Algorithmic Skeletons for Stream Programming in Embedded

Heterogeneous Parallel Image Processing Applications

W. Caarls!, P.P. Jonker!, and H. Corporaal?

'Delft University of Technology
Quantitative Imaging Group
Lorentzweg 1, Delft, The Netherlands
{w.caarls, p.p.jonker }@tudelft.nl

Abstract

Algorithmic skeletons can be used to write architecture
independent programs, shielding application developers
from the details of a parallel implementation. In this
paper, we present a C-like skeleton implementation lan-
guage, PEPCI, that uses term rewriting and partial
evaluation to specify skeletons for parallel C dialects.
By using skeletons to control the iteration of kernel func-
tions, we provide a stream programming language that
is better tailored to the user as well as the underlying
architecture. Skeleton merging allows us to reduce the
overheads usually associated with breaking an applica-
tion into small kernels.

We have implemented an example image process-
ing application on a heterogeneous embedded prototype
platform consisting of an SIMD and ILP processor, and
show that a significant speedup can be achieved without
requiring knowledge of data parallel processing.

1 Introduction

As processors are becoming faster, smaller, cheaper, and
more efficient, new opportunities arise to integrate them
into a wide range of devices. However, since there are so
many different applications, there is no single processing
device that meets all the requirements of every applica-
tion. The SMARTCAM project [6] investigates how an
application-specific processing device can be generated
for the specific field of intelligent cameras, using design
space exploration.

The architecture template on which the design space
exploration is based contains data-parallel (SIMD) as
well as instruction-parallel (ILP) processors, because im-
age processing applications use regular, high-bandwidth
as well as irregular operations. Since the design space ex-
ploration should be automatic, a single application pro-

1-4244-0054-6/06/$20.00 ©2006 IEEE

2Eindhoven University of Technology
Dept. of Electrical Engineering

Den Dolech 2, Eindhoven, The Netherlands

h.corporaal@tue.nl

gram must run on all architectures within the template,
and the image processing operations must be written in
an architecture-independent way.

This same architecture independence shields the appli-
cation programmer from the parallel implementation de-
tails of his operations, such as operation mapping, data
distribution, border handling, etc.

This paper describes how we use algorithmic skeletons|5]
and stream programming to achieve architecture inde-
pendence, and how these skeletons are specified in a new
language, PEPCI. The paper is structured as follows:
first, some background and motivation on stream pro-
gramming and algorithmic skeletons is discussed. Then,
the SMARTCAM framework and PEPCI language are
introduced. After that, we present the prototype ar-
chitecture on which we have evaluated our system, and
the results of the evaluation. Finally, we discuss some
conclusions and future work.

2 Background

2.1 Stream programming

Streams are sequences of data elements (often pixels, in
image processing). In stream programming these streams
are transformed by kernels, functions that are applied
to each element of a stream. Only kernels can access
stream elements, and they cannot access global vari-
ables (in some systems, the kernels can have internal
state memory[9], while in others they cannot[3]). As
such, they can be executed efficiently on a wide range of
architectures, in particular parallel distributed memory
architectures where communication is overlapped with
computation (stream processors).

Applications in which stream programming is natu-
ral are regular, and are presented with large (or al-

most infinite) input streams, the elements of which
can be processed mostly independently. Low-level im-
age processing clearly fits into this category, and many
intermediate-level and pattern recognition tasks can be
expressed like this as well.

Of course, the stream processing abstraction comes
with a drawback: algorithms that cannot be natu-
rally mapped to the paradigm must often be awkwardly
rewritten, and require multiple passes with different ker-
nels. The underlying hardware may have the capability
to efficiently execute it, but the abstraction does not al-
low us to transparently make use of it. We therefore
propose to use a more general way of specifying kernels,
using algorithmic skeletons, while still using the stream-
ing paradigm to connect them.

2.2 Algorithmic skeletons

Algorithmic skeletons were introduced in [5] to separate
the structure of a (parallel) computation from the com-
putation itself, thereby freeing the programmer from the
implementation details of that structure, such as how
to map it to the available processors. By choosing a
skeleton, the application programmer makes a statement
about the parallelism in his computation, without spec-
ifying how to exploit it, and this freedom can be used to
optimally map it to different architectures.

