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Abstract

The data used by today’s scientific applications are
often very high in dimensionality and staggering in
size. These characteristics necessitate the use of a
good multidimensional indexing strategy to provide ef-
ficient access to the data. Researchers have previously
proposed the use of bitmap indexes for high-dimension
scientific data as a way of overcoming the drawbacks
of traditional multidimensional indexes such as R-trees
and KD-trees, which are bulky and whose performance
does not scale well as the number of dimensions in-
creases. However, the techniques proposed in previous
work on bitmap indexes are not sufficient to address
all problems that arise in practice. In experiments with
real datasets, we experienced problems with index size
and query performance. To overcome these shortcom-
ings, we propose the use of adaptive, multilevel, multi-
resolution bitmap indexes, and evaluate their perfor-
mance in two scientific domains. Our preliminary ex-
periments with a parallel query processor and index cre-
ator also show that it is very easy to parallelize a bitmap
index.

1 Introduction

Scientific applications can be broadly classified into
observation/experiment driven, simulation driven, and
information driven [1]. All three types can easily
produce or consume terabytes of data. For exam-
ple, observational applications like the Moderate Res-
olution Imaging Spectroradiometer (MODIS), one of
many instruments on board the Earth Observing Satel-
lite (EOS), produces 144 MB/hour just for its cali-
brated radiances 5km sub-sampled data. At the Cen-
ter for Simulation of Advanced Rockets (CSAR) at the
University of Illinois at Urbana-Champaign (UIUC), a
complex parallel simulation run produces hundreds of

gigabytes of output data. Other UIUC scientists use
7GB working sets of NASA satellite data to study veg-
etation and climate patterns in the Appalachians [5].
Future scientific applications will be even more data-
intensive, due to improved observation-gathering tech-
nology and more complex and larger-scale simulation
codes.

To address their data management issues, domain
scientists have collaborated with computer scientists to
develop a series of file formats and associated user-level
I/O libraries. These formats store data together with
their associated metadata, and the I/O libraries pro-
vide APIs for efficient storage and retrieval of the data.
Today most scientific data is stored in such formats and
accessed through the associated I/O libraries. The for-
mats range from the generic (e.g., HDF1 and netCDF2)
to the domain-specific (e.g., ROOT3 for high energy
physics and FITS4 for astronomy). The most popular
libraries support both parallel and sequential access.

Unfortunately, data retrieval in these libraries is still
navigational [2]. In other words, to retrieve a particular
subset of the data, the scientist must write code to read
through all the related files and determine which part
of the data is needed. The code to perform this search
is very specific to the format, and must be rewritten
if the scientist moves to a new format. If the scien-
tist uses data from multiple sources, the code must use
the appropriate API for each source, which imposes
a significant learning curve. Further, these APIs are
for operations on individual files, but scientists usually
have to deal with a huge number of files. (For example,
a simulation of medium complexity at CSAR produces
12069 HDF files.) The scientists must manage the file-
level metadata themselves, typically through a complex
file naming framework. The libraries associated with

1http://hdf.ncsa.uiuc.edu.
2http://my.unidata.ucar.edu/content/software/netcdf.
3http://root.cern.ch.
4http://heasarc.gsfc.nasa.gov/docs/heasarc/fits.html.
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these APIs provide facilities for buffering and caching
inside a single file, but not across multiple files. To the
best of our knowledge, none of the libraries supports
indexes even for a single file of data, although the HDF
group will provide single-file support in a future release.

Other researchers have recognized the need for
multi-file, multi-site, and even multi-format data man-
agement facilities to assist scientists. For example,
the Globus Alliance5 is looking into issues related to
data migration and replication in large grid applica-
tions. The Storage Resource Broker (SRB) project6

and the openDAP infrastructure7 both offer architec-
tures to allow scientists to collaborate and manage re-
mote, distributed data through a unified framework.
Both provide simplified interfaces to query stored data,
although their interfaces restrict queries to range over
the contents of a single file. These systems do not pro-
vide buffering or indexing facilities. Other researchers
have investigated metadata management issues for sci-
entific computing, both for a single site and for Grid
applications [6, 4, 9]. When a relational database is
used to store the metadata, the database indexing fa-
cilities can be used to index the metadata (although not
the data itself), which can be very helpful in speeding
up user queries.

