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Abstract

No single coherence strategy suits all applications
well. Many promising adaptive protocols and coher-
ence predictors, capable of dynamically modifying the
coherence strategy, have been suggested over the years.

While most dynamic detection schemes rely on plen-
tiful of dedicated hardware, the customization technique
suggested in this paper requires no extra hardware sup-
port for its per-application coherence strategy. Instead,
each application is profiled using a low-overhead profil-
ing tool. The appropriate coherence flag setting, sug-
gested by the profiling, is specified when the application
is launched.

We have compared the performance of a hardware
DSM (Sun WildFire) to a software DSM built with
identical interconnect hardware and coherence strat-
egy. With no support for flexibility, the software DSM
runs on average 45 percent slower than the hardware
DSM on the 12 studied applications, while the flexibil-
ity can get the software DSM within 11 percent. Our
all-software system outperforms the hardware DSM on
four applications.

1. Introduction

While hardware-based shared-memory systems have
been successfully built for many years, the cost in terms
of design and verification for each new generation is
ever increasing. Meanwhile, the advance in semicon-
ductor technology have set the shared-memory server
trend towards multiple cores per die (CMP) and mul-
tiple threads per core (SMT) [20]. We believe that this
technology shift forces a reevaluation of the way to in-
terconnect multiple such chips to form larger systems.

This paper presents a highly flexible all-software
shared-memory proposal with a very low system de-
sign cost and short time-to-market. We extend the
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DSZOOM system [26] with several novel optimization
options and add a low-overhead profiling mode that
suggests appropriate coherence flags for the 12 applica-
tions studied. When compared with a hardware DSM
system built from identical node hardware, intercon-
nect and coherence strategy, the base system is trail-
ing by 45 percent on average (slowdown-factor range is
0.98-3.02) for these 12 applications. The profiled co-
herence flags brought the numbers down to 17 percent
on average (0.69-1.85) and hand-tuned coherence flags
down to 11 percent (0.69-1.66). It was a bit surprising,
but very encouraging, to note that the profile-based
coherence flags propelled the software DSM to outper-
form the hardware DSM for four of the applications.
The technology presented in this paper can easily be
incorporated in many parallel execution environments,
such as OpenMP [7] or UPC compilers [2], providing a
low cost but high performance execution platform for
high-performance computing (HPC) applications.

2. Basic DSZOOM System

This section gives an overview of the basic DSZOOM
system [26], a sequentially consistent [22] software-
based DSM implementation that is inspired by three
fine-grained software coherence proposals: Blizzard-
S [30], Shasta [27, 28], and Sirocco-S [32]. DSZOOM
relies on code instrumentation to maintain fine-grain
coherence (load and store operations to shared mem-
ory are augmented with coherence checks). The pro-
vided protocols assume a high bandwidth, low latency
cluster interconnect, supporting fast user level mech-
anisms for put, get, and atomic operations to remote
nodes’ memories, such as InfiniBand [18] or Sun Fire
Link [34]. The system further assumes that the write
order between any two endpoints in the network is pre-
served. These network assumptions make is possible to
remove interrupt- and/or poll-based asynchronous pro-
tocol processing found in the majority of software DSM



implementations [26, 1]. A processor that has detected
the need for global coherence activity will first acquire
a lock associated with the coherence unit before start-
ing the coherence activity. A requesting processor can
independently lock a remote directory entry and obtain
read/write permissions.

2.1. The Invalidation-Based Protocol

The invalidation-based protocol states, modified,
shared and invalid (MSI), are explicitly represented by
global data structures in the nodes’ memories. Bits of
a memory operation’s effective address determine the
location of a coherence unit’s directory location, i.e., its
“home node.” All coherence units in invalid state store
a “magic” data value, as independently suggested by
Scales et al. [27] and Chiou et al. [6] (Schoinas et al. [31]
use the same technique in the Blizzard-S system). This
significantly reduces the number of directory accesses
caused by load operations, since the directory only has
to be consulted on a read miss. (The directory also
has to be consulted in the rare case when the real data
value is equal to the magic value [31, 27].)

