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Abstract

Due to the importance of collective communications
in scientific parallel applications, many strategies have
been devised for optimizing collective communications
for different kinds of parallel environments. Recently,
there has been an increasing interest to evolve efficient
broadcast algorithms for computational Grids. In this
paper, we present application-oriented adaptive tech-
niques that take into account recent resource charac-
teristics as well as the application’s usage of broad-
casts for deriving efficient broadcast trees. In partic-
ular, we consider two broadcast parameters used in the
application, namely, the broadcast message sizes and
the time interval between the broadcasts. The results
indicate that our adaptive strategies can provide 20%
average improvement in performance over the popu-
lar MPICH-G2’s MPI_Bcast implementation for loaded
network conditions.

1 Introduction

It is well known that collective communications play
important roles in the performance of parallel applica-
tions. Hence, various projects [2,5,7,8,12] have fo-
cused on optimizations of collective communications
for various kinds of parallel computing environments
including homogeneous LAN settings, heterogeneous
networks and more recently Grid systems.

Optimization of collective communications essen-
tially involves 3 main components: 1. obtaining in-
formation about resource characteristics, 2. building
models that use the resource information to estimate
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performance of collective communication trees or algo-
rithms(The performance metric that is most commonly
used is completion time of the collective operation.),
and 3. developing heuristics or search space methods
that repeatedly invoke the models to determine “opti-
mal” collective communication algorithms for a given
set of resource characteristics and collective commu-
nication parameters. Almost all optimization strate-
gies for homogeneous LAN networks and heterogeneous
networks perform the first phase during installation of
the collective communication libraries [1,3,7,12]. Thus
they assume that the network performance characteris-
tics remain stable most of the times. Some efforts also
perform the other phases during installation and con-
tinue to utilize the same communication algorithms for
all applications until the physical network topologies
and connections are changed [7,12].

Clearly, the above mentioned strategies are not suit-
able for long running parallel applications executing on
dynamic Grid environments where optimal collective
communication trees vary frequently due to frequent
variation of network performance characteristics. Re-
cently, various techniques have been developed for de-
riving efficient collective communication trees for Grid
networks. Some strategies consider only the network
topology information for optimal trees and are not
adaptive to changing network loads [2]. Heuristic tech-
niques have also been developed to determine efficient
broadcast trees for Grid systems [8,9,13]. These heuris-
tics take into account dynamic network conditions with
the help of network monitoring tools like NWS [14].
But the communication trees(schedule) for collective
communications generated by these heuristics are only
theoretically near-optimal and can potentially lead to
high network contentions due to simultaneous commu-
nications on practical Grid networks. Hence the cur-
rent efforts do not provide adequate adaptive solutions



for intensive parallel applications on Grid systems.

In this paper, we present a comprehensive set of
adaptive techniques for determining efficient broadcast
trees for long running MPI parallel applications ex-
ecuting on computational Grids. In our system, we
periodically gather network performance information.
The network information is utilized by simple commu-
nication models and simulated annealing based search
space techniques to derive efficient broadcast trees.
Our simulated annealing based algorithm can be dy-
namically tuned based on the parameters of broadcasts
that were used so far in the application. The broad-
cast parameters that are of particular interest for our
adaptive strategies are message sizes and the time in-
terval between broadcasts. Based on these dynamic
parameters, our system “tries its maximum best” to
derive an efficient broadcast tree by the time the appli-
cation invokes the next broadcast call. Thus our strate-
gies are dynamic and adaptive for all the 3 phases of
collective communication optimizations. Based on the
experiments conducted on Microgrid emulation net-
work [6,10], we find that our adaptive strategies pro-
vide 20% average performance improvement over some
of the well known strategies in loaded network condi-
tions.

In Section 2, we describe in detail the adaptive
techniques used in our system for determining efficient
broadcast trees. Section 3 explains our emulation set-
tings and present results comparing our strategies with
the MPICH-G2’s implementation of broadcast. In Sec-
tion 4, relevant work is presented. Section 5 gives con-
clusions and Section 6 details future work.

2 Methodology

In this section, we discuss the impact of network load
on the efficiency of broadcast algorithms, describe our
simulated annealing procedure for generating efficient
broadcast trees and explain implementation issues in
our adaptive strategies.