A stream kernel can be seen as a specific type of skele-
ton: one that calls the kernel for every element of the
stream (program 1 shows an example of such a skeleton
implemented as a C higher-order function). However,
we can imagine different skeletons, specifying different
types of parallelism. One might make the neighbourhood
of a stream element available to the kernel, or might al-
low the kernel to add new elements to the input, allowing
the implemention of recursive and stack operations. The
key concept is that we do not fix this when designing our
language, but rather allow (specialized) programmers to
add their own skeletons.

Because in principle skeletons can be written to per-
form any kind of operation, they allow us to present all
kinds of hardware to the user in an easy-to-use way. Of
course, there is a balance between generality (allowing
re-use for many different architectures and user kernels)
and specificity (for very efficient implementations and
very easy interfaces to the user kernels).

2.3 Design goals

We wish to use algorithmic skeletons as interfaces be-
tween a hardware platform and kernel functions. A spe-
cialized programmer (if not the application programmer
himself) should be able to write new skeletons to exploit

Program 1 Sequential pixel stream skeleton imple-
mented as a C higher-order function, and an example
binarization kernel using it

PixelStream(int_stream_t *in, int_stream_t *out,
int in_threshold,
void (*kernel)(int *i, int *o, int threshold))

{

int iElem, oElem;

while (read(in, &iElem))
{
kernel(&iElem, &oElem, in_threshold);
write(out, &oElem);
1
}

void binarize(int *i, int *o, int threshold)

{
}

/* ... Stream declaration and
* initialization ... */
Pixelstream(in, out, 128, binarize);

*0 = (*i > threshold);

new hardware or support new operations. To promote
adoption, the kernels are written in C, while the target
hardware is often programmed in a parallel C dialect.
The design goals for our skeleton language are therefore
as follows:

1. The language should resemble C, because it deals
with C input and C-dialect output. In addition, the
skeleton programmer is most likely familiar with the
language.

2. The language should be able to translate between C
and C dialects, and transform the kernel from using
the interface presented by the skeleton to the inter-
face provided by the underlying runtime system.

3. The output of the skeleton should compile efficiently
to the target hardware.

The processor types and number of processors in our
platform are unknown at design time, and in order to
avoid a static mapping of operations to processor types
(or even specific processors) by the user, a single skeleton
should be implemented for all processors that support it.
A runtime system can then decide which implementation
to use, based on benchmarking and load information.

We will first briefly discuss our framework and runtime
system, because it specifies how skeletons are called and

Skeleton
library
PEPCI
PEPCI
Kernel code Operations |5qntrol processor
Parameters
program
ANSI C
Stream program SmartCam
compiler
Smartcam-C Coprocessor
programs
Parallel C dialect

Taraner G urarect

Figure 1: Compilation process of the SMARTCAM frame-
work

what their input will be, both at compile-time and run-
time.

3 The SmartCam framework

The SMARTCAM framework[4] specifies how kernels are
to be defined and called, and how they are executed at
runtime. Figure 1 indicates how a stream program is
parsed by the SMARTCAM compiler, how the individual
kernels are transformed into operations by the appro-
priate skeletons through the PEPCI tool (discussed in
section 4), and how the compiler generates a control pro-
gram, as well as a coprocessor program for every copro-
cessor in the system. In this framework, operations are
required to operate on buffered streams of data. Buffer
allocation and data distribution is handled by the run-
time system, and therefore of no concern to the skeleton.

3.1 Defining kernels

In contrast to normal stream programming, SMART-
CAM kernel definitions need to specify which skeleton
is used by the kernel. Program 2 shows the kernel defi-
nition for a pixel operation, using the PixelToPixelOp
skeleton.

The direction of the stream arguments is specified
using in and out. The skeleton is polymorphic in the
number of kernel arguments and their types, and sup-
ports non-stream input parameters.

Program 2 SMARTCAM kernel definition for a binariza-
tion
PixelToPixelOp()
binarize(
in stream int *,
out stream int *o,

int *threshold)
{

}

*0 = (*1 > *threshold);

3.2 Defining streams and calling kernels

Streams are declared using the STREAM type, and are
dynamically typed. Kernels are called as functions that
operate on these streams, even though they typically
operate on stream elements: the skeleton specified in
the kernel definition determines the iteration.