To reduce the number of accesses to remote direc-
tory entries caused by global store operations, each
node has one byte of local state (MTAG) per global
coherence unit (similar to Shasta’s private state ta-
ble [28]), indicating if the coherence unit is locally
writable. Before each global store operation, the
MTAG byte is checked. The directory only has to be
consulted if the MTAG indicates that the node cur-
rently does not have write permission to the coherence
unit. The directory will assume the role of MTAG in
home nodes, and hence, no extra MTAG state is needed
for home nodes. To avoid race conditions, the corre-
sponding MTAG entry has to be locked before a write
permission check is carried out. Otherwise, a coherence
unit can be downgraded between the consultation and
the point in time where the store is performed. More
details and coherence miss examples are given in [40].

2.2. Write Permission Cache

DSZOOM’s access control checks for stores represent,
the largest part of the total instrumentation cost [39].
Most of this overhead comes from the fact that the lo-
cally cached directory entry (MTAG) must be checked
atomically for each global store operation. This section
describes write permission cache (WPC) that hides
some of the instrumentation cost for stores [39]. While
Shasta reduces its instrumentation overhead by stat-
ically merging coherence actions at instrumentation
time [27] (batching), a WPC dynamically merges store

coherence checks at runtime. Instead of releasing the
MTAG lock after a store is performed, a thread holds
on to the write permission and the MTAG lock, hoping
that the next store will be to the same coherence unit.
The identity of the coherence unit is stored in a dedi-
cated register, which is consulted before the next store
is performed. (DSZOOM reserves UltraSPARC’s ap-
plication registers [36] for fast WPC checks.) If indeed
the next store is to the same coherence unit, the store
overhead is reduced to a few ALU operations and a con-
ditional branch instruction. When a store to another
coherence unit appears, a WPC miss occurs. Only
then, a new lock release followed by a lock acquire must
be performed.

The WPC hit rate for SPLASH-2 benchmarks [37]
varies greatly depending on the application, the num-
ber of WPC entries and the coherence unit size [40].
For example, two entries demonstrate much better hit
rate, which is most significant for £ft and ocean ap-
plications.

3. Extending DSZOOM’s Flexibility

One of the key observations of this paper is that the
WPC technology can be used as an efficient software-
based store buffer in an update-based system. To be
more specific, multiple stores could be merged before
the MTAG lock is released and the data is distributed
to other nodes. In this section, we extend DSZOOM’s
flexibility with a new update-based protocol and mul-
tiple bandwidth reduction techniques.

3.1. The Update-Based Protocol

The update-based protocol is based on write per-
mission. All nodes have read permission to all data
whereas only one has read-write permission for each
coherence unit. The states read-write (W) and read (R
or W) are explicitly represented in the nodes’ memo-
ries. Remote directory traffic is tamed with an update
version of the MTAG optimization described in Sec-
tion 2.1.

3-hop Write Miss Example: Figure 1 shows co-
herence activity caused by an update 3-hop write miss.
atomicl and putl correspond to a 1 byte remote atomic
operation and a remote 1 byte put. The state tran-
sitions for coherence unit D can be found below the
nodes. The requestor, regD, first checks its local MTAG
for write permission of coherence unit D. Since node2
does not has write permission, the store protocol is
called and the coherence activity is started. reqD locks
the directory located at the home node (D1). The di-
rectory indicates that the write permission is located
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Figure 1. 3-hop write miss example for the
update-based protocol.

on node0. Hence, D2 locks node0’s MTAG. This re-
moves write permission on that node. D3 and D4 up-
dates the MTAG (IW) and the directory (node2’s id)
respectively. Node2 is now in state read-write and has
correct data (data has to be distributed before a lock
is released, the network order is preserved).

3.2. Bandwidth Reduction Techniques

Update-based coherence protocols have to deal with
the potential bandwidth problem introduced by exces-
sive data pushing. In this section, we present two mech-
anisms (filtering strategies) that address the bandwidth
problem: dirty-data and private-data filtering.

Dirty-Data Filtering. Scaling the coherence unit
size has two potential benefits: (1) it can reduce the
number of coherence misses and (2) the WPC hit rate
is improved. Hence, the number of locks taken and
the instrumentation overhead are reduced. However,
update-based coherence protocols can be very sensitive
to coherence unit size scaling. A large coherence unit
wastes bandwidth when exposed to write-write false
sharing or if processors only write parts of the coher-
ence unit before distributing the data. We address this
problem with a dirty-data WPC that tracks modifica-
tions of a current cache line. Hence, only modifications
(dirty data) are distributed to other nodes. A coher-
ence unit is divided into smaller parts. The lock is
obtained per coherence unit whereas the WPC points
to one part of the coherence unit, the “hot spot.” Data
are marked dirty when the hot spot is moved.