In this paper, we focus on the problem of indexing
scientific data stored in its native formats. As previ-
ously documented by others [1, 12], desiderata for in-
dexing approaches for scientific data include the abil-
ity to index very large amounts of data; good run-time
performance for index creation, and (high-dimensional)
queries; and reasonable size. To this list, we add the
ability to index across individual file, directory and
data site boundaries, so that scientists can find the
desired data no matter where it is located; support
for both parallel and sequential access, because par-
allel codes are important in scientific computing; and
data format independence, so that scientists can use a
single indexing facility to find all data of interest, re-
gardless of how data are stored. In the remainder of
this paper, we analyze how well traditional indexing
schemes satisfy these desiderata, and conduct an in-
depth examination of the most promising candidate,
bitmap indexing, in two scientific applications: rocket
simulation and vegetation pattern studies. We com-
pare our empirical results with the predictions of the
previous work on bitmap indexing for scientific data
[12, 11, 10], which was primarily analytical in focus.
In particular, we found problems with bitmap size and
runtime query performance that were not addressed by

5http://www.globus.org/solutions/tgcp/.
6http://www.npaci.edu/DICE/SRB/.
7http://www.opendap.org/.

previous work. To overcome those problems, we pro-
pose the use of adaptive, multilevel, multi-resolution
bitmap indexes, and present the experimental results
from the first steps toward using these refinements in
the rocket simulation and vegetative pattern domains.
We also provide an elementary framework for parallel
creation and querying of bitmap indexes, and evaluate
the scalability of the framework in experiments with
Voyager, a parallel visualization tool used by the rocket
scientists at CSAR.

2 Background and Related Work

B-trees and hashing have stood the test of time as
the premier disk-based indexing approaches for rela-
tional databases. These approaches index a single di-
mension (attribute) of data in each index. In business
oriented transaction processing queries and updates,
often one attribute has a very high selectivity. Thus
very good runtime performance is obtained by index-
ing these high selectivity attributes and using one of
them as the first selection criterion when performing
the query. In contrast, scientific data does not usu-
ally have such high-selectivity individual attributes;
instead, a combination of conditions on multiple at-
tributes makes the selectivity high enough for indexes
to be useful. While some queries use time and space
as high selectivity attributes, such queries are not very
common. For example, high-energy physics produces
data sets with 500 searchable attributes over billions
of particles [1], where no individual attribute has much
discriminatory power and a typical query might im-
pose conditions on 40 attributes. As another example,
Figure 1 shows the distribution of the Normalized Dif-
ference Vegetation Index (NDVI) attribute values in
the vegetative cover data set, where the queries are
usually over a subset of the 5000 to 10000 range of
the NDVI attribute. The figure shows that the selec-
tivity of this attribute is low for typical queries. The
other attributes used as typical query selection criteria
in this data set have similarly unselective distributions;
but when taken all together, the combined selectivity
of the attributes is usually high enough8 for indexes
to offer significant potential performance improvement,
compared to a sequential scan of the data.

The need to index multiple attributes in a single
index eliminates B-trees and hashing from considera-
tion. Traditional multidimensional indexing schemes
such as R-trees, KD-trees, quad trees, oct trees, and so
on are effective for indexing a handful of dimensions si-
multaneously (e.g., three geographic coordinates plus a

8Under the independence assumption the final selectivity is a
product of individual selectivities
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Figure 1. Data Distribution for NDVI attribute
in Vegetation Index Dataset. Most of the
queries occur over a subset of [5000, 10000].

time dimension). Unfortunately, none of these schemes
scales well once more than 15 dimensions are to be
indexed, and none of them is very good at handling
queries that impose conditions on only (say) half of
the attributes in the index. These indexes are also rel-
atively bulky, sharing the characteristic of B-trees that
they are likely to be three to four times larger than the
attribute data being indexed.

Moreover, scientific queries typically involve identi-
fication of regions of interest, in a two step process [1].
The first step involves searching for objects that satisfy
user-defined criteria; the second step involves growing
the objects into regions by locating nearby objects. For
example, one might start by querying for all the points
in a rocket that experience very high temperature dur-
ing a span of time, then grow those points to include
the nearby rocket regions. With traditional indexes,
to achieve best performance, one orders the data on
disk according to the values of the most important in-
dexed attribute. This is not appropriate when there
is no single primary selection attribute, as in scientific
data. Due to the order in which data are gathered or
generated, scientists typically store their data so that
spatially close objects are located close together in the
data set; this helps to make the second step fast. For-
tunately, bitmap indexes do not require the data to be
in any particular order to obtain good performance.

