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Abstract

An execution environment consisting of virtual machines
(VMs) interconnected with a virtual overlay network can
use the naturally occurring traffic of an existing, unmodi-
fied application running in the VMs to measure the under-
lying physical network. Based on these characterizations,
and characterizations of the application’s own communica-
tion topology, the execution environment can optimize the
execution of the application using application-independent
means such as VM migration and overlay topology changes.
In this paper we demonstrate the feasibility of such free au-
tomatic network measurement by fusing the Wren passive
monitoring and analysis system with Virtuoso’s virtual net-
working system. We explain how Wren has been extended
to support online analysis, and we explain how Virtuoso’s
adaptation algorithms have been enhanced to use Wren’s
physical network level information to choose VM-to-host
mappings, overlay topology, and forwarding rules.

1 Introduction

Virtual machines interconnected with virtual networks
are an extremely effective platform for high performance
distributed computing, providing benefits of simplicity and
flexibility to both users and providers [1, 5, 13]. We have
developed a virtual machine distributed computing system
called Virtuoso [15] that is based on virtual machine moni-
tors and a overlay network system called VNET [16].

A platform like Virtuoso also provides key opportunities
for resource and application monitoring, and adaptation. In
particular, it can:
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1. Monitor the application’s traffic to automatically and
cheaply produce a view of the application’s network
demands. We have developed a tool, VTTIF [2], that
accomplishes this.

2. Monitor the performance of the underlying physical
network by use the application’s own traffic to automatically
and cheaply probe it, and then use the probes to produce
characterizations. This paper describes how this is done.

3. Adapt the application to the network to make it run faster or
more cost-effectively. This paper extends our previous
adaptation work [18, 17] with algorithms that make use of
network performance information.

4. Reserve resources, when possible, to improve
performance [7, 8].

Virtuoso is capable of accomplishing these feats using ex-
isting, unmodified applications running on existing, unmod-
ified operating systems.

We build on the success of our Wren passive monitoring
and network characterization system [21, 20] to accomplish
(2) above. Wren consists of a kernel extension and a user-
level daemon. Wren can:

1. Observe every incoming and outgoing packet arrival in the
system with low overhead.

2. Analyze these arrivals using state-of-the-art techniques to
derive from them latency and bandwidth information for all
hosts that the present host communicates with. Earlier work
described offline analysis techniques. This paper describes
online techniques to continuously and dynamically update
the host’s view of the network.

3. Collect latency, available bandwidth, and throughput
information so that an adaptation algorithm can have a
bird’s eye view of the physical network, just as it has a
bird’s eye view of the application topology via VTTIF. This
new work is described for the first time here.

4. Answer queries about the bandwidth and latency between
any pair of machines in the virtual network. This is
described for the first time here.

In the following, we begin by describing and evaluat-
ing the online Wren system (Section 2) and how it interacts
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Figure 1. Wren architecture.

with the Virtuoso system (Section 3). In Section 4, we de-
scribe adaptation algorithms in Virtuoso that make use of
Wren’s view of the physical network. We present results
showing Wren calculating available bandwidth using Vir-
tuoso’s run-time communication and present simulations of
our adaptation algorithms in response to that information.
Our results are promising, and we are currently integrating
these components to support run-time adaptation.

2 Wren online

The Wren architecture is shown in Figure 1. The key fea-
ture Wren uses is kernel-level packet trace collection. These
traces allow precise timestamps of the arrival and departure
of packets on the machines. The precision of the times-
tamps is crucial because our passive available bandwidth
algorithm relies on observing the behavior of small groups
of packets on the network. A user-level component collects
the traces from the kernel. Run-time analysis determines
available bandwidth and the measurements are reported to
other applications through a SOAP interface. Alternatively,
the packet traces can be filtered for useful observations and
transmitted to a remote repository for analysis.

Because we are targeting applications with potentially
bursty and irregular communication patterns, many appli-
cations will not generate enough traffic to saturate the net-
work and provide useful information on the current band-
width achievable on the network. The key observation be-
hind Wren is that even when the application is not saturat-
ing the network, it is sending bursts of traffic that can be
used to measure the available bandwidth of the network.