Program 3 shows a complete SMARTCAM stream pro-
gram.

Program 3 A SMARTCAM program, demonstrating
stream definition and kernel calling

STREAM q;
scInit();
while (1)

capture(&a); // Capture image from sensor
binarize(&a, &a, scint(128));
display(&a); // Display image on screen

As discussed in [4], kernels are called asynchronously
in order to exploit task parallelism, and use single as-
signment semantics for their stream arguments (if a
STREAM variable is passed as both input and output,
the output points to a different stream). Mapping is
done at runtime by a control processor, and the various
coprocessors perform local scheduling.

It is advantageous, both for reuse and the freedom
of mapping, to split a program into as many kernels as
possible. However, this results in a lot of buffer interac-
tions and scheduling overhead. We would therefore like
to compose and statically schedule series of kernels that
are known to run together, and this merging is another
task for our skeleton language.

4 The PEPCI language

Efficiently implementing algorithmic skeletons, espe-
cially on constrained architectures, is a daunting task.

Much research on the subject is done using higher-
order functions in functional programming languages,
but these are not a natural fit if we want our kernels to
be written in C. Using C higher-order functions suffers
from a lack of polymorphism, both in parameter types
and the number of parameters. While very good C++
skeleton libraries are available (like [8]), C++ compilers
for embedded parallel processors are rare. However, the
main problem with these approaches (and skeleton lan-
guages such as SKIL[2]), is that they do not deal with
the transformation of kernel code, only with the imple-
mentation of structure.

We want our skeletons to be able to arbitrarily change
the kernel code to best fit the C dialect and hardware
implementation, avoiding overheads such as parameter
set-up. These transformations should not be done sep-
arately from the implementation of the computational
structure, because the structure is what drives the trans-
formations. We have therefore opted to embed term
rewriting in a C-like language, PEPCI.

In the following sections, we will discuss a sequential
implementation of the PixelToPixelOp skeleton used
in program 2. The kernel definition will be parsed by
the SMARTCAM compiler into program 4, fed through
the skeleton (defined in programs 6 and 7), to yield the
output in program 8.

Although this particular case does not require the gen-
erality of our skeleton language, it does make use of the
most important concepts.

4.1 The code datatype

The input to a skeleton is the code of the kernel and
a list of its parameters. They are passed using a new
primitive datatype, code. To assign code to a code
variable, we need to distinguish the code to be assigned
from the normal program text. The backtick character
(‘) is used for this, as shown in program 4.

Program 4 Code assignment and quotation, as used
by the SMARTCAM compiler to pass the kernel code
and first argument of the binarize kernel to the Pixel-
ToPixelOp skeleton

kernel = “*o = (*i > *threshold);';

args[0].id = ‘i

args[0].type = STREAM;

args[0].direction = IN;

args[0].datatype = ‘int’;

Because the kernel code will need to be executed as
part of the skeleton, it is necessary to provide a way
to evaluate the contents of a code variable. For this,

we introduce the code dereference operator “@Q”. Fur-
thermore, to aid in code construction, we provide an
antiquotation operator “$”, which inserts the value of
its argument into a quoted piece of code. Program 5
shows how these operators are used.

Program 5 Code evaluation and antiquotation

code assign(code lhs, code rhs)

return ‘$Qlhs = $Qrhs;';
}

int a;
@assign(‘af, ‘42°);

The assign function takes the left-hand side and right-
hand side of an assignment, and constructs the code for
it. It does this by antiquoting the sides into an assig-
ment statement, and returning that. Note that deref-
erenced codes are inserted, because otherwise the state-
ment would become

Aac — 442c;’

which is incorrect. The result of the function call is
evaluated using the “@” operator as well, resulting in
the assignment of 42 to the variable a.

4.2 Term rewriting

In order to manipulate code variables beyond assign-
ment and evaluation, we employ term rewriting. Term
rewriting works by matching a certain code pattern, and
replacing it with another. Program 6 uses term rewrit-
ing to change the kernel code from using pointer derefer-
encing to access its inputs and outputs into using array
indexing.