These characteristics have led researchers to suggest
the use of bitmap indices for scientific data [12, 11, 10].
Bitmap indexes are known to give good performance
for high-dimensionality queries in large data ware-
houses [7]; are typically smaller in size than B-trees
and other traditional indexes over the same amount of

data [12]; and can be efficiently updated when new data
is appended (e.g., when a new day of satellite observa-
tions arrives). Bitmap indexes are known to be poor
performers for update operations other than appending
new data; that is not a concern in scientific domains,
because data is normally read-only once created.

Bitmap indexes store the index information as a se-
quence of bit vectors and use logical boolean operators
to respond to queries. Paul O’Neil is credited with
the popularization of these indexes with his work on
the Model 204 Data Management System [7, 8]. In a
conventional B-tree index, each distinct attribute value
v is associated with a list of record identifiers (called
the RID-list) of all the records that are associated with
the attribute value v. In a bitmap index, the RID-list
is replaced by a bit vector representing the RID-list.
Figure 2(a) shows an example of a bitmap index over
attribute A of the database. The size of each bit vec-
tor is equal to the number of records in the database,
and the kth bit in each bit vector corresponds to the
kth record in the database. In a simple un-encoded
and uncompressed bit vector for attribute value v, the
kth value is set to 1 if the kth record in the database
has value v for that particular attribute. With such
an index, answering multidimensional queries becomes
a series of bitwise AND, OR, and NOT operations on
bit vectors, which can be done very fast using low level
instructions.

The example index contains just 12 objects and 9
different values for the attribute A. A real scientific
database might have billions of objects, and the num-
ber of values that the object could take would be in
the thousands—or much higher, if the value is floating
point. For example, the vegetation data set mentioned
earlier contains 1.6128∗108 objects for the Appalachian
mountain region alone. This means that each bit vec-
tor is approximately 20 MB in size. The value of the
Estimated Vegetation Index attribute is stored as short
integers that vary between -2,000 and 10,000. Hence
there are 12,000 possible values, making the total size
of an uncompressed bitmap index 222.69 GB for this
attribute, while the amount of data for that attribute
is only 305 MB. These numbers show that such a sim-
plistic approach to indexing requires too much space.
Moreover, our previous claim that queries will run fast
because of low level Boolean operations on bit vectors
would not be valid, as reading 1,000 different 20 MB bit
vectors and doing Boolean operations on them takes a
substantial amount of time.

Analysis of bitmaps shows that there two different
directions in which improvements could be made: re-
ducing the size of each bit vector and reducing the
number of bit vectors that need to be read to answer



OID A
1 7
2 3
3 1
4 2
5 6
6 2
7 0
8 5
9 7
10 8
11 8
12 4

B0 B1 B2 B3 B4 B5 B7 B7 B8

0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0

(a) A bitmap index for attribute A

OID A
1 7
2 3
3 1
4 2
5 6
6 2
7 0
8 5
9 7
10 8
11 8
12 4

I0 I1 I2 I3 I4

0 0 0 1 1
1 1 1 1 0
1 1 0 0 0
1 1 1 0 0
0 0 1 1 1
1 1 1 0 0
1 0 0 0 0
0 1 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 1
1 1 1 1 1

(b) Interval encoding for a bitmap index

Figure 2. Bitmap index basics.

a query. Another important enhancement for scientific
data is that of binning the values, so that each bit rep-
resents a bin instead of a value. This is very important
for very high cardinality attributes and is absolutely
vital for floating point data, which are widely used in
science.

Researchers have proposed a variety of enhance-
ments in the three directions just described. For ex-
ample, many encodings have been proposed to decrease
the number of bit vectors that must be read for differ-
ent types of queries. The most interesting of these for
our purposes is interval encoding [3], which allows us
to answer any range or equality query on one attribute
by reading a maximum of two bit vectors. Figure 2(b)
shows the interval encoded bitmap for the example in
Figure 2(a). In this type of encoding, every bit vector
represents a range of numbers instead of a single num-
ber. For example, I0 represents [0, 4], I1 represents
[1, 5], and so on. Any query with range greater than
four can be answered by a union of two bitmaps, and a
range smaller than four can be answered by intersecting
two bitmaps.