The analysis algorithm used by Wren is based on the
self-induced congestion (SIC) algorithm [11, 12]. Active
implementations of this algorithm generate trains of packets
at progressively faster rates until increases in one-way de-
lay are observed, indicating queues building along the path
resulting from the available bandwidth being consumed.
We apply similar analysis to our passively collected traces,

but our key challenge is identifying appropriate trains from
the stream of packets generated by the TCP sending algo-
rithm. ImTCP integrates an active SIC algorithm into a TCP
stack, waiting until the congestion window has opened large
enough to send an appropriate length train and then delay-
ing packet transmissions until enough packets are queued to
generate a precisely spaced train [9]. Wren avoids modify-
ing the TCP sending algorithm, and in particular delaying
packet transmission.

The challenge Wren addresses compared to ImTCP and
other active available bandwidth tools is that Wren must se-
lect from the data naturally available in the TCP flow. Al-
though Wren has less control over the trains and selects
shorter trains than would deliberately be generated by ac-
tive probing, over time the burstiness of the TCP process
produces many trains at a variety of rates [14, 4], thus al-
lowing bandwidth measurements to be made.

2.1 Online analysis

Wren’s general approach, collection overhead, and avail-
able bandwidth algorithm have been presented and analyzed
in previous papers [21, 20]. Wren has negligible effect
on throughput, latency, or CPU consumption when collect-
ing packet header traces. To support Virtuoso’s adaptation,
however, two changes are required. First, previous imple-
mentations of Wren relied on offline analysis. We describe
here our online analysis algorithm used to report available
bandwidth measurements using our SOAP interface. Sec-
ond, Wren has previously used fixed-size bursts of network
traffic. The new online tool scans for maximum-sized trains
that can be formed using the collected traffic. This approach
results in more measurements taken from less traffic.

The online Wren groups outgoing packets into trains by
identifying sequences of packets with similar interdepar-
ture times between successive pairs. The tool searches for
maximal-length trains with consistently spaced packets and
calculates the initial sending rate (ISR) for those trains. Af-
ter identifying a train, we calculate the ACK return rate for
the matching ACKs. The available bandwidth is determined
by observing the ISR at which the ACKs show an increas-
ing trend in the RTTs, indicating congestion on the path. We
have previously described this algorithm in more detail [21].

All available bandwidth observations are passed to the
Wren observation thread. The observation thread provides
a SOAP interface that clients can use to receive the stream
of measurements produced using application traffic. Be-
cause the trains are short and represent only a singleton ob-
servation of an inherently bursty process, multiple observa-
tions are required to converge to an accurate measurement
of available bandwidth.
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Figure 2. Wren measurements reflect
changes in available bandwidth even when
the monitored application’s throughput does
not consume all of the available bandwidth.
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Figure 3. Wren measurements from moni-
toring application on simulated WAN accu-
rately detect changes in available bandwidth.
The cross traffic in the testbed is created by
on/off TCP generators.

2.2 Performance

We evaluated our new variable train-length algorithm
in a controlled-load/controlled latency testbed environment
because validating measurements on real WANs is diffi-
cult due to the lack of access to router information in the
WAN. For this experiment, iperf generated uniform CBR
cross traffic to regulate the available bandwidth, changing
at 20 seconds and stopping at 40 seconds, as shown by the
dashed line of Figure 2.

We monitored application traffic that sent 20 200KB
messages with .1 second inter-message spacings, paused 2
seconds, 10 500KB messages with .1 second inter-message
spacings, paused 2 seconds, and then sent 10 4MB mes-
sages with .1 second inter-message spacings. This pattern

was repeated twice followed by 500KB messages sent with
random inter-message spacings. The throughput achieved
is shown by the solid line of Figure 2.

In the first 40 seconds of Figure 2, we see that the
throughput of the traffic generator varies according to the
size of message being sent. The last 5 seconds of this graph
show that the throughput of the generator also depends on
the inter-message spacings. Figure 2 shows that our algo-
rithm produces accurate available bandwidth measurements
even when the throughput of the application we are monitor-
ing is not saturating the available bandwidth, as seen partic-
ularly well at the beginning and 20 seconds into the trace.
The reported available bandwidth includes that consumed
by the application traffic used for the measurement.