Private-Data Filtering. Benchmarks often show
a large amount of stores that are to node-private data.

For some applications, this is true even at page granu-
larity. For example, 89 (77) percent of the global stores
in 1lu-c (ocean-c) are to private pages. We exploit
this application property to reduce the global update
bandwidth consumed with a private-data filter. The
virtual-memory system is used to keep track of private-
to-shared state changes and the page state is used to
omit updates to node-private pages.

Our private-data filter is implemented with a page-
permission check from a locally-cached page directory
before each global update. In addition, at read/write
page faults to the shared memory segment, our sig-
nal handler updates the page directory with new per-
mission information through a remote-atomic and a
remote-put operation and uses mprotect(2) to set up
local memory mappings. If the node does not has data,
a page fetch might be needed. While multiple schemes
are possible, our system only allows page-permission
upgrades.

4. Profiling and Classification

Choosing optimal coherence flags may be a cumber-
some task. This section presents a simple classification
algorithm for fast finding of appropriate coherence set-
tings. The classification heuristic is based on feedback
from a low-overhead profile run. Our classification al-
gorithm is not general, it is intended to show that also
a simple heuristic can be used to achieve appropriate
coherence settings, and hence, high performance.

We have tested our profiling mode and classification
algorithm with both small and large working set sizes.
Our results are almost identical. Thus, for the applica-
tions studied, it is possible to use the small working set
size during the profile run and reuse the same coher-
ence strategy for result runs. While scaling down the
workload size on a uniprocessor system can heavily af-
fect the cache performance, the profile mode tracks the
entire shared memory and especially coherence traffic.
Hence, it is not heavily dependent on machine param-
eters, such as cache sizes.

4.1. Low-Overhead Profiling

Our low-overhead profiling is capable to collect 1-
and 2-entry WPC hit rate, global update bandwidth
and coherence unit size information in a single run with
less than 30 percent overhead (avg.). The estimation
of coherence unit size uses virtual coherence units. We
slice the global memory space into different segments
(currently, 2048 bytes each). These segments use dif-
ferent virtual coherence unit sizes. When a coherence
miss occurs, permission for the entire virtual coherence



unit size is acquired. DSZOOM’s runtime system col-
lects the number of misses for all different coherence
sizes in a single run. Of course, it is important to
divide the memory space in a representative way. We
have tried multiple schemes (omitted because of space)
and found that a simple modulo scheme works satisfac-
torily for our conservative classification algorithm and
the applications studied. The virtual-memory system
collects non-private store information. When a WPC
miss occurs, a local page directory lookup classifies the
store as private or non-private.

4.2. Simple Classification Method

This section describes the proposed classification al-
gorithm. First of all, the memory consistency model
of the application has to be taken into account.
(DSZOOM can be run with multiple memory con-
sistency models further discussed in Section 6.) We
use the memory consistency model and global update
bandwidth (estimated with profile run execution time)
to select between invalidate/update.

The global update bandwidth with and without the
private-data filter is used to make a choice for update
filtering techniques. For example, ocean-c consumes
more than 400 Mbyte/s without private-data filter.
This number is reduced to less than 10 Mbyte/s when
the filter is enabled (we enable the private-data filter if
it reduces the bandwidth with more than 10 percent).
Currently, we do not have a good metric for the dirty-
data filter. However, it is reasonable to use this filter
when a large coherence unit size is used with a 1-WPC
update-based configuration.

We use the number of coherence misses to differ-
ent virtual coherence unit sizes to select coherence unit
size for an application. Applications with a significant
amount of spatial locality (e.g., £ft and lu-c) are eas-
ily recognized because the number of misses is reduced
by 50 percent each time the coherence unit size is dou-
bled. Applications that expose false sharing are also
easily recognized since the number of misses increase.
However, applications that exploit some locality and at
the same time introduce some false sharing are harder
to classify. We use a conservative approach for these
applications by choosing a small coherence unit size. In
addition, an upper limit of 512 bytes for update-based
protocols is applied. Finally, the number of WPC en-
tries has to be selected. The classification algorith uses
the 1- and 2-entry WPC hit rate that the profile run
provides.