Range encoding of bit vectors allows the system
to answer an open ended range query (e.g., date <
10/1/2005) by accessing at most two bit vectors, in
the case when each vector represents one discrete value.
This technique can be extended to ensure that the in-
dex still works efficiently when each vector represents
a range (bin) of values rather than a single value [10].
The observation behind this generic range encoding is
that in an open ended range query, only one bit vector
(called the candidate vector) has a range where part
of the data does not satisfy the target range of the
query (a false positive). The query processor reads the
objects in that bit vector and removes those that fall

outside the target range. The authors of this technique
also offer a framework for deciding when it is better to
use a generic range encoded bitmap index and when it
is better to perform a sequential scan of all the data.

The work in [10] was extended in [11] to offer three
different strategies for checking for false positives when
a query condition involves more than one dimension
and the bit vector corresponds to a bin of data val-
ues. In the first strategy, the entire range query is ex-
ecuted for all the dimensions, and then false positives
are removed from all the dimensions by reading can-
didate vectors in each dimension, one by one. In the
second strategy, the candidates for each dimension are
checked for false positives before merging the results
from the different dimensions. Strategy three inter-
leaves the first two strategies. First the entire results
from different dimensions are merged, and then for each
dimension, the candidate vector is modified by remov-
ing objects that are known to be false positives in other
dimensions. The authors evaluate all the three strate-
gies and show that the third one is the best overall.

Compression is an important factor in minimizing
the size of bitmap indexes. As explained in [13], the
first approach to compression involves using standard
compression techniques such as gzip and bzip2 to com-
press the data when it is written and decompress it
while it is being read. This reduces the amount of disk
space required; but does not change the total amount
of memory required to process the data and increases
the time for processing by adding the cost of decom-
pression to it. Other methods have been developed
that not only decrease the size of the bit vector but
also improve the performance of the querying process.
These can be further divided into bit based, byte based,
and word based compression. Run-length encoding is



a common type of bit based encoding; PackBits and
Byte-aligned Bitmap Code are examples of byte based
encoding; and hybrid run-length encoding and word-
aligned hybrid (WAH) run-length encoding are exam-
ples of word based encodings. A detailed study of these
techniques can be found in [13]. Overall, WAH en-
coding appears to be the best choice for compressing
scientific bitmap indexes.

In the vegetation mapping data set mentioned ear-
lier, most of the queries are range queries with ranges
greater than 1000. If we store a single bit vector for
each of these attribute values, the index performance
will be very poor. Even if we used interval encoding
to reduce the number of bitmaps that need to be read,
we still need to store all the bitmaps, which will be
very large. In such a case, the recommended method
is to divide the data values into bins, and index each
bin with a single bit vector. This considerably reduces
the number of Boolean operations that must be per-
formed to answer a range query. The problem with
binning data is that not all queries will specify ranges
that align with the bin boundaries; misalignment re-
quires us to read the actual data to remove the false
positives. While this is expensive, the resultant reduc-
tion in requirement of storage space compensates for
the expense.

In [12], the authors study the behavior of WAH and
BBC compressed bitmaps. The authors suggest a va-
riety of methods to operate on bit vectors to improve
performance of range queries over attributes with high
cardinality. The authors show that bitmap indexes are
very effective even in high cardinality attributes, as
long as the indexes are properly compressed and an
appropriate evaluation strategy is used while execut-
ing the query. The authors also prove that the size
of a WAH-compressed bitmap index is 8N + 8b bytes,
where N is the number of objects being indexed and b
is the number of bit vectors. In contrast, in commer-
cial database systems, a B-tree index usually occupies
10N to 15N bytes, which is larger than the theoretical
maximum for a WAH compressed bitmap index.

Researchers have reported the size of bitmap indexes
for a combustion data set [12, 11], but to date no de-
tailed application study has been performed. Our goal
in this paper is to fill that gap.

3 Bitmap Index Manager Design and
Implementation

Our bitmap index manager implementation sup-
ports indexing individual objects and also user-defined
logical agglomerations of objects, called blocks in this
paper. We included both levels of abstraction because

we want to be able to index across multiple files and
multiple sites, and we recognize that the granularity of
indexing will vary across files and sites. For example,
one site may choose to index only at the file level, while
another may include detailed indexes for some or all of
the internal contents of its files. In the long run, we
envisage a hierarchy of bitmap indexes that a scientist
can use to identify the sites that may contain relevant
data, then the sections of those sites that may contain
relevant data, followed by specific directories and then
specific files that may contain relevant data. If an in-
dex is available at the finest level of detail, a scientist
can find the specific objects that satisfy the query. The
data owners may choose not to index their data beyond
a certain level of detail.