Program 6 Rewriting pointer dereferencing into array
indexing

for(i=0; i < arguments; i++)
if (args[i].type == STREAM)
kernel = replace(args[i].id,
‘&$Q(args[i].id)[c]",

kernel);

replace is a term rewriting strategy that performs a
topdown search through the abstract syntax tree repre-
senting the code in its third argument, and replaces all
occurrences of its first argument with its second argu-
ment.

Again, “$” is the antiquotation operator that inserts
its argument in the quoted code. In this case, its argu-
ment is the code dereference (“Q”) of args[i].id (being

i or o). Using our binarization kernel as input to this
operation, we will get the following output:

o[c] = (i[c] > *threshold);

All term rewriting in our system is achieved by embed-
ding the Stratego[11] language. It is possible to define
custom strategies in the same source code as the skele-
ton, but the most common ones are provided in a library.
Unfortunately, a full description of Stratego is beyond
the scope of this paper.

4.3 Partial evaluation

Apart from rewriting the kernel, a skeleton should also
output the code that is to be evaluated at runtime. We
have chosen to avoid a manual distinction between gen-
erating and generated code, and use partial evaluation
to make this distinction automatically. All code in pro-
grams 5-6 can be evaluated at compile time, but consider
program 7, which implements the main loop of our skele-
ton.

Program 7 The main loop of the PixelToPixelOp
skeleton
while (...)
{
for (i=0; i < arguments; i++)
if (args[i].type == STREAM)
if (args[i].direction == IN)
read(args[i].stream, &Qargs[i].id, bytes);
else
allocate(args[i].stream, &Qargs[i].id,
bytes);
for (¢=0; ¢ < bytes; c++)
Qkernel;
for (i=0; i < arguments; i++)
if (args[i].type == STREAM)
release(args|i].stream, bytes);

The output should not include the looping over the
arguments, both for efficiency reasons, and because the
code may include constructs that are not understood
by the target compiler. Partial evaluation separates the
parts of the code that can be executed at compile time
by propagating information about static and dynamic
variables. Because PEPCI is implemented as an inter-
preter, this information is easily accessible through the
symbol table that is used record the actual variable val-
ues.

The basis of the interpreter is a reduce function that
not only returns the value of a computed subexpression,
but also a residual syntax tree, the nodes of which can

be tentative. As long as all values are known, the in-
terpreter proceeds normally, with the exception that all
declarations and assignments are tentatively entered in
the residual syntax tree.

When a statement is encountered that references un-
known values, the declarations and most recent assign-
ments of all symbols used in it are unmarked, and will be
printed when the residual tree is output. Unknown ex-
pressions in branching and looping constructs will cause
the different branches to be evaluated separately; values
changed in these branches are unknown for further evalu-
ation, and the construct itself is entered into the residual
syntax tree. To ensure termination, recursive functions
called with unknown parameters are residualized.

Program 8 shows the result of program 7 applied to the
rewritten binarization kernel. Only the program parts
that depend on variables that are not known at compile
time, or on functions that cannot be evaluated at compile
time, are output.

Program 8 Result of partially evaluating program 7
applied to the binarization kernel
while (...)

read(args[0].stream, &1, bytes);
allocate(args[1].stream, &o, bytes);

for (¢=0; ¢ < bytes; c++)
olc] = (i[c] > *threshold);

release(args[0].stream, bytes);
release(args[1].stream, bytes);

}

4.4 Skeleton merging

As discussed in section 3.2, the SMARTCAM framework
uses runtime scheduling to interleave multiple kernels
running on the same processor. This can be inefficient,
both because of the context switching overhead, and be-
cause of the limited instruction parallelism available in
a single kernel. Especially SIMD processors do not work
well with runtime scheduling, as hundreds of compu-
tations happen each cycle, and control flow operations
therefore incur a large overhead. Our solution is to com-
pose and statically schedule series of kernels that are
known to run together, as is the case when they occur
in a single basic block of the stream program.

We perform kernel composition and static scheduling
by recursively reducing a stream graph through skeleton
merging. The algorithm proceeds as follows:

1. Extract a series of kernel calls from the stream pro-
gram, satisfying the following conditions:

e Intermediate streams are not used outside the
sequence

e All the skeletons used by the kernels employ
the same metaskeleton

2. Merge the first two kernels in the sequence, by ap-
plying a merge metaskeleton that is specific to the
metaskeleton.

3. Repeat 2 until the sequence is reduced to one kernel
call.

4. Replace the series in the stream program by the
reduced version.

Because skeletons are general programs, with ar-
bitrary output, merging them is not straightforward.
There needs to be some form of restriction on their out-
put, and this is achieved by their use of a metaskeleton.
A metaskeleton is a PEPCI function that has the code
of a skeleton as its input, in a structured form (such as
initialization, prologue, body, epilogue).