Program | Large (Small) Problem Size

fft 4M (64k) points

lu-c 2048x2048 (512x512) matrices, 16 x16 blocks
lu-nc 2048x2048 (512x512) matrices, 16 x16 blocks
radix 32M (2M) integers, radix 1024

barnes 128k (16k) particles

fmm 128k (32k) particles

ocean-c 1026x 1026 (258x258)

ocean-nc 10261026 (258 x258)

radiosity | largeroom (room), -ae 5000.0 -en 0.050 -bf 0.10
raytrace car (teapot)

water-nsq | 4913 (2197) molecules, 2 time steps

water-sp 32768 (2197) molecules, 2 time steps

Table 1. SPLASH-2 benchmarks. The small
working set is used together with the profil-
ing mode described in Section 4. All perfor-
mance results are based on the large data set
sizes.

5. Performance Evaluation

Table 1 shows data set sizes for all of the SPLASH-2
applications studied [37]. The reason why we cannot
run volrend is that shared variables are not correctly
allocated with the G_ZMALLOC macro. cholesky is
not run because we were not able to find large enough
working sets.

5.1. Compiler and Instrumentation

All experiments in this paper use the GCC 3.3.4
compiler. To simplify instrumentation, we use GCC’s
-fno-delayed-branch flag that avoids loads and
stores in delay slots, and -mno-app-regs that reserves
UltraSPARC’s thread-private registers [36]. These two
flags slow down SPLASH-2 applications with less than
3 percent (avg.). Note that only the DSZOOM system
uses those flags. All benchmarks are compiled with
optimization level 3.

We extend DSZOOM'’s instrumentation tool with a
simplified version of Shasta’s batching technique [27].
The tool implements a read-modify-write batching,
which merges load and store coherence checks (to the
same effective address) by replacing the load check with
the store’s WPC check. We also schedule application
instructions into coherence checking code to increase
instruction-level parallelism (inspired by EEL [23]).

5.2. Hardware Setup
Most of the experiments are measured on a Sun En-

terprise E6000 server [33]. The server has 16 Ultra-
SPARC II (250 MHz) processors and 4 Gbyte uniformly



shared memory with an access time of 330 ns (Imbench
latency [25]) and a total bandwidth of 2.7 Gbyte/s.
Each processor has a 16 kbyte on-chip instruction
cache, a 16 kbyte on-chip data cache, and a 4 Mbyte
second-level off-chip data cache. The sequential exper-
iments run on two processor types: a 250 MHz Ul-
traSPARC II (USII) and a 900 MHz UltraSPARC III
(USIII). The USIII processor has a 32 kbyte instruc-
tion cache, a 64 kbyte data cache, a 2 kbyte write cache
and a 2 kbyte prefetch cache. The second-level cache
is 8 Mbyte and off-chip.

The hardware DSM results have been measured on
a 2-node Sun WildFire system built from two E6000
nodes connected through a hardware-coherent interface
with a raw bandwidth of 800 Mbyte/s in each direc-
tion [15, 16]. The WildFire system has been configured
as a traditional cache-coherent, non-uniform memory
access (CC-NUMA) architecture with its data migra-
tion capability activated while its coherent memory
replication (CMR) has been disabled. The Sun Wild-
Fire access time to local memory is the same as above,
330 ns, while accessing data located in the other E6000
node takes about 1700 ns (Imbench latency). WildFire
runs the Solaris 2.6 operating system.

All software DSM implementations run in user space
on the Sun WildFire system. The WildFire intercon-
nect is in that case used as a “non-coherent” cluster in-
terconnect between E6000 nodes. Non-cacheable block
load, block store and regular SPARC atomic memory
operations (1dstub) are used as remote put, get and
atomic operations.

5.3. Instrumentation Overhead

Table 2 shows sequential-execution time in sec-
onds for non-instrumented programs (second col-
umn). It also reports the factor increase in execu-
tion time when both load and store instrumentation
is inserted for three invalidation-based configurations:
the invalidation-based protocol without WPC (inv),
the invalidation-based protocol with a l-entry WPC
(inv-swpc) and the invalidation-based protocol with
a 2-entry WPC (inv-dwpc) (see Table 4 for abbrevi-
ations). All experiments run on both USII and USIIT
processors with a coherence unit size of 512 bytes. On
average, instrumentation overhead for the slower pro-
cessor (USII) is lowered from 66 percent for the inv
protocol to 33 percent when a 2-entry WPC is used
(inv-dwpc). For the faster processor, this reduction
is even more significant (from 104 percent to 35 per-
cent). The store instrumentation overhead for WPC
implementations can be reduced even further if larger
coherence unit sizes are used. For example, the store