In block level indexing, we treat the entire block as
though it were a single object with multiple values. In
this case the number of objects and hence the number
of bits in the bit vectors goes down in proportion to the
number of objects in the block. Usually each block will
contain thousands of objects, causing the block level
index to be much smaller than the object level index.
The problem with such an index is that the encodings
described in the previous section, which were developed
to reduce the number of bit vectors that need to be
read to answer a single query, are no longer valid. All
these encodings assume that each object has only one
value for the attribute, thus causing each row in the
unencoded bitmap to have just one bit active. This is
no longer the case with block level indexing, causing
the previous encodings to be no longer valid.

Block-level indexing also complicates query process-
ing, because a block satisfying a conjunctive condition
p1 ∧ p2 may contain no single object that satisfies both
p1 and p2. Thus either a lower-level index for the block
must be consulted to determine whether any individual
objects match the query conditions, or else the block
itself must be parsed and its individual objects exam-
ined to determine whether any individual object satis-
fies p1 ∧ p2.

We use an extended version of bitmap indexes pro-
posed by [12] that can index floating point data, which
are common in scientific data sets, as well as categor-
ical data. Floating point data are first binned, and
then one bit vector is created for each bin. We adopt
WAH encoding to compress the bit vectors. The in-
dex manager is written in C++ and interfaces with
the buffer manager and metadata manager components
of our Maitri data management system, whose over-
all goal is to provide efficient, easy-to-use data-format-
independent data management facilities for scientists.



4 Experiments

4.1 Vegetation Pattern Domain

Our experiments employed a data set used by UIUC
scientists studying vegetation patterns in the United
States. The data come from the NASA EOS Data
Gateway9, by selecting the vegetation index (VI) files
collected on 8/2/2003 and 8/16/2003 over the Ap-
palachians. The resulting 3.4 GB data set has a simple
schema with 10 attributes, each of which is stored in
a separate HDF dataset (a 2D array of 4800 * 4800
points) in one of seven HDF files, with each file corre-
sponding to a different geographical region. The data
also includes eight quality control attributes that are
mapped to a single unsigned short integers and stored
as a single dataset. All other attributes were stored
as short integers. The experiments were run on a 1.4
GHz Pentium 4 CPU with 512 MB RAM, with data on
a local disk with up to 100 MB/sec transfer rate (ac-
cording to the Maxtor web site). These experiments
were run on a uniprocessor machine and used the se-
quential version of the Maitri query manager to run
the queries.

We ran a total of 10 different queries, each of which
was recommended by domain scientists. Five of these
were two-dimensional queries over the ND Vegetation
Index (NDVI) attribute and Vegetation Index Useful-
ness (VIU) attribute. (Note: the word index is part of
the attribute name chosen by the scientists, and does
not refer in any way to bitmap indexes.) The other five
imposed conditions on attributes NDVI, VIU, Vegeta-
tion Index Quality , Aerosol Quantity , and Land Wa-
ter Mass . All the attributes except the NDVI attribute
are quality control attributes, which are mapped to
a single short and stored in a single 333 MB HDF
dataset. The NDVI attribute is also stored in a sin-
gle 333 MB HDF dataset.

To answer the two-dimensional and five-dimensional
queries without using an index, we do a sequential scan
over all the files, read both the datasets and respond
to the query. This sequential scan takes 75 seconds to
complete.

The NDVI value varies between -2000 and 10000,
making NDVI a high cardinality attribute. To effi-
ciently respond to queries to this attribute, we used a
multi-resolution index. In this case, we built two in-
dexes. In the first index, each bit vector corresponds
to one discrete value. In the second index, the values
are divided into 1,000 bins and each bit vector repre-
sents one of these bins. The quality control attributes
had only 16 different values, so no binned index was

9http://edcimswww.cr.usgs.gov/pub/imswelcome.