When no merging is to take place, the metaskeleton
evaluates its arguments in the appropriate way. If two
skeletons are to be merged, however, the arguments they
both pass to the metaskeleton are passed to a merge
metaskeleton instead, which performs the merging. The
merged result again uses the original metaskeleton, so
that the merged skeleton can be used in subsequent re-
cursive merge operations, see figure 2.

In our library, the PixelToPixelOp skeleton uses
the pixelbypixel metaskeleton, while the Neighbour-
hoodToPixelOp and RecursiveNeighbourhood-
ToPixelOp skeletons use the linebyline metaskeleton.
Other skeletons, such as StackOp and GlobalOp, do
not use a metaskeleton, and therefore cannot be merged.

Program 9 shows a simplified merge metaskeleton for
pixel operations. In this piece of code, we assume that
in the stream program, the second (output) argument of
the first kernel is connected to the first (input) argument
of the second kernel.

First, we construct a new prologue as a composition of
the constituent prologues; the declare rewriting strat-
egy declares a new intermediate variable of the appropri-
ate datatype. Then, we replace the first kernel’s output
and second kernel’s input with this new variable. Finally,
we compose the kernels and again call the pixelbypixel
metaskeleton. Assuming we're merging a logarithm and
binarization, the newly constructed kernel is:

intermediate = log(*i);
*0 = (intermediate > *threshold);

Program 9 A simplified pixelbypixel-merge
metaskeleton for merging two pixel operations

pixelbypixel-merge(arg_t *args, int arguments,
instance_t *instance)
{

code prologue, kernel;
prologue = *{
declare(
$instance|0].args[1].datatype,
“intermediate’);
@$instance[0].prologue;
@$instance[1].prologue;
instance[0].kernel =
replace(instance|0].args[1].id,
‘&intermediate*, instance[0].kernel);
instance[1].kernel =
replace(instance[l1].args[0].id,
‘&intermediate*, instance[l].kernel);
kernel = “{
@$instance]0].kernel;
@$instance[1].kernel;
¥
pixelbypixel(args, arguments, prologue, kernel);

}

More elaborate merge metaskeletons, such as
linebyline-merge, need to deal with the appropriate
buffer delays, and of course must be fully polymorphic
in the stream connections. They should also take care
of variable nameclashes.

5 Prototype setup

In order to evaluate the programmability and efficiency
of our system, we have implemented it on a mixed ILP-
SIMD prototype architecture.

5.1 Architecture

Our prototype architecture is the Philips CFT Inca+
prototype. This is a minimal implementation of our ar-
chitecture template, consisting of one XETAL [1] SIMD
processor and one TriMedia[10] VLIW processor. There
is one video speed channel from the sensor to the XE-
TAL and one video speed channel from the XETAL to
the TriMedia. The TriMedia can program the XE-
TAL via the I2C bus. The architecture is described in
more detail in [7], and is schematically summarized in
figure 3.

Edge
detection

Edge magnitude

Edge detection

Edge direction Binarization

ong edges

CMOS sensor
—>| 640x480

W

Bayer pattern

SIMD processor
| 320 PEs, 3.2 GOPS
16 linemems, 64Gb/s

2,12C 8,10 MHz

10, 10 MHz

Strong edge directions

& binarization

Edge detection

Edge direction Strong edges binarization

& masking

Strong edge directions

g edge directions

Figure 2: Recursive skeleton merging

Light

The XETAL chip consists of 320 PEs and a control
processor, running at pixel clock. It can therefore pro-
cess 320 instructions per pixel, and has enough memory
to store 16 image lines. The TriMedia is a 5-way VLIW
processor running at 180MHz. At the same video speed
that means around 100 operations per pixel. An external
32MB SDRAM provides enough storage for most appli-
cations at this resolution. The TriMedia runs the pSOS
multithreaded real-time operating system. This archi-
tecture is suited for image processing because it takes
advantage of the fact that image processing applications
progress from low-level, high-bandwidth operations to
high-level, low-bandwidth operations. One drawback is
that because there is no channel from TriMedia to XE-
TAL, the TriMedia cannot be used as a temporary frame
store. This will be remedied in a new prototype plat-
form that is under development. In this new prototype,
the XETAL processor may also run faster than the pixel
clock, achieving 7.7 10-bit GMACs per second.