Program Time [s] inv inv-swpc inv-dwpc
USII (I1I) USII (III) USII (III) USII (III)

£ft 17.4 (9.7) | 2.67 (2.89) | 2.18 (2.08) | 1.65 (1.52)
lu-c 132.1 (42.9) | 3.56 (5.83) | 1.48 (1.79) | 1.51 (1.84)
1u-nc 270.4 (87.4) | 2.15 (3.30) | 1.53 (1.45) | 1.60 (1.49)
radix 57.7 (22.8) | 1.52 (1.75) | 1.70 (1.79) | 1.66 (1.69)
barnes 161.0 (52.5) | 1.09 (1.15) | 1.07 (1.13) | 1.10 (1.13)
fum 155.0 (48.0) | 1.15 (1.28) | 1.10 (1.17) | 1.10 (1.18)
ocean-c 84.5 (56.5) 1.71 (1.72) 1.49 (1.30) 1.33 (1.18)
ocean-nc | 132.2 (91.4) | 1.45 (1.42) | 1.38 (1.26) | 1.31 (1.19)
radiosity | 9.8 (14.7) | 1.08 (1.19) | 1.11 (1.18) | 1.11 (1.18)
raytrace 80.5 (23.9) | 1.24 (1.36) | 1.24 (1.36) | 1.24 (1.35)
water-nsq | 162.8 (68.2) | 1.18 (1.28) | 1.16 (1.27) | 1.12 (1.27)
water-sp | 115.7 (48.3) | 1.16 (1.28) | 1.15 (1.23) | 1.17 (1.24)
| Ave. | | 1.66 (2.04) | 1.38 (1.42) | 1.33 (1.35)

Table 2. Sequential instrumentation overhead
for 250 MHz UltraSPARC Il and 900 MHz Ultra-
SPARC lll processor runs.

instrumentation overhead for £ft is reduced from 178
to 27 percent for the USIII target when a 2-entry WPC
is added and the coherence unit is scaled from 64 to
8192 bytes. Note that the instrumentation techniques
based on WPC (such as inv-swpc and inv-dwpc) only
add ALU instructions to the fast path of the execution
when instrumenting loads and stores. This results in an
instrumentation overhead which is fairly independent
of processor technology, as can be seen in Table 2.

5.4. Low-Overhead Profiling

Table 3 shows performance of the profiling mode for
16-processor runs. Numbers for both training (small)
and large data input sets are shown. On average, the
profiling mode runs 29 percent slower than the base
mode for large input sets. The performance of a profile
mode is significantly increased for training input sets.
For example, the most extreme case (lu-c) runs about
50 times faster than the base mode with a large input
set.

5.5. Parallel Performance

Figure 2 shows the performance impact of var-
ious coherence protocols and optimizations for 16-
processor runs when compared to DSZOOM’s base
protocol (inv-64). Selecting the most optimal co-
herence unit size improves £ft’s performance with 25
percent. Adding the most appropriate WPC strategy
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Figure 3. Hardware DSM vs. four software DSM experiments. (16-processor runs.)

amounts for an additional 0.4 speedup and instrumen-
tation scheduling adds another 0.05. The base update
protocol (upd-swpc-64) results in a slowdown com-
pared with the inv-64 protocol. However, tuning the
WPC setting and enabling the private-data filtering
improves £ft’s update performance with more than 100
percent. Only performance improvements are shown in
Figure 2, which is why some of the optimizations are
not visible for all applications.

There is a large variation among the applications
as to which class of optimization is the most impor-
tant. ocean-c’s update protocol is greatly improved
by the private-data filtering, which makes it outper-
form the best invalidate-based protocol, while lu-c
enjoys a great boost to its invalidate protocol from
its most optimal WPC setting. While Figure 2 can
help understanding the importance of the different op-
timizations, it should be pointed out that the different

performance improvements reported are somewhat de-
pendent on each other, why the orders in which they
are presented do effect their individual contributions.