2.1 Motivation for the problem

The efficient broadcast tree for a given message size
depends on the network loading conditions and hence
the available capacities of the links in the Grid and
the message size used for broadcast and network load-
ing conditions. The network loads on shared links fre-
quently vary in Grid environments. Hence, use of a sin-
gle broadcast tree for a given message size throughout
the entire duration of a long running parallel applica-
tion, as is practiced in MPICH-G2 [2], can potentially

result in poor performance of the application as shown
in the previous efforts [8,9,13].

Some heuristic techniques that have been developed
recently [8,9,13] try to derive near-optimal broadcast
tress given various message and network parameters
using communication models to predict broadcast com-
pletion times. For example, the extended single source
shortest path algorithm and vertex labeling by Ma-
teescu [8] follows incremental construction of broadcast
trees given various parameters including message size,
time needed for message initializations, and latencies
and bandwidths of the links. The algorithm also uses
a communication model based on these parameters to
predict broadcast completion times. Although the gen-
erated broadcast trees are theoretically attractive in
terms of broadcast completion times predicted by the
communication model, the communication schedules
implied by the broadcast trees can potentially cause
high network contentions on practical Grid networks
thereby leading to very large actual broadcast comple-
tion times. This is because two distinct communication
edges of a broadcast tree derived by Mateescu’s algo-
rithm can involve the same communication resources
in the actual network.

Even though MPICH-G2’s broadcast uses informa-
tion regarding multiple levels of network topology and
does not allow more than one communication between
clusters in two different sites, the network topology,
clusters and sites are statically defined by the user be-
fore the application execution. Heuristic algorithms,
for e.g. Mateescu’s algorithm, takes into account dy-
namic network characteristics including the latencies
and bandwidths of the links for generating broadcast
trees but the trees can result in multiple communica-
tions between two clusters even if the two clusters are
separated by WAN links thus resulting in very high
actual broadcast completion times. The adaptive set
of procedures discussed in this paper tries to address
these deficiencies. Our method generates broadcast
trees based on dynamic network characteristics and in-
volves only one communication between the clusters.
In our work, a cluster/pool consisting of a set of nodes
is not statically defined but dynamically determined
based on Grid dynamics. The nodes in a pool formed
by our adaptive method are connected to each other
by links whose bandwidths are within a certain range.
The number of pools, and the sizes and structures of
the pools change as the bandwidths of the links change.
Hence our method is adaptive to Grid load and network
dynamics.



2.2 Simulated Annealing for Efficient
Broadcast Trees

At the core of our adaptive method is a simulated
annealing algorithm, basicSA, that takes as inputs,
message size for the broadcast, root of the broadcast,
a set of nodes, initialization costs of the nodes, laten-
cies and bandwidths of the links between the nodes, an
initial tree and a parameter called good_list. In our sim-
ulated annealing formulation, the initial temperature is
100 and the minimum temperature is 0. The temper-
ature is decreased by a factor of 0.8 at each step. At
each temperature, basicSA performs a maximum of 80
tree transformations, evaluating the cost of each gen-
erated tree. The tree with the lowest estimated cost
at the end of the annealing algorithm is chosen and
output as the final broadcast tree. For transforming
a tree, a random node on the path of the tree leading
to the leaf node with the longest estimated broadcast
completion time is chosen and made the child of an-
other random node in the tree. In order to estimate
the cost of broadcast for a given tree, we use the broad-
cast communication model by Mateescu [8] taking into
account latencies and bandwidths of the links and ini-
tiation costs in each node for a given message size. We
use parametrized-LogP benchmark [4] to measure ini-
tiation costs and our own communication benchmark
program to measure latencies and bandwidths !. The
good_list is an input and output parameter consisting of
a list of those broadcast trees whose estimated broad-
cast completion times are within 10% of the minimum
broadcast completion time corresponding to the best
broadcast tree. The list is updated by basicSA after
each tree transformation. The algorithm of basicSA is
given in Figure 1.