5.2 Programming

ILP processor
5-way VLIW, 900 MOPS
pSOS RTOS

—

SDRAM
32 MB

The TriMedia processor can be programmed in ANSI C.
However, for certain optimizations to take place, it is
necessary to instruct the compiler with additional infor-
mation in the form of pragmas and type specifiers. Our
algorithmic skeletons use knowledge about their paral-

¢ VGA out

Figure 3: Inca+ prototype architecture

lelism to supply this information.

The dataparallel C-dialect used by the XETAL SIMD
processor (called XTC) mainly adds a new datatype,
Imem, that represents an entire line. Arithmetic opera-
tions on the datatype are carried out on the entire line,
and lmem variables can be relatively indexed to access
neighbours. The processor does not provide indirect ad-

CMOS sensor

Capture

)

SIMD processor

Interpolate
Sobel X Sobel Y
Edge direction Edge strength

Masking

)

ILP processor

Hough transform

Maximum search

Figure 4: Mapping the ball detection application on the
Inca+ prototype

dressing or per-PE branching, and the language reflects
this, prohibiting array indexing and if statements on
Imem variables.

However, because kernels can use these constructs,
our XTC skeletons rewrite branches into guarded ex-
pressions, and static indirect neighbourhood addresses
into separate variables. Loop unrolling is used to trans-
form apparently-dynamic indices into static ones. Even
then, not all kernel codes will compile to XTC, and these
will have to be executed on the TriMedia.

5.3 Application

As a test application, we have implemented a ball de-
tection algorithm based on the Hough transform. Our
version uses the edge direction to draw a circle arc in
the Hough accumulation space instead of the entire cir-
cle. The global maximum of the accumulation space is
used as the ball position.

The edge detection (using the Sobel operators) and
edge strength binarization can run on our SIMD proces-
sor, while the Hough transform itself cannot because it
requires a frame memory and dynamic indirect address-
ing. As there is no channel back to the SIMD processor
in our prototype architecture, this means the maximum
search of the Hough transform has to be performed on
the TriMedia as well. See figure 4.

Setup Time(ms)
TriMedia Baseline 133
TriMedia Optimized 100
TriMedia Kernelized (5-line bufs) 216
TriMedia Kernelized (25-line bufs) 160
TriMedia Merged 134
TriMedia + XETAL Merged 54

Table 1: Performance evaluation of the ball finding al-
gorithm

6 Results

We have evaluated a number of different setups. First, a
handcoded C implementation on the TriMedia only, as a
baseline. Second, an optimized version using TriMedia-
specific pragmas and ISO C99 restrict specifiers. Next,
we split the algorithm into basic kernels (interpolation,
sobel x, sobel y, edge direction, edge magnitude, mask-
ing, Hough transform, global maximum) and ran this
on the TriMedia using different buffer sizes. Finally, we
enabled skeleton merging and ran the program on the
TriMedia as well as the TriMedia and XETAL combina-
tion. Table 1 summarizes the results.

It is evident that a fine-grained kernelization of the al-
gorithm using small buffers between the kernels results
in a severe slowdown (more than twice as slow as the
optimized version). The overhead introduced by context
switching approaches zero if larger buffers are used, but
this is unrealistic, and we still retain a 60% total over-
head. By merging the kernels, allowing the compiler to
exploit instruction parallelism and data locality as well
as avoiding context switching, we achieve the same speed
as the baseline. Finally, by leveraging the SIMD proces-
sor, the program runs twice as fast as the optimized ILP
version.

The reason the merged version does not achieve the
speed of the optimized one is the inability to merge pixel
and line metaskeletons, as well as some overhead in the
merged operations themselves. In fact, the speedup de-
pends very much on the input image and types of op-
erations. In the case of the ball detection application
on our prototype, the SIMD processor is only processing
1/2 of the time, as it is bandwidth-limited by the video
speed input and output channels. Amdahl’s law applies,
and in order to increase the throughput of applications
with large sequential parts, we need a faster ILP proces-
sor, or to overlap the computation of multiple frames on
different processors.