Query Name Query Condition
Q1 NDVI IN [6000 6100] & VIU = 4
Q2 NDVI IN [6000 6200] & VIU = 4
Q3 NDVI IN [6000 6300] & VIU = 4
Q4 NDVI IN [6000 6400] & VIU = 4
Q5 NDVI IN [6000 6500] & VIU = 4

Figure 3. The set of two-dimensional vegeta-
tion queries.

created for that dataset. The size of the NDVI in-
dex with no binning is 865 MB, while the size of the
index with 1,000 bins is 718 MB. Both these indexes
are much smaller than the theoretical maximum of 8N
bytes, which here would be 8 ∗ 1.612 ∗ 108 = 1.2 GB.

To show the effect of having two levels of indexing,
we ran the queries in two different modes. In the first
mode, the queries were answered using only vectors
from the index with no binning (in the figure these are
labeled as ”No Binning”). In the second mode, the
queries were answered using a combination of vectors
from the binned index and the non-binned indexes. For
example, for the range 6,000-6,100, the bit vectors for
6,000-6,004 were read from the non-binned index while
those for 6,004-6,100 were read from the binned index
(referred to as the multi-resolution index in the rest
of the paper). The latter mode used many fewer bit
vectors, giving much better query performance.

The two-dimensional queries that we executed are
shown in Figure 3. The running times of these queries
are shown in Figure 5(a). As described before, the
queries were run in two different modes, where the first
mode answered the queries using only the index with
no binning. In this case, as the range of the query in-
creases, the response time also increases dramatically.
This is because the logical operations in a bitmap in-
dex take time quadratic in the number of vectors being
operated upon [12]. In the Multi-resoultion Index ap-
proach, we see that the numbers are much improved.
This is because the number of bit vectors being oper-
ated upon in this case is much lower. The total number
of bit vectors being operated upon in each of the queries
is shown in Figure 5(b). We see that for Q3, the num-
ber of bit vectors being read in the Multi-resolution In-
dex is 37, while the No Binning Index uses 301 bit vec-
tors. Theoretically this reduction in bit vectors would
imply a 100-fold improvement in query performance,
but the performance gain is of a magnitude less. This
is because bit vectors with a total size of 22.22MB (for
the Non Binning index) and 21.18 MB (for the Multi-
Resolution Index) have to be read before the actual
operations can take place. This I/O time reduces the



Query Name Query Condition
Q1’ NDVI IN [6000 6100] & VIU = 4 & VIQ = 2 & LWM = 2 & AEQ = 0
Q2’ NDVI IN [6000 6200] & VIU = 4 & VIQ = 2 & LWM = 2 & AEQ = 0
Q3’ NDVI IN [6000 6300] & VIU = 4 & VIQ = 2 & LWM = 2 & AEQ = 0
Q4’ NDVI IN [6000 6400] & VIU = 4 & VIQ = 2 & LWM = 2 & AEQ = 0
Q5’ NDVI IN [6000 6500] & VIU = 4 & VIQ = 2 & LWM = 2 & AEQ = 0

Figure 4. The set of five-dimensional vegetation queries.

performance improvement.
The total sizes of the indexes that were read for the

queries are given in Figure 5(c). Despite the reduced
performance improvement compared to the theoretical
maximum, the performance improvement from using a
multilevel index is still substantial. This implies that
an approach of combining indexes at different levels of
binning is likely to lead to improved performances of
the bitmap indexes for range queries over high cardi-
nality attributes.

To show the effectiveness of bitmap indexes with
higher-dimensional queries, we also ran a set of five-
dimensional queries suggested by domain scientists.
This set of queries is listed in Figure 4, and their run-
ning times are shown in Figure 5(a). These queries
again show that the running times of the queries are
dominated by the cost of evaluating the range condi-
tion. As the range increases, the time needed to an-
swer the queries also increases dramatically. Again the
Multi-resolution Index provides a much better running
time, due to the reduced number of Boolean index op-
erations it requires. The running times for the queries
are almost the same as the running time for the queries
with the corresponding ranges in the two-dimensional
queries. This indicates that the efficiency of the in-
dexes in a multi-dimensional environment hinges on
the number of bit vectors involved at run time, and is
not sensitive to the number of query dimensions per
se. In other words, the limiting factor for bitmap in-
dex performance is not the number of attributes with
query conditions, but rather the ranges of the individ-
ual attributes in the query conditions.