In our next experiment, we simulated a WAN environ-
ment using Nistnet to increase the latencies that the cross
traffic and monitored application traffic experienced on our
testbed. We used on/off TCP traffic generators to cre-
ate congestion on the path, with Nistnet emulating laten-
cies ranging from 20 to 100ms and bandwidths from 3 to
25Mbps for the TCP traffic generators. The application traf-
fic that was monitored sent 700K messages with .1 second
inter-message spacing, with Nistnet adding a 50ms RTT to
that path. SNMP was used to poll the congested link to mea-
sure the actual available bandwidth. Figure 3 demonstrates
how the Wren algorithm can measure the available band-
width of larger latency paths with variable cross traffic.

We have shown that our online Wren can accurately mea-
sure available bandwidth by monitoring application traffic
that does not consume all of the available bandwidth. Fur-
thermore, Wren can be used to monitor available bandwidth
on low latency LANs or high latency WANs.

2.3 Monitoring VNET Application Traffic

To validate the combination of Wren monitoring an ap-
plication using VNET we ran a simple BSP-style commu-
nication pattern generator. Figure 4 shows the results of
this experiment, with the throughput achieved by the appli-
cation during its bursty communication phase and Wren’s
available bandwidth observations. Although the applica-
tion never achieved significant levels of throughput, Wren
was able to measure the available bandwidth. Validating
these results across a WAN is difficult, but iperf achieved
approximately 24Mbps throughput when run following this
experiment, which is in line with our expectations based on
Wren’s observations and the large number of connections
sharing W&M’s 150Mbps Abilene connection.

3 Virtuoso and Wren

Virtuoso [15, 1], is a system for virtual machine dis-
tributed computing where the virtual machines are intercon-
nected with VNET, a virtual overlay network. The VTTIF
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Figure 4. Wren observing a neighbor com-
munication pattern sending 200K messages
within VNET.

Wren
Network
Inference

Host OS Kernel

VNET (Forwarding)TCP / UDP 
Forwarding

Layer 2 Network 
Interface

VTTIF  Application Inference

VADAPT Adaptation

Virtual Machine Monitor

Guest OS Kernel

Application

Virtual Machine

LAN Other VNET daemon

Figure 5. Virtuoso’s interaction with Wren.
The highlighted boxes are components of
Virtuoso.

(virtual traffic and topology inference framework) compo-
nent observes every packet sent by a VM and infers from
this traffic a global communication topology and traffic load
matrix among a collection of VMs. Wren uses the traffic
generated by VNET to monitor the underlying network and
makes its measurements available to Virtuoso’s adaptation
framework, as seen in Figure 5.

3.1 VNET

VNET [16, 18] is the part of Virtuoso that creates and
maintains the networking illusion that the user’s virtual ma-
chines (VMs) are on the user’s local area network. Each
physical machine that can instantiate virtual machines (a
host) runs a single VNET daemon. One machine on the
user’s network also runs a VNET daemon. This machine
is referred to as the Proxy. Each of the VNET daemons is

connected by a TCP or a virtual UDP connection (a VNET
link) to the VNET daemon running on the Proxy. This is the
initial star topology that is always maintained. Additional
links and forwarding rules can be added or removed at any
time to improve application performance.

The VNET daemon running on a machine opens the
machine’s virtual (i.e., VMM-provided attachments to
the VMs’ interfaces) and physical Ethernet interfaces in
promiscuous mode. Each packet captured from an interface
or received on a link is matched against a forwarding table
to determine where to send it, the possible choices being
sending it over one of the daemon’s outgoing links or writ-
ing it out to one of the local interfaces. Each successfully
matched packet is also passed to VTTIF to determine the
local traffic matrix. Each VNET daemon periodically sends
its inferred local traffic matrix to the VNET daemon on the
Proxy. The Proxy, through its physical interface, provides
a network presence for all the VMs on the user’s LAN and
makes their configuration a responsibility of the user and
his site administrator.

