative of widely deployed
P2P applications such as Gnutella and BitTorrent, that range
of values is more comprehensive than the ones used in most
published DHT evaluations (e.g. [4, 9, 10, 11, 15]). Figure
5 plots those bandwidth requirements, omitting the results
below 1 kbps as the axes are logarithmic. The figure shows
that D1HT’s bandwidth requirements are roughly linearly
dependent on both the system size and the inverse of Savg .
For example, the requirements for a D1HT peer in systems

with n = 105 and average sessions of 60, 174, 300, and 780
minutes are respectively 5 kbps, 1.8 kbps, 1.1 kbps, and 0.4
kbps, growing to 45 kbps, 16 kbps, 9 kbps, and 3.5 kbps in
that order for n = 106. We believe those results show that
with the technology available today, the D1HT maintenance
overheads are acceptable for systems with Savg as low as 60
minutes and up to 100 thousand peers, while only systems
with Savg larger than 300 minutes can support the D1HT
requirements for one million peers.

In Figure 6 we plot the average number of messages sent
per minute by a D1HT peer, according to the system size
and Savg . The figure shows that the number of messages
sent is linearly proportional to both n and Savg . For most
combinations studied a D1HT peer sends less than one mes-
sage per second, which is quite reasonable.

Figure 7 shows D1HT’s bandwidth requirements for dif-
ferent values of f , omitting the results below 1 kbps as the
axes are logarithmic. We notice small variations in band-
width demands for different values of f in the interval of
system sizes studied, which indicates that it is not the case
to increase f in order to reduce the bandwidth requirements.

Figure 8 shows the Θ values that are necessary to achieve
f = 1% for some values of Savg . Note that Θ should be
bigger than the average message delay in order to allow a
peer to correctly detect its predecessor crashed. We see that
values of Θ well above 1 sec are enough to satisfy f = 1%,
even for systems with 10 million peers and Savg=1 hour.

The analysis of the Quarantine mechanism will be based
on the Gnutella measurements presented in [3]. Those re-
sults show that 31% of the Gnutella sessions last less than
10 minutes, which is a convenient value for the Quarantine
period Tq. Figure 9 plots the maintenance bandwidth re-
quirements for D1HT systems with and without Quarantine
(according to Equations 4.3 and 3.2 respectively), where
Tq = 10 min and q = 0.69 · n. The other parameters are
the same as used in Section 5.3. As we expected, the main-
tenance overhead reductions are close to 31%, showing the
effectiveness of our Quarantine mechanism.

Fig. 6. Average number of messages sent
by a D1HT peer for f = 1%.

Fig. 7. D1HT peer bandwidth demands in
kbits/sec for Savg = 2.9 hours.

Fig. 8. Duration of the Θ interval in seconds
for f = 1% and different Savg values.

Fig. 9. D1HT bandwidth requirements with
and without Quarantine (Tq=10min).

6. Related Work

Rodrigues et al [20] proposed a single hop DHT in a
complete different context from ours, as their system was
based on dedicated servers arranged on a two level hierar-
chy, and their main goal was to obtain robustness against
malicious network attacks. Besides, their system was not
able to guarantee an upper bound on the number of routing
failures, the events were reported using a gossip method,
and no performance analysis or evaluation was presented.

D1HT assures that a large fraction of the lookups takes
just one hop even for very large and dynamic systems. In
contrast, a number of systems (e.g. [5, 13, 15, 17]) solve the
lookups with a constant number of multiple hops and are
not able to ensure an upper bound on the number of rout-
ing failures. In addition, those systems differ from D1HT
in other important aspects. Kelips[5] maintains routing ta-
bles with O(

√
n) IP addresses to solve the lookups with

two hops. LH*[13] divides the nodes in client and servers,
and solves the lookups with up to three hops. Structured
Superpeers[15] implements a hierarchical topology with in-
trinsic load balance issues to solve lookups with three hops.
Beehive[17] is not a DHT by itself, but a replication frame-
work that can be applied to DHTs in order to reduce the
number of hops for popular keys.

There is a number of systems, including Chord[24] and
SkipNet[6], where each peer uses pointers to nodes (fingers)
with 2i distances (usually 0 ≤ i ≤ log(N)), but those point-
ers are used only to route the lookups in O(log(n)) hops.
In contrast, D1HT uses its 2l pointers solely for event re-
porting. Besides, those systems were not able to assure an
upper bound in the number of routing failures and solve the
lookups with multiple hops, while D1HT assures that a high
fraction of the lookups takes just one hop. To the best of our
knowledge, there is no DHT system proposed so far that
uses an event reporting algorithm similar to EDRA.

Accordion[11] also addresses the tradeoff between
lookup latency and bandwidth requirements, but its ap-
proach is quite different from ours. Accordion implements
some very clever adaptation techniques that aim to speed
up the lookup performance under pre-defined bandwidth re-
strictions, but it is not able to enforce a maximum fraction of
the routing failures. In contrast, D1HT aims to provide the
best lookup performance and adapts to the system dynam-
ics in order to comply with a pre-defined upper bound on
the number of routing failures. Besides, D1HT has proven
correctness and load balance properties.