4.2 Rocket Simulation Domain

These experiments employed an 11.1 GB data set
generated by a medium complexity simulation at
CSAR. The data set had 11 attributes, with 10 of type
double and one of type integer. Each attribute was
stored in 7,599 separate HDF datasets (a 3D array of
12 * 12 * 28) points, with one dataset for each at-
tribute in each of the 7,599 files. The amount of data
for each attribute is approximately 220 MB, and a se-
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quential scan over any one of the attributes takes ap-
proximately 1,003 seconds, owing to the need to open
and close 7,599 different files for each attribute.

The sequential versions of these experiments were
run on the same platform as for the vegetation experi-
ments. The parallel versions of the rocket experiments
were conducted on the Computational Science and En-
gineering Turing cluster at UIUC, which has 640 Apple
dual processor machines running at 2GHz, a Myrinet
interconnect for MPI, and a 100 Mbps Ethernet for
other network traffic, including the filesystem traffic.
The Turing cluster has a single Apple XRaid storage
server with 7 TB of storage space, connected to a Linux
NFS server over a 2 Gbps Fibre Channel Interface. The
Linux server exports the volume over NFS to the rest of
the cluster, using a 100 Mbps Ethernet link. These ex-
periments used the parallel version of the Maitri Query
Manager, creating the indexes in parallel and manipu-
lating them in parallel as well.

The queries we execute on this database were sug-
gested by scientists, and they impose conditions on the
speed of sound (af) and temperature (Tf) attributes.
(The speed of sound varies for the gas in the rocket, ac-
cording to the temperature and pressure.) Both these
attributes are of type double; af ranges from 0 to 2,000,
and Tf ranges from -250 to 24,750. Since these are both
doubles, we need to bin the data. Since the CSAR
visualization tool has a query interface that restricts
most queries to integral ranges, we chose to make the
smallest bin an integer. Thus Tf has 25,000 distinct
bins, while af has 2,000 bins. Both of these are high
cardinality attributes, so to give good performance we
once again use a multi-resolution index. For the Tf
attribute, each bit vector in the lower resolution index
corresponds to a bin of 25 different values, and in af ev-
ery bit vector corresponds to 10 different values. Thus
the number of bit vectors for the lower resolution index
is 1,000 for Tf and 200 for af. The total size of the high
resolution bitmap index is 174 MB for Tf and 121 MB
for af. The sizes of the low resolution bitmap indexes
for Tf and af are 53 and 42 MB respectively.

We ran ten queries, five of which are single di-
mensional queries of increasing range. These queries
demonstrate that as the range size increases, more and
more bit vectors must be read and operated upon, caus-
ing considerable slow down. The remaining five queries
are two-dimensional, and they show that the perfor-
mance penalty of introducing an additional dimension
is very low as long as the range restriction within that
dimension is narrow. The queries are listed in Figures
6(a) and 6(b).

The performance results for the one-dimensional
queries on a sequential machine are shown in Fig-

ure 7(a). We see that with increasing range of the
query, the performance of the query degrades con-
siderably. As in the vegetation domain, we see
that the multi-resolution index outperforms the single-
resolution index, because of the reduction in the num-
ber of bit vectors that must be read to answer the
query. The total size of the bit vectors read for each
query is given in Figure 7(c), and the total number of
bit vectors read for each query is summarized in Fig-
ure 7(b).

The two-dimensional query index operation times on
a sequential machine are summarized in Figure 7(a).
Here we see that the response time for a two dimen-
sional query is much higher than that for a single di-
mension query. This is not due to the introduction of
a new dimension per se; it is due to the fact that the
second dimension condition is a range condition with
a large range. The processing of this range slows down
the whole query. This effect is also visible when we
run the queries using the multi-resolution index. The
multi-resolution index greatly improves the query per-
formance by reducing the time needed to evaluate the
range query in the second dimension. In this case, the
performance of the multi-resolution index for the two-
dimensional query is almost as good as the performance
for the one-dimensional query.

Parallel Index Creation and Querying. Many
scientists choose to write parallel scientific applications,
so that they can simulate larger phenomena or process
larger amounts of data in a reasonable amount of time.
Thus an index manager for scientific data should be
parallelizable, in the sense that the performance of cre-
ating and querying the index should scale well as the
number of nodes in the system increases. Our prelim-
inary experiments with a parallel query processor and
index creator show that it is very easy to parallelize a
bitmap index.