3.2 VTTIF

The VTTIF component integrates with VNET to auto-
matically infer the dynamic topology and traffic load of ap-
plications running inside the VMs in the Virtuoso system.
In our earlier work [2], we demonstrated that it is possi-
ble to successfully infer the behavior of a BSP application
by observing the low level traffic sent and received by each
VM in which it is running. We have also shown [18] how
to smooth VTTIF’s reactions so that adaptation decisions
made on its output cannot lead to oscillation. The reaction
time of VTTIF depends on the rate of updates from the in-
dividual VNET daemons and on configuration parameters.
Beyond this rate, we have designed VTTIF to stop reacting,
settling into a topology that is a union of all the topologies
that are unfolding in the network.

VTTIF works by examining each Ethernet packet that a
VNET daemon receives from a local VM. VNET daemons
collectively aggregate this information producing a global
traffic matrix for all the VMs in the system. To provide a
stable view of dynamic changes, it applies a low pass fil-
ter to the updates, aggregating the updates over a sliding
window and basing its decisions upon this aggregated view.
The application topology is then recovered from this matrix
by applying normalization and pruning techniques.

Since the monitoring is done below the VM, it does not
depend on the application or the operating system in any
manner. VTTIF automatically reacts to interesting changes
in traffic patterns and reports them, driving adaptation.

3.3 Integrating Virtuoso and Wren

Virtuoso and Wren are integrated by incorporating the
Wren extensions into the Host operating system of the ma-



chines running VNET. In this position, Wren monitors the
traffic between VNET daemons, not between individual
VMs. Both the VMs and VNET are oblivious to this moni-
toring, except for a negligible performance degradation.

The local instance of Wren is made visible to Virtuoso
through its SOAP interface. VTTIF executes nonblocking
calls to Wren to collect updates on available bandwidth and
latency from the local host to other VNET hosts. VTTIF
uses VNET to periodically send the local matrices to the
Proxy machine, which maintains global matrices with infor-
mation about every pair of VNET hosts. In practice, only
those pairs whose VNET daemons exchange messages have
entries. Through these mechanisms, the Proxy has a view of
the physical network interconnecting the machines running
VNET daemons and a view of the application topology and
traffic load of the VMs.

3.4 Overheads

The overheads of integrating Wren with Virtuoso stem
from the extra kernel-level Wren processing each VNET
transmission sees, Wren user-level processing of data into
bandwidth and latency estimates, and the cost of using
VNET and VTTIF to aggregate local Wren information into
a global view. Of these, only the first is in the critical path
of application performance. The Wren kernel-level pro-
cessing has no distinguishable effect on either throughput
or latency [20]. With VTTIF, latency is unaffected, while
throughput is affected by ∼1%. The cost of local process-
ing is tiny and can be delayed.

4 Adaptation using network information

As shown in Figure 5, the VADAPT component of Vir-
tuoso, using the VTTIF and Wren mechanisms, has a view
of the dynamic performance characteristics of the physical
network interconnecting the machines running VNET dae-
mons and a view of the the demands that the VMs place on
it. More specifically, it receives:

1. A graph representing the application topology of the VMs
and a traffic load matrix among them, and

2. Matrices representing the available bandwidth and latency
among the Hosts running VNET daemons.

VADAPT’s goal is to use this information to choose a con-
figuration that maximizes the performance of the applica-
tion running inside the VMs. A configuration consists of

1. The mapping of VMs to Hosts running VNET daemons,
2. The topology of the VNET overlay network,
3. The forwarding rules on that topology, and

4. The choice of resource reservations on the network and the
hosts, if available.

In previous work [18, 17], we have demonstrated heuris-
tic solutions to a subset of the above problem. In particular,
we have manipulated the configuration (sans reservations)
in response to application information. In the following, we
expand this work in two ways. First, we show how to in-
corporate the information about the physical network in a
formal manner. Second, we describe two approaches for
addressing the formal problem and present an initial evalu-
ation of them.

4.1 Problem formulation

VNET Topology: We are given a complete directed
graph G = (H,E) in which H is the set of all of the Hosts
that are running VNET daemons and can host VMs.

VNET Links: Each edge e = (i, j) ∈ E is a prospective
link between VNET daemons. e has a real-valued capacity
ce which is the bandwidth that the edge can carry in that di-
rection. This is the available bandwidth between two Hosts
(the ones running daemons i and j) reported by Wren.