Figure 3 shows parallel performance for 16-processor
runs. Here, the software DSM performance can be
compared to the execution time of a 2-node Sun Wild-
Fire (HW-DSM) and DSZOOM’s base configuration
(inv-64). As a comparison, the execution time for
inv-dwpc-64 as well as the configuration suggested by
the profiling tool (PROFILED), described in Section 4,
are also reported. The rightmost bar (BEST) shows
the best performance obtained by testing all coher-
ence flag settings. (See Table 5 for (PROFILED) and
(BEST) configurations.) To ensure that our results are
not affected by application scaling characteristics, we
also run all applications with four processors per node
(eight in total). These results are almost identical to
the ones presented in this paper (when compared to



Program | Base Mode | Profile Mode | Profile Mode [ Program | PROFILED | BEST
Large Set Large Set Training Set £t inv-dwpc-2048 inv-dwpc-2048

f£ft 5.99 s 6.13 s (1.02) 0.18 s (0.03) lu-c inv-swpc-2048 inv-dwpc-2048
lu-c 28.79 s 22.90 s (0.80) 0.55 5 (0.02) lu-nc inv-swpc-128 inv-swpc-128
lu-nc 46.58 s 96.49 s (2.07) 2.90 s (0.06) radix inv-64 inv-128
radix 13.09 s 16.86 s (1.29) 3.56 5 (0.27) barnes upd-swpc-64 upd-df-swpc-512
barnes 14.62 s 19.64 s (1.34) 2.77 5 (0.19) fmm inv-swpc-64 inv-swpc-64
fmm 16.26 s 26.73 s (1.64) 7.66 s (0.47) ocean-c upd-pf-dwpc-512 | upd-pf-dwpc-1024
ocean-c 9.37 s 9.04 5 (0.96) 1.51 s (0.16) ocean-nc inv-dwpc-2048 inv-dwpc-1024
ocean-nc 17.71 s 17.44 s (0.98) 2.18 5 (0.12) radiosity upd-swpc-64 upd-swpc-64
radiosity 4.89 s 9.16 5 (1.87) 0.23 5 (0.05) raytrace upd-swpc-64 inv-swpc-64
raytrace 15.27 s 18.69 s (1.22) 14.02 s (0.92) water-nsq | upd-pf-swpc-64 upd-pf-supc-256
water-nsq 12.85 s 13.74 s (1.07) 3.41 s (0.27) water-sp upd-pf-swpc-64 upd-pf-swpc-64
water-sp 9.12s | 10.62s (1.16) 1.65 s (0.18)

[ Avg. (1.29) | (0.23)

Table 3. Performance of the profiling mode
for large and training (small) input data sets.
Normalized execution time is shown inside
parenthesis.

| Abbreviation | DSZOOM Configuration |

inv invalidation-based protocol
upd update-based protocol
swpc single (1-entry) WPC
dwpc double (2-entry) WPC

df dirty-data filtering

pf private-data filtering

Table 4. Protocol abbreviations.

the hardware DSM) and are omitted because of space.

On average the inv-64 protocol is 45 percent slower
than the hardware DSM system. This overhead is
reduced to 32 percent when the inv-dwpc-64 proto-
col is used. Optimal coherence unit size, number of
WPC entries and instrumentation optimizations fur-
ther improve the invalidation-based DSZOOM perfor-
mance with almost 30 percent. The invalidation-based
protocol actually outperforms the hardware DSM sys-
tem when run with £ft, ocean-c and ocean-nc. While
an invalidation-based coherence protocol together with
“the best” coherence unit size offers stable perfor-
mance, some applications show peak performance when
run in an update-based environment as long as band-
width usage is kept low. The update-based protocol
is able to outperform the hardware DSM system for
ocean-c, ocean-nc and radiosity. (The reason why
inv-64 is better than the hardware DSM when run
on ocean-nc is that the -fno-delayed-branch actu-
ally improves performance on this particular applica-
tion.) Number of WPC entries and the private-data
filter are the most important optimizations while in
update mode.

Table 5. Classification results from the profile
feedback run and the best coherence setting.

Maybe the most notable performance feature is
the similarity between the performance of the best
DSZOOM protocol (BEST) and the Sun WildFire sys-
tem (HW-DSM). The performance of the two systems
is within 30 percent of each other for all applications
except radix and lu-c. Note also that the continuous
and non-continuous versions of lu, ocean and water
all achieve a similar performance compared with the
hardware DSM. This is typically not the case for tra-
ditional software DSMs. On average, DSZOOM is 11
percent slower than the hardware DSM. When radizx,
the application with the worst locality, is omitted, this
slowdown is reduced to only 5 percent.