2.3 Multiple Invocations of Simulated An-
nealing

The basicSA is in turn invoked repeatedly by a driver
routine, driverSA. The algorithm of driverSA is given
in Figure 2. driverSA takes as inputs a time dura-
tion, broadcast message size, root of the broadcast,
a set of nodes, initialization costs of the nodes and
the latencies and bandwidths of the links. The time
duration, time_duration, denotes the amount of time
driverSA is allowed to execute. The main purpose of
driverSA is to produce the “best possible” broadcast
tree within the time duration. There are 2 phases in
which driverSA invokes basicSA. In the first phase, ran-
domization phase, driverSA repeatedly invokes basicSA

LCurrently, there are difficulties in executing NWS on Micro-
Grid.
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Algorithm:basicSA()

input : msg size, root, initial_tree, init_costs, lat,
band, good_list

output: best_tree, best_cost, good_list

initialTemp = 100; minTemp = 1;
TEMP_FACTOR = 0.8; BoltzmanConst = 1.0;
total_iter_for_temp = 80 ;
curTemp = initial Temp ; cur_tree = initial tree ;
cur_cost = broadcast_cost(cur_tree, msg_size,
init_costs, lat, band) ;
best_tree = cur_tree ; best_cost = cur_cost;
while curTemp > minTemp do
num_accept = 0 ; best_found = 0 ;
for iter_at_temp = 1 to total_iter_for_temp do
new_tree = transform_tree(cur_tree, root) ;
new_cost = broadcast_cost(new_tree,
msg_size, init_costs, lat, band) ;
update_good_list(good_list, new_tree,
new_cost) ;
if new_cost < best_cost then
best_tree = new_tree ; best_cost =
new_cost ; cur_tree = new_tree ;
cur_cost = new_cost ;
num_accept += 1 ; best_found = 1 ;
else
diff = new_cost - cur_cost ;
generate random number, randN €
(0,1]; ‘
tempN = Boltznzangj;,ifxcurTemp ;
if randN < exp’®”PN then
cur_tree = new_tree ; cur_cost =
new_cost ;
num_accept +=1;

end
end
if num_accept == 20 then
‘ break out of the for loop;
end

end

if num_accept < 3% of total_iter_for_temp €964
best_found == 0 then

‘ break out of while loop ;

end

curTemp = curTemp x TEMP _FACTOR ;
end

return (best_tree, best_cost, good_list) ;

Figure 1. basicSA()




with different random initial trees and obtains broad-
cast trees output from basicSA (lines 2-19). If the root
of the broadcast is contained in the set of nodes, then
a random initial tree generated by driverSA has its
root as the root of the broadcast and only the other
parts of the tree are randomly generated. The driverSA
maintains good_list, consisting of good broadcast trees,
which it passes to various invocations of basicSA dur-
ing randomization phase (line 5). After certain number
of invocations of basicSA in the randomization phase,
the driverSA switches to the second phase, refinement
phase (lines 20-35). In the refinement phase, driverSA
cycles through the trees in the good_list and repeat-
edly invokes basicSA with the trees in the good_list as
the initial trees (line 22). If the time duration input
to driverSA is not specified, the driverSA invokes ba-
sicSA fixed number of times (50 in the randomization
phase (lines 8-10) and 25 in the refinement phase (lines
26-28)). If the time duration is specified, the num-
ber of basicSA invocations are determined dynamically
based on the time duration so that the entire set of ba-
sicSA invocations in the randomization and refinement
phases are completed within the time duration. In this
case, the time at which the driverSA switches from the
randomization to refinement phase is determined us-
ing a sliding window taking into account the number
of iterations for which the best tree corresponding to
minimum estimated broadcast time has not changed in
the randomization phase and the time duration (lines
12-17).

The transition between the randomization and re-
finement phases is illustrated in Figure 3 where es-
timated broadcast times corresponding to efficient
broadcast trees determined by simulated annealing in-
vocations are plotted against time progression. The
message size used for broadcast was 1 MB. 32 nodes
were used for broadcast trees with the bandwidth ma-
trix values between the nodes randomly generated with
a uniform distribution between 0.1 and 10 Mbps, values
typical for WAN links.