VNET Paths: A path, p(i, j), between two VNET dae-
mons i, j ∈ H is defined as an ordered collection of links in
E, 〈(i,v1),(v1,v2), ...,(vn, j)〉, which are the set of VNET
links traversed to get from VNET daemon i to j given the
current forwarding rules and topology, v1, . . .vn ∈ H. P is
the set of all paths.

VM Mapping: V is the set of VMs in the system, while
M is a function mapping VMs to daemons. M(k) = l if VM
k ∈V is mapped to Host l ∈ H.

VM Connectivity: We are also given a set of ordered
3-tuples A = (S,D,C). Any tuple, A(si,di,ci), corresponds
to an entry in the traffic load matrix supplied by VTTIF.
More specifically, if there are two VMs, k,m ∈ V , where
M(k) = si and M(m) = di, then ci is the traffic matrix entry
for the flow from VM k to VM m.

Configurations: A configuration CONF = (M,P) con-
sists of the VM to VNET daemon mapping function M and
the set of paths P among the VNET daemons needed to as-
sure the connectivity of the VMs. The topology and for-
warding rules for the daemons follow from the set of paths.

Residual Capacity of a VNET Link: Each tuple, Ai,
can be mapped to one of multiple paths, p(si,di). Once a
configuration has been determined, each VNET link e ∈ E
has a real-valued residual capacity rce which is the band-
width remaining unused on that edge.

Bottleneck Bandwidth of a VNET Path: For each
mapped paths p(si,di) we define its bottleneck bandwidth,
b(p(si,di)), as (min(cre)).∀e ∈ p(si,di).

Optimization Problem: We want to choose a configura-
tion CONF which maps every VM in V to a VNET daemon,
and every input tuple Ai to a network path p(si,di) such that
the total bottleneck capacity on the VNET graph,

∑
p∈P

b(p(si,di)) (1)



is maximized or minimized subject to the constraint that

∀e ∈ E : rce ≥ 0 (2)

The intuition behind maximizing the residual bottleneck
capacity is to leave the most room for the application to in-
crease performance within the current configuration. Con-
versely, the intuition for minimizing the residual bottleneck
capacity is to increase room for other applications to enter
the system. This problem is NP-complete by reduction from
the edge disjoint path problem [19].

4.2 Greedy heuristic solution

In an online system of any scale, we are unlikely to be
able to enumerate all possible configurations to choose a
good one. Our first approach is necessarily heuristic and is
based on a greedy strategy with two sequential steps: (1)
find a mapping from VMs to Hosts, and (2) determine paths
for each pair of communicating VMs.

4.2.1 Mapping VMs to Hosts

VADAPT uses a greedy heuristic algorithm to map vir-
tual machines onto physical hosts. The input to the algo-
rithm is the application communication behavior as cap-
tured by VTTIF and available bandwidth between each pair
of VNET daemons, as reported by Wren, expressed as ad-
jacency lists. The algorithm is as follows:

1. Generate a new VM adjacency list which represents the
traffic intensity between VNET daemons that is implied by
the VTTIF list and the current mapping of VMs to hosts.

2. Order the VM adjacency list by decreasing traffic intensity.
3. Extract an ordered list of VMs from the above with a

breadth first approach, eliminating duplicates.
4. For each pair of VNET daemons, find the maximum

bottleneck bandwidth (the widest path) using the adapted
Dijkstra’s algorithm described in Section 4.2.3.

5. Order the VNET daemon adjacency list by decreasing
bottleneck bandwidth.

6. Extract an ordered list of VNET daemons from the above
with a breadth first approach, eliminating duplicates.

7. Map the VMs to VNET daemons in order using the ordered
list of VMs and VNET daemons obtained above.

8. Compute the differences between the current mapping and
the new mapping and issue migration instructions to achieve
the new mapping.

4.2.2 Mapping communicating VMs to paths

Once the VM to Host mapping has been determined,
VADAPT uses a greedy heuristic algorithm to determine
a path for each pair of communicating VMs. The VNET
links and forwarding rules derive from the paths. As above
VADAPT uses VTTIF and Wren outputs expressed as adja-
cency lists as inputs. The algorithm is as follows:

1. Order the set A of VM to VM communication demands in
descending order of communication intensity (VTTIF traffic
matrix entry).