6. Consistency, Deadlock, and Scalability
6.1. Memory Consistency

The invalidation-based protocol of the base archi-
tecture (without a WPC implementation) maintains
sequential consistency (SC) [22] by requiring all ac-
knowledges from the sharing nodes to be received be-
fore a global store request is granted. Introducing the
WPC in an invalidation-based environment will not
weaken the memory model. The WPC protocol still
requires all the remotely shared copies to be destroyed
before granting the write permission. Of course, if the
memory model of each node is weaker than sequential
consistency, it will dictate the memory model of the
system.

For an update-based system without load instru-
mentation, such as the one we present in Section 3.1,
the sequential consistency property is sacrificed. Our
update-based software DSM system with a 1-entry
WPC and a 64 bytes coherence unit size implements
processor consistency (PC) [13, 12]. The memory con-



01: /* PO’s code */ 11: /% P1’s code */

02: a =1; 12: b = 1;
03: while (flag != 1) 13: flag = 1;
04: 3 /x wait */ 14: ...

05: ...

Figure 4. WPC-deadlock code example.

sistency model gets more relaxed if more than one
WPC entry or a coherence unit size larger than 64
bytes is used. This consistency model is similar to
weak-ordering (WO) [8]. Our PC and WO systems
do not implement causal correctness [29].

6.2. Deadlock Avoidance Mechanisms

To avoid WPC related deadlocks, our runtime sys-
tem releases a processor’s WPC entries at synchroniza-
tion points, at failures to acquire MTAG /directory en-
tries and at thread termination. However, since SC
and PC are supported, flag synchronization not visible
to the runtime system can occur. The code in Figure 4
can for example lead to deadlock. a, b and flag are all
global variables initially assigned the value zero. e and
b are both located on the same coherence unit u. flag
is located on coherence unit v # u. Let two processors,
P0 and P1, execute the code shown in Figure 4. P(0
enters the code first (executes line 02) and assigns a
the value one. This implies that P0 puts a’s coherence
unit % in its WPC. When P0 reaches line 03, it starts
to spin on the shared variable flag, waiting for P1. P1
enters the code (line 12) and tries to obtain write per-
mission for b. However, since the directory state for b’s
coherence unit u is locked and cached by P0’s WPC,
we have a deadlock!

These WPC related deadlocks are easily avoided
with extra runtime system support. We have in an
earlier study discussed three possible mechanisms [39].
However, we are convinced that the simplest and best
solution is to implement WPC deadlock avoidance in
the instrumentation tool. A WPC FIFO replacement
policy together with simple basic-block analysis can be
used to guarantee that all MTAG locks are released be-
fore flag synchronizations (not currently implemented).
For simplicity, our instrumentation tool is manually
guided in the two applications (barnes and fmm) that
use flag synchronization.

6.3. Protocol Scalability

This paper only presents data for a 2-node system
since our WildFire machine only contains two E6000
nodes. We have used “virtual clustering” [38] to show

that our invalidation-based protocol scales with num-
ber of nodes. This data is omitted since this paper
is focused on the hardware comparison and because of
limited space. However, we do not believe that our
update-based protocol will scale for a large number of
nodes. The reason why we have not used virtual clus-
tering emulation while testing the update-based proto-
cols is because it is very difficult to model bandwidth
in an accurate way. It would be very interesting to test
how a WPC-based store buffer and bandwidth filters
will affect update scalability. We consider this evalua-
tion as future work.

7. Related Work

Traditional implementations of software-based
shared memory rely on virtual memory hardware
to detect when coherence activity is needed. Early
page-based systems [24] suffer from false sharing that
arises from fine-grain sharing of data within a page.
Two main research directions have evolved to improve
the performance of software shared memory imple-
mentations: relaxing consistency models [3, 19, 41, 27]
and providing fine-grained access control [30, 27].

Page-based systems often rely on week memory con-
sistency models and multiple writer protocol to man-
age the false sharing introduced by their large coher-
ence unit [10, 35, 1]. Carter et al. [3] introduce the
release consistency (RC) model in shared virtual mem-
ory. Lazy release consistency (LRC) was introduced
by Keleher et al. [19] and home based lazy released
consistency (HLRC) by Zhou et al. [41]. The major-
ity of systems implement numerous coherence strate-
gies/protocols. For example, Munin [3] implements
both invalidate- and update-based protocols (including
delayed-update and write-shared protocols).