The CSAR rocket simulation codes are parallel, and
CSAR also has parallel visualization tools. To evaluate
query performance in a parallel environment, we also
ran experiments on the CSE Turing cluster described
earlier. These experiments used the parallel version
of the Maitri Query Manager, creating the indexes in
parallel and manipulating them in parallel as well.

In our implementation of parallel index creation, as
each node reads a subset of the data, it creates a bitmap
index for that subset. When the data is read in later
on, the index provides efficient access to that subset of
the data. Performance results from experiments on a
small 228 MB dataset from the CSAR rocket simula-
tions are presented in Figure 8(a), while results from a
much larger 11 GB dataset are shown in Figure 8(b).



Query Name Query Condition
Q1 af IN [500 600]
Q2 af IN [500 700]
Q3 af IN [500 800]
Q4 af IN [500 900]
Q5 af IN [500 1000]
(a) 1 Dimensional Queries

Query Name Query Condition
Q1’ af IN [500 600] & Tf IN [1000 1500]
Q2’ af IN [500 700] & Tf IN [1000 1500]
Q3’ af IN [500 800] & Tf IN [1000 1500]
Q4’ af IN [500 900] & Tf IN [1000 1500]
Q5’ af IN [500 1000] & Tf IN [1000 1500]

(b) 2 Dimensional Queries

Figure 6. Queries Used for the Vegetation Dataset.
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Figure 7. Results from CSAR Dataset.

0

2

4

6

8

10

12

14

4 8 16 32

No of Processors
T

im
e

 (
s

e
c

s
)

Creation time

Query time

(a) 228 MB Dataset

0

100

200

300

400

500

600

700

800

900

16 32 64

No of Processors

T
im

e
 (

s
e

c
s

)

Creation time

Query time

(b) 11 GB Dataset

Figure 8. Parallel Creation and Query Re-
sults.

No of Processors Without Index With Index
1 195 142
4 45 41
8 22 21

Figure 9. Time taken (in secs) for two-
dimensional queries (CSAR dataset) used for
parallel runs.



The query condition executed was Tf IN [3500 3900], in
all experiments. The index is created at the block level,
i.e., each object that is being indexed is not an indi-
vidual database object, but rather a collection of lower-
level database objects. In Figure 8(a) we see that as
the number of processors increases, performance at first
improves, but then it degrades after 4 processors. This
is because after this stage the contention for reading
the startup metadata becomes the dominating factor
in performance, rather than the actual reading of the
data. Figure 8(b) shows results for a much larger data
set; here we see that with the increase in the number
of processors, the query performance improves tremen-
dously. On a closer look we see that the query per-
formance is increasing super-linearly. This is because
in the 16 processor case the load is not propoerly bal-
anced, it so happens that the files to 2 of the processors
are much larger in size and hence these two processors
end up being a bottleneck. A proper I/O load balancer
would take care of this problem.

Indexing Support for Voyager. Voyager is the
batch mode version of Rocketeer, a visualization tool
developed at CSAR. Voyager processes a series of snap-
shots from a simulation, in parallel. We integrated our
index manager with Rocketeer and ran experiments
to see how much improvement we could achieve with
indexing support in a parallel real world application.
We visualized the temperature of the rocket for a 300
MB data set. The time taken for the visualizations is
recorded in Table 9. We see that as the number of
processors increases, the improvement afforded by the
index goes down. This is because once we have more
than four processors, the initialization of the visualiza-
tion widgets and the metadata manipulation start to
dominate the run time of the visualization tool. For a
considerably larger data set where the actual reads are
the bottleneck (as happens here in the single-processor
case), the indexing offers considerable benefit over the
non-indexed case.

5 Conclusion and Future Work

We have presented one of the first detailed case stud-
ies of the use of bitmap indexes for large scientific data
sets. Our sequential and parallel experiments with veg-
etation data and rocket simulation data showed that
bitmap indexes can greatly improve execution time,
but only if the index structures are enhanced in a new
way. In particular, a hierarchy of multi-resolution in-
dexes is needed in order to limit the number of bit vec-
tors that must be read during query processing. We
also found that bitmap indexes can be created and

operated upon in parallel very efficiently, with good
scale-up in performance as the number of processors
increases. We conclude that the purveyors of scientific
I/O libraries should consider including bitmap indexes
in future releases of those libraries.
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