2. Consider each 3-tuple in the ordered set A, making a greedy
mapping of it onto a path. The mapping is on the current
residual capacity graph G and uses an adapted version of
Dijkstra’s algorithm described in Section 4.2.3. No
backtracking is done at this stage.

4.2.3 Adapted Dijkstra’s algorithm

We use a modified version of Dijkstra’s algorithm to se-
lect a path for each 3-tuple that has the maximum bottleneck
bandwidth. This is the “select widest” approach. Notice
that as there is no backtracking, it is quite possible to reach a
point where it is impossible to map a 3-tuple at all. Further-
more, even if all 3-tuples can be mapped, the configuration
may not minimize/maximize Equation 1 as the greedy map-
ping for each 3-tuple doesn’t guarantee a global optimum.

Dijkstra’s algorithm solves the single-source shortest
paths problem on a weighted, directed graph G = (H,E).
Our algorithm solves the single-source widest paths prob-
lem on a weighted directed graph G = (H,E) with a weight
function c : E → R which is the available bandwidth in our
case. The full algorithm description and a proof of correct-
ness is available in a technical report [3].

4.3 Simulated annealing solution

Simulated annealing [6] (SA) is a probabilistic evolu-
tionary method that is well suited to solving global op-
timization problems, especially if a good heuristic is not
known. SA’s ability to locate a good, although perhaps non-
optimal solution for a given objective function in the face
of a large search space is well suited to our problem. Since
the physical layer and VNET layer graphs in our system are
fully connected there are a great many possible forwarding
paths and mappings. Additionally, as SA incrementally im-
proves its solution with time, there is some solution avail-
able at all times.

The basic approach is to start with some initial solution
to the problem computed using some simple heuristic such
as the adapted Dijkstra based heuristic described above. SA
iterations then attempt to find better solutions by perturb-
ing the current solution and evaluating its quality using a
cost function. At any iteration, the system state is the set of
prospective solutions. The random perturbations of the SA
algorithm make it possible to explore a diverse range of the
search space including points that may appear sub-optimal
or even worse then previous options but may lead to bet-
ter solutions later on. The probability of choosing options
that are worse than those in the present iteration is reduced
as the iterations proceed, focusing increasingly on finding
better solutions close to those in the current iteration. The
full algorithm is available in our technical report [3]. The



problem-specific elements of our application of SA, the per-
turbation function and the cost evaluation function are de-
scribed below.

4.3.1 Perturbation function

The role of the perturbation function (PF) is to find
neighbors of the current state that are then chosen accord-
ing to a probability function P(dE,T ) of the energy dif-
ference dE = E(s′)−E(s) between the two states, and of
a global time-varying parameter T (the temperature). The
probability function we use is edE/T if dE is negative, 1 oth-
erwise. As iterations proceed T is decreased which reduces
the probability of jumping into states that are worse than the
current state.

Given a configuration CONF = (M,P) , where P is a
set of forwarding paths p(i, j) and each p(i, j) is a sequence
of ki, j vertices vi,v1,v2, .....,v j, the perturbation function se-
lects a neighbor N(CONF) of the current configuration with
the following probabilities: For each p(i, j) ∈ P:

1. With probability 1/3 PF adds a random vertex vr into the
path sequence where vr ∈V and /∈ p(i, j). Note that the set
V consists of all potential physical nodes which are running
VNET and hence are capable of routing any VNET traffic.
This step attempts to modify each path by randomly adding
a potential overlay node in the existing forwarding path.

2. With probability 1/3 PF deletes a random vertex vr from
the path sequence where vr ∈ p(i, j).

3. With probability 1/3 PF swaps two nodes vx and vy where
x 	= y and vx,vy ∈ p(i, j).

On a typical iteration, our algorithm only perturbs the cur-
rent forwarding paths. To also explore new mappings of the
VMs to different VNET hosts, we also perturb that map-
ping. However, as perturbing a mapping effectively resets
the forwarding paths, we perturb the mappings with a lower
probability.