2.4 Division of Nodes into Multiple Pools

With the help of some sample experiments, we com-
pared the quality of the trees generated by the simu-
lated annealing based approach explained above with
the trees generated by MPICH-G2’s and Mateescu’s
approaches 2. We found that our simulated annealing
based approach produced trees of best quality when the
number of nodes is < 16. For larger number of nodes,
the random processes in simulated annealing prevent

2The actual results of these sample experiments are not pre-
sented due to space constraint
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Algorithm:driverSA()

input : msg size, root, node_set, init_costs, lat,
band, time_duration
output: best_tree, best_cost

phase = RANDOM; rand_count = 0; good_list =
empty ;
while phase == RANDOM do
initial tree = generateRandomTree(node_set) ;
(cur_tree, cur_cost, good_list) =
basicSA (msg_size, root, initial_tree, init_costs,
lat, band, good_list) ;
rand_count +-+ ;
if time_duration == null then
if rand_count == 50 then
‘ break out of while loop ;
end
else
calculate time_elapsed, time elapsed since
start of driverSA ;
time_remaining = time_duration -
time_elapsed ;
last_time = time since best tree in
good_list has not changed ;
if last_time > 1.5x time_remaining then
‘ break out of while loop ;
end

end
end
phase = REFINE; refine_count = 0; dummy _list
= empty;
while phase == REFINE do
initial tree = next tree in good_list with
wrap-around ;
invoke basicSA on initial_tree ;
update best_tree, best_cost; refine_count +-;
if time_duration == null then
if refine_count == 25 then
‘ break out of while loop ;
end
else
calculate time_elapsed, time_remaining ;
if time_remaining < 0 then
‘ break out of while loop ;
end

end

end
return (best_tree, best_cost) ;

Figure 2. driverSA()
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the generation of best broadcast trees within short
time durations. Hence we have developed an algorithm
that partitions a given number of nodes into disjoint
clusters/pools of small size and invoke the driverSA
for each pool or node subsets. This algorithm, clus-
teredSA, partitions a given set of nodes such that the
average of communication bandwidths between nodes
within a pool is at least equal to a specified percent-
age of the maximum of all bandwidths between nodes
in the original set. In our implementations, we used 4
percentages: 10, 25, 50 and 75 resulting in 4 pool sets.
In a Grid network consisting of LAN and WAN links,
lower percentages lead to larger pool sizes or smaller
number of pools. Table 1 gives bandwidths between
8 nodes in a sample network. For these sample band-
widths, bandwidth percentage of 20 results in the for-
mation of 2 pools ({h1,h2h3,h4,h5h6}, {h7,h8}) while
bandwidth percentage of 70 results in the formation of
4 pools({h1,h2,h3},{h4,h5},{h6},{h7,h8}).

The clusteredSA algorithm is shown in Figure 4.
The algorithm receives the same inputs as driverSA
and returns the best broadcast tree as determined by
the algorithm and the corresponding estimated broad-
cast cost as outputs. The time duration parameter,
time_duration, denotes the amount of time clusteredSA
is allowed to execute. The algorithm first tries to dis-
card pool sets which contain pools of sizes greater than
16 nodes (line 11). But if all the 4 pool sets contain
pools of larger sizes, then the algorithm proceeds with
the 4 pool sets. For each pool set, clusteresSA invokes
driverSA for each pool in the set to form broadcast
trees with nodes in the pool (line 17). The roots of
the broadcast trees in the pools of the pool set form

Table 1. Sample bandwidth numbers (Mbps)
of a 8-node network

[ [ b1 [ h2 [ h3 [ h4 [ h5 [ h6 [ h7,h8 |
h1[100] 80 | 80 [ 60 | 60 | 20 10
h2 | 8 [ 100 | 80 | 60 | 60 | 20 10
h3 | 8 [ 80 [ 100 | 60 | 60 | 20 10
hda | 60 [ 60 | 60 | 100 | 80 | 40 50
h5 | 60 [ 60 | 60 | 80 | 100 | 40 50
h6 | 20 [ 20 | 20 | 40 | 40 [ 100 [ 30
h7| 10 [ 10 | 10 | 50 | 50 | 30 | 100
h8 ] 10 [ 10 | 10 | 50 | 50 | 30 80

the nodes for the next level of the algorithm (lines
19,27,28), i.e. the algorithm works with a reduced
problem/node size. New pool sets are formed consider-
ing only these root nodes and the communication band-
widths between these nodes. driverSA is then invoked
for the pools in the new pool sets. The steps of for-
mation of pool sets, invoking driverSA for the pools,
reducing the problem space to consist of only the root
nodes of the broadcast trees in the pools and joining
these root nodes are repeated (line 28) until all nodes
are contained in a single pool in a pool set (lines 4-6).
Thus clusteredSA generates highly efficient broadcast
trees within a tunable time duration for any number of
nodes.