7 Conclusion

We have presented a language and interpreter for im-
plementing algorithmic skeletons for C-like target lan-
guages, and a framework to use them to write archi-
tecture independent streaming image processing appli-
cations for parallel heterogeneous embedded systems.
By embedding a term rewriting language, skeletons can
perform source-to-source translation in order to support
data parallel targets from sequential kernel sources. Par-
tial evaluation is used to avoid a manual distinction be-
tween generating and generated program.

Our results show that an example ball-detection ap-
plication written using our framework can achieve the
same performance on an ILP processor as an ANSI C
implementation, while the architecture independence al-
lows it to run unchanged on a mixed SIMD-ILP platform
at twice the speed as an optimized ILP version. These
results are achieved by merging the kernel functions in
order to reduce buffer interaction and context switching
overhead, and improve instruction parallelism and data
locality. No parts of our example application required
explicit parallel programming, or knowledge of the par-
allel implementation of the operations.

As future work, we would like to extend PEPCI to
allow external library calls such as math functions. We
would also like to relax some of the merging require-
ments, such as allowing the merging of pixelbypixel
and linebyline skeletons by promoting the pixelbyp-
ixel skeleton. Finally, we want to expand our hardware
platform in order to investigate larger and more dynamic
applications.

Acknowledgements

This work is supported by the Dutch government in their
PROGRESS research program under project EES.5411.

References

[1] A. Abbo, R. Kleihorst, L.Sevat, P. Wielage, R. van
Veen, M. op de Beeck, and A. van der Avoird. A low-
power parallel processor IC for digital video cameras.
In Proc. 27th European Solid-State Circuits Conference,
Villach, Austria. Carinthia Tech Institute, September
18-20 2001.

[2] G. H. Botorog and H. Kuchen. Skil: An imperative lan-
guage with algorithmic skeletons for efficient distributed
programming. In Proceedings of the Fifth International
Symposium on High Performance Distributed Comput-
ing (HPDC-5), pages 243-252. IEEE Computer Society
Press, 1996.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for GPUs: Stream

[10]

[11]

computing on graphics hardware. ACM Transactions on
Graphics, 23(3):777-786, August 2004. Special Issue:
Proceedings of the 2004 SIGGRAPH Conference.

W. Caarls, P. Jonker, and H. Corporaal. Skeletons and
asynchronous RPC for embedded data- and task paral-
lel image processing. In K. Ikeuchi, editor, Proceedings
of the 9th IAPR Conference on Machine Vision Appli-
cations. MVA Conference Committee, May 16-18 2005.
M. Cole. Algorithmic Skeletons: Structured Manage-
ment of Parallel Computation. Research Monographs
in Parallel and Distributed Computing. The MIT Press,
1989. ISBN 0-273-08807-6.

P. Jonker and W. Caarls. Application driven design of
embedded real-time image processors. In Proceedings of
Acivs 2003 (Advanced Concepts for Intelligent Vision
Systems). Ghent University, September 2-5 2003.

R. Kleihorst, H. Broers, A. Abbo, H. Embrahimmalek,
H. Fatemi, H. Corporaal, and P. Jonker. An SIMD-
VLIW smart camera architecture for real-time face
recognition. In Proceedings of ProRISC 2003, pages 1-T.
Technology Foundation STW, November 26-27 2003.
H. Kuchen. A skeleton library. In B. Monien and
R. Feldman, editors, Proceedings of the 8th Interna-
tional Furo-Par Conference, volume 2400 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

P. Mattson. A Programming System for the Imagine
Media Processor. PhD thesis, Dept. of Electrical Engi-
neering, Stanford University, 2001.

G. Slavenburg. TM1000 Databook. TriMedia Division,
Philips Semiconductors, 1997.

E. Visser. Stratego: A language for program trans-
formation based on rewriting strategies. In A. Mid-
deldorp, editor, Rewriting Techniques and Applications
(RTA’01), volume 2051 of Lecture Notes in Computer
Science, pages 357-361. Springer-Verlag, May 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