4.3.2 Cost evaluation function

The cost evaluation function CEF computes the cost of
a configuration C using Equation 1. After a neighbor N(C)
is found using the perturbation function, a cost difference
CEF(N(C))−CEF(C) is computed. This is the energy dif-
ference used to compute the future path in the simulated an-
nealing approach using a probability e(CEF(N(C))−CEF(C))/t

if the difference is negative, 1 otherwise. As iterations pro-
ceed and temperature decreases, the SA algorithm finally
converges to the best state it encounters in its search space.

4.4 Performance

Because we have not yet coupled the entire real-time
toolchain, our evaluation is done in simulation, using Wren
measurements collected from observing VNET data to the
extent possible. We also evaluate our algorithms by posing a
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challenging adaptation problem, and evaluate their scalabil-
ity using a large-scale problem. In each scenario the goal is
to generate a configuration consisting of VM to Host map-
pings and paths between the communicating VMs that max-
imizes the total residual bottleneck bandwidth (Section 4.1).
We compare the greedy heuristic (GH), simulated anneal-
ing approach (SA) and simulated annealing with the greedy
heuristic solution as the starting point (SA+GH). In addition
at all points in time we also maintain the best solution found
so far with (SA+GH), we call this (SA+GH+B), where ’B’
indicates the best solution so far. The W&M and NWU
setup had a solution space small enough to enumerate all
possible configurations to find the optimal solution.

4.4.1 Wren measurements for testbed

We have created a testbed of Wren-enabled machines:
two at William and Mary and two at Northwestern as shown
in Figure 6. We have successfully run VNET on top of Wren
on these systems with Wren using VM traffic to characterize
the network connectivity, as shown in Figure 4. At the same
time Wren provides its available bandwidth matrix, VTTIF
provides the (correct) application topology matrix. The full
Wren matrix is used in Section 4.4.2.
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good performance.

4.4.2 Adaptation in W&M and NWU testbed

We evaluated our adaptation algorithms for an appli-
cation running inside of VMs hosted on the W&M and
NWU testbed in simulation. The VMs were running the
NAS MultiGrid benchmark. Figure 7 shows the application
topology inferred by VTTIF for a 4 VM NAS MultiGrid
benchmark. The thickness of the arrows are directly pro-
portional to the bandwidth demand in that direction.

Figure 8 shows the performance of our algorithms as a
function of time. The two flat lines indicate the heuris-
tic (GH) performance and the optimal cost of the objective
function (evaluated by hand). Since the solution space is
small with 12 possibilities for the VM to VNET mapping,
we were able to enumerate all possible configurations and
thus determine the optimal solution. The optimal mapping
is VM1 → 2, VM2 → 4, VM3 → 3, VM4 → 1 with an opti-
mal CEF value of 605.66.

There is a curve for the simulated annealing algorithm,
SA+GH (annealing algorithm starting with heuristic as the
initial point) and the best cost reached so far, showing their
values over time. We see that the convergence rate of SA
is crucial to obtaining a good solution quickly. Notice that
SA is able to find close to optimal solutions in a reasonably
short time, while GH completes almost instantaneously, but
is not able to find a good solution. SA+GH performs
slightly better than SA. Note that the graph shows, for each
iteration, the best value of the objective function of that it-
eration. SA+GH+B shows the best solution of all the itera-
tions up to the present one by SA+GH.

4.4.3 Challenge
We also designed a challenging scenario, illustrated in

Figure 9, to test our adaptation algorithms. The VNET node
topology consists of two clusters of three machines each.
The domain 1 cluster has 100 Mbps links interconnecting
the machines, while domain 2 cluster has 1000 Mbps links.
The available bandwidth on the link connecting the two do-
mains is 10 Mbps. This scenario is similar to a setup con-
sisting of two tightly coupled clusters connected to each
other via WAN. The lower part of the figure shows the VM
configuration. VMs 1, 2 and 3 communicate with a much
higher bandwidth as compared to VM 4. An optimal so-
lution for this would be to place VMs 1, 2 and 3 on the
three VNET nodes in domain 2 and place VM 4 on a VNET
node in domain 1. The final mapping reported by GH is
VM1 → 5, VM2 → 4, VM3 → 6, VM4 → 1. The final map-
ping reported by SA+GH is VM1→ 4, VM2→ 5, VM3→ 6,
VM4 → 1. Both are optimal for the metric described before
with a final CEF value of 5410.