Although using a hierarchical approach - in contrast to
D1HT pure P2P architecture - the OneHop system [4] is the
most similar to ours, as it was the first DHT that was able to

assure that a large fraction of the lookups takes only one hop
even in dynamic networks. In this paper, we compared this
system against D1HT, and showed that D1HT is able to pro-
vide superior maintenance load balance and has bandwidth
requirements up to one order of magnitude smaller.

7. Conclusion
In this paper, we introduced D1HT, a novel single-hop

distributed hash table that is able to 1) assure that a large
fraction of the lookups are solved with one hop (e.g. 99%);
2) demand low bandwidth overheads; 3) provide good bal-
ance of the maintenance traffic among the peers; and 4)
adapt to changes in the system dynamics. We proposed and
formally described the Event Detection and Dissemination
Algorithm (EDRA) used by D1HT, and proved its correct-
ness and performance properties.

We presented performance analyses showing that D1HT
has at least twice and up to one order of magnitude less
maintenance bandwidth requirements than those of nodes
in previous single-hop DHT. Our analysis also showed that
D1HT has reasonable bandwidth demands even for huge
systems with dynamics similar to those of popular P2P
applications. More specifically, our analysis showed that
D1HT requires only 3 kbps of maintenance overhead in
huge systems with one million peers and dynamics simi-
lar to that of BitTorrent, a widely deployed P2P application.
We also presented a Quarantine mechanism that reduces the
overhead caused by volatile peers and may help to prevent
malicious attacks to the system.

Acknowledgements

The authors would like to thank Ricardo Bianchini for
his helpful comments.

References
[1] www.slyck.com/stats.php, Oct 2005.
[2] A. Bellissimo, P. Shenoy, and B. Levine. Exploring the use

of BitTorrent as the basis for a large trace repository. Tech-
nical Report 04-41, Department of Computer Science, U. of
Massachusetts, Jun 2004.

[3] J. Chu, K. Labonte, and B. Levine. Availability and locality
measurements of peer-to-peer file systems. In Proc. of SPIE,
Jul 2002.

[4] A. Gupta, B. Liskov, and R. Rodrigues. Efficient routing for
peer-to-peer overlays. In Proc. of NSDI, Mar 2004.

[5] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Re-
nesse. Kelips: Building an efficient and stable P2P DHT
through increased memory and background overhead. In
Proc. of IPTPS, Feb 2003.

[6] N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wol-
man. Skipnet: A scalable overlay network with practical
locality properties. In In Proc. of the 4th USITS, Mar 2003.

[7] R. Huebsch, J. Hellerstein, N. Boon, T. Loo, S. Shenker, and
I. Stoica. Querying the internet with PIER. In International
Conference on Very Large Databases, Sep 2003.

[8] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web. In Proc. of the Symposium on Theory of
Computing, May 1997.

[9] J. Li, J. Stribling, T. Gil, R. Morris, and F. Kaashoek. Com-
paring the performance of distributed hash tables under
churn. In Proc. of IPTPS, 2004.

[10] J. Li, J. Stribling, R. Morris, and M. Frans. A performance
vs. cost framework for evaluating DHT design tradeoffs. In
Proc. of INFOCOM, Mar 2005.

[11] J. Li, J. Stribling, R. Morris, and M. Kaashoek. Bandwidth-
efficient management of DHT routing tables. In Proc. of
NSDI, May 2005.

[12] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis
of the evolution of peer-to-peer systems. In Proc. of the 21st
PODC, Jul 2002.

[13] W. Litwin, M. Neimat, and D. Schneider. LH* - a scalable,
distributed data structure. ACM Transactions on Database
Systems, 21(4):480–525, 1996.

[14] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable
and dynamic emulation of the butterfly. In Proc. of the 21st
PODC, Jul 2002.

[15] A. Mizrak, Y. Cheng, V. Kumar, and S. Savage. Structured
Superpeers: Leveraging heterogeneity to provide constant-
time lookup. In Proc. of the 3rd Workshop on Internet Ap-
plications, Jun 2003.

[16] NIST. Secure Hash Standard (SHS). FIPS Publication 180-
1, Apr 1995.

[17] V. Ramasubramanian and E. Sirer. Beehive: O(1) lookup
performance for power-law query distributions in peer-to-
peer overlays. In Proc. of NSDI, Mar 2004.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In Proc.
of SIGCOMM, 2001.

[19] R. Rodrigues and C. Blake. When multi-hop peer-to-peer
routing matters. In Proc. of IPTPS, Feb 2004.

[20] R. Rodrigues, B. Liskov, and L. Shrira. The design of a ro-
bust peer-to-peer system. In Proc. of the 10th ACM SIGOPS
European Workshop, Sep 2002.

[21] A. Rowstron and P. Druschel. Pastry: scalable, decentraized
object location and routing for large-scale peer-to-peer sys-
tems. In Proc. of Middleware, Nov 2001.

[22] S. Saroiu, P. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proc. of
SPIE/ACM MMCN, Jan 2002.

[23] F. Schintke, T. Schutt, and A. Reinefeld. A framework for
self-optimizing Grids using P2P components. In Proc. of the
14th IEEE DEXA, 2003.

[24] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a scal-
able peer-to-peer lookup protocol for Internet applications.
IEEE/ACM Transactions on Networking, Feb 2003.

[25] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and
J. Kubiatowicz. Tapestry: A global-scale overlay for rapid
service deployment. Journal on Selected Areas in Commu-
nications, Jan 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