First of all, our DSM proposal differs from these
systems because it is a fine-grain approach that shows
much more predictable performance for applications
with fine-grain synchronization. In addition, our sys-
tem can run multiple memory consistency models, in-
cluding SC, PC and WO, with reasonable performance
while page-based systems often rely on RC, LRC or
HLRC protocols. Our private-data bandwidth filter is
similar to Munin’s timeout mechanism that makes it
possible to only update nodes that actually use data.
However, contrary to Munin, our private-data filter is
completely synchronous, and hence, removes all asyn-
chronous protocol messaging. Moreover, it is designed
to be used with a fine-grain system and can be run in
processor consistency mode whereas Munin relies on
release consistency. We compare our system with a
hardware DSM while running unmodified applications



with and without fine-grain sharing and synchroniza-
tion patterns.

Fine-grained software DSMs maintain coherence by
instrumenting memory operations in the programs [32,
27, 28]. These systems usually provide stable and pre-
dictable performance. However, the instrumentation
cost for most of the systems is not negligible. An inter-
esting comparative study of two mature software-based
systems from the late 90s shows that the performance
gap between fine- and coarse-grain software DSMs can
be bridged by adjusting coherence unit size, program
restructuring and relaxing memory consistency mod-
els [9].

In a early version of Blizzard [11], application spe-
cific software-based protocols, which provided very
high performance, were implemented and evaluated.
Shasta [27, 28] implements support for multiple co-
herence granularities within a single application. This
mechanism is exposed to the programmer through mul-
tiple memory allocation functions. Zhou et al. [42]
presents performance tradeoffs for relaxed consistency
and coherence granularity on a platform that provides
access control in hardware but runs coherence protocols
in software. Their study focuses on coherent shared
memory systems with a fixed coherence granularity
(64, 256, 1,024, and 4,096 bytes). The results show
that no single combination of protocol and granularity
performs the best for all SPLASH-2 [37] applications
studied.

Our DSZOOM system differs from all these systems
because it uses a synchronous directory protocol and
since the virtual memory system is used to enhance
performance. Where the other fine-grain systems use
user-level hand optimized coherence protocols or ap-
plication rewrite to enhance coherence protocol perfor-
mance, we propose the use of coherence profiling and
coherence flags. This is the first comparison (to our
knowledge) with a real hardware DSM machine. It is
also the first study in which an all-software system is
able to outperform an all-hardware DSM!

The Stanford FLASH [21] project addresses con-
cerns with hardwired protocols by migrating the entire
protocol-engine to software handlers executed on a sep-
arate processor. SMTp is a more recent proposal [5]
in which the coherence protocol is run by one SMT
thread. Multiple systems implement a simple hardware
directory protocol backed up with software handlers.
The protocol described by Hill et al. [17] uses a sin-
gle hardware pointer. In addition, the programmer or
compiler can annotate programs with Check-In/Check-
Out (CICO) directives to minimize the number of soft-
ware traps. Chaiken and Agarwal [4] describe perfor-
mance and cost of software extended coherence shared

memory as implemented in Alewife. Grahn and Sten-
strom [14] extends Chaiken and Agarwal’s work. While
most of the findings in this paper can be implemented
in such systems, they rely on modified memory con-
trollers [5], protocol processors [21] and/or hardware
support for n pointers in hardware [4, 14, 17].

8. Conclusions

This paper presents a highly flexible all-software dis-
tributed shared memory system that combines code in-
strumentation and page protection mechanisms. Fine-
grain access control checks applied at shared loads
and stores avoid false sharing without any application
rewriting or memory model weakening. The paper also
presents two protocol classes that are based on classical
invalidate/update schemes. The page protection mech-
anism is applicable in both cases to minimize unnec-
essary global memory replication and, in particular, as
an efficient bandwidth-reduction technique for update-
based protocols. Several other reduction techniques are
presented, such as all-software store buffering, dirty-
and private-data filtering.

The paper demonstrates the flexibility of this ap-
proach with two simple invalidate /update synchronous
protocols that support more then 50 different combina-
tions of coherence flags. A very simplistic low-overhead
profiling mode of the system is capable to find appro-
priate coherence flags for the studied applications. This
is an automatic single-run process based on the profile
run feedback.

The system demonstrates stable and predictable
performance for all applications studied. In fact, sev-
eral applications run faster with this system than with
a much more expensive hardware-based DSM with an
identical interconnect. On average, our software DSM
is 11 percent slower than the hardware DSM. When
radix, the application with the worst locality, is omit-
ted, this slowdown is reduced to only 5 percent.
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