For this scenario, both GH and SA are able to find the
optimal mappings quickly. Figure 10(a) illustrates the per-
formance of our adaptation algorithms. The physical and
application topologies have been constructed so that only
one valid solution exists. We see that GH, SA, and SA+GH
all find the optimal solution quickly with very small differ-
ence in their performance. The large fluctuations in the ob-
jective function value for SA curves is due to the occasional
perturbation of VM to Host mapping. If a mapping is highly
sub-optimal, the objective function value drops sharply and
remains such until a better mapping is chosen again.

Multi-constraint Optimization: In this scenario, we
also use the annealing algorithm to perform multi-
constrained optimization. In Figure 10(b), we show the per-
formance of our algorithms with an objective function that
takes into account both bandwidth and latency. Specifically,
we have changed Equation 1 to be

∑
p∈P

b(p(si,di))+
c

l(p(si,di))
(3)

where l(p) is the path latency for path p and c is a constant.
This penalizes the paths with large latencies. We see that SA
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Figure 10. Adaptation performance while mapping 6 VM all-to-all in the challenging scenario.

and SA+GH find better solutions than GH. GH provides a
good starting point for SA which further explores the search
space to improve the solution based on the defined multi-
constraint objective.

4.4.4 Large topology

To study scalability of our adaptation algorithms we gen-
erated a 256 node BRITE [10] physical topology. The
BRITE topology was generated using the Waxman Flat-
router model with a uniformly varying bandwidth from 10
to 1024 units. Each node has an out-degree of 2. In this
topology, we chose 32 hosts at random to run VNET dae-
mons, hence each is a potential VM host.

A VNET link is a path in the underlying BRITE physi-
cal topology. We calculated the bandwidths for the VNET
overlay links as the bottleneck bandwidths of the paths in
the underlying BRITE topology connecting the end points
of the VNET link.

Figure 11 shows the performance of our algorithms
adapting a 8 VM application communicating with a ring
topology to the available network resources. It illustrates
the point that the simple greedy heuristic is more suited to
smaller scenarios, while simulated annealing is best used
when the quality of the solution is most important and more
time to find a solution is available.

GH completes very quickly and produces a solution that
we unfortunately cannot compare with optimiality since
enumerating solutions is intractable. Simulated annealing
on the other hand takes much longer, but produces a much
better result in the end. Figure 11 shows the scenario for
the time during which the SA solution is inferior to the GH
solution. However, given more time the SA solution meets
and exceeds the GH solution.

Figure 11(b) shows the performance using the combined
bandwidth/latency objective function of Equation 3. Here,

in the allotted time, SA’s performance greatly exceeds that
of GH. This is not particularly surprising as GH does not
consider latency at all. However, the point is that it is trivial
to change the objective function in SA compared to in ad
hoc heuristic techniques. Simulated annealing is very effec-
tive in finding good solutions for larger scale problems, and
for different complex objective functions.

5 Conclusions

We have described how the Virtuoso and Wren systems
may be integrated to provide a virtual execution environ-
ment that simplifies application portability while provid-
ing the application and resource measurements required for
transparent optimization of application performance. We
have described extensions to the Wren passive monitoring
system that support online available bandwidth measure-
ment and export the results of those measurements via a
SOAP interface. Our results indicate that this system has
low overhead and produces available bandwidth observa-
tions while monitoring bursty VNET traffic. VADAPT,
the adaptation component of Virtuoso uses this informa-
tion provided by Wren along with application characteris-
tics provided by VTTIF to dynamically configure the ap-
plication, maximizing its performance. We formalized the
adaptation problem, and compared two heuristic algorithms
as solutions to this NP-hard problem. We found the greedy
heuristic to perform as well or better than the simulated an-
nealing approach, however, if the heuristic was taken as the
starting point for simulated annealing it performed much
better than the greedy heuristic.
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