2.5 Adaptive Broadcast Architecture:
Communication Benchmark, Applica-
tion, Broadcast Advisor

Our communication benchmark program periodi-
cally collects resource information and forms N x N la-
tency and bandwidth matrices where N represents the
number of clusters. The off-diagonal elements in the
matrices represent information on inter-cluster links
and are obtained by choosing a representative node
in each cluster and conducting benchmarking experi-
ments between the representative nodes. The diagonal
elements represent intra-cluster communication perfor-
mance and are obtained by choosing 2 nodes in a clus-
ter and conducting benchmarking experiments between
them. Although our benchmarking procedure assumes
the existence of clusters, the assumption is reasonable
since information about clusters is mostly available in
Grid information repositories. The latency and band-
width matrices are refreshed, i.e. new resource infor-
mation is collected, every 5 minutes.
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Algorithm:clusteredSA ()

input : msg_size, root, node_set, init_costs, lat,
band, time_duration
output: best_tree, best_cost

/* Initialization - step 4. Done only
during the 1st level of recursion x/
Run the algorithm without invoking
driverSA.Determine the number of pools,
total_pools, on which driverSA will be invoked. ;

time_duration .

new td = total_pools 7

if number of nodes in node_set < 16 then

‘ return output of driverSA on input ;
end
pSets = empty ;

for per € (10,25,50,75) do

‘ pSets += formPoolSets(node_set, band, per) ;
end
remove sets with sizes > 16 from pSets ;
best_cost = Large; best_tree = null ;

for each ps € pSets do
new_node_set,pTreeList,pCostList = empty;
count = 0;

for each pool € ps do

(sub_ic, sub_lat, sub_band) = sub elements
of (init_costs, lat, band) for nodes in pool ;
(tree, cost) = driverSA (msg_size, root,
pool, sub_ic, sub_lat, sub_band, new_td) ;
add (tree, cost) to (pTreeList, pCostList) ;
new_node_set += root of tree ; count ++ ;
end
if count == 1 then

(pTree, pCost) = (tree, cost) ;
if pCost < minCost then

‘ best_cost = pCost ; best_tree = pTree ;
end
else

(new_ic, new_lat, new_band) = sub
elements of (init_costs, lat, band) for
nodes in new_node_set ;

(nTree, nCost) = clusteredSA (msg_size,
root, new_node_set, new_lat, new_band,
time_duration) ;

combine nTree with pTreeList to form
pTree;

use nCost and pCostList to obtain pCost ;
update (best_tree,best_cost) ;
end

end
return (best_tree, best_cost) ;

Figure 4. clusteredSA()

We use MPI profiling interface for our implemen-
tation of MPI_Bcast. When an application calls
MPI_Bceast, the time stamp corresponding to the
broadcast and the message size used in the broadcast
are written to a file, app_file. MPI_Bcast then reads
the current best broadcast tree, corresponding to the
message size, generated from clusteredSA and performs
broadcast of the message using the broadcast tree.

The app-file written by the application is continu-
ously monitored by a persistent service, broadcast ad-
The broadcast advisor operates in 2 modes.
The first mode is when no application is running on
the system. In this mode, the advisor cycles through
different message sizes from 1 KBytes to 2 MBytes,
with increments of power-of-two, in a round-robin fash-
ion and invokes clusteredSA for each message size and
writes the corresponding broadcast trees to files. In
this mode, the time duration parameter needed by clus-
teredSA is passed as empty/null/unspecified value (the
reader is referred to decisions based on time duration
in driverSA).

VISOT.

The second mode is when a parallel application
invoking broadcasts is executing on the system. In
this mode, the broadcast advisor maintains history of
broadcast parameters corresponding to the broadcast
calls invoked in the application, and predicts the broad-
cast parameters corresponding to the next broadcast
call in the application. The particular broadcast pa-
rameters that are of interest are message sizes used in
the broadcasts and the time intervals between broad-
cast calls. The broadcast advisor reads timestamps
and message sizes from app_file and uses simple linear
regression models for predictions of next message size
and the time gap before next broadcast is called. The
advisor then cycles through a set of message sizes close
to the predicted message (predicted message size, X2,
+2) in a round-robin fashion and invokes clusteredSA
simulated annealing for each message size to determine
efficient broadcast trees and writes the trees to files.
The predicted time gap before the next broadcast in-
vocation in the application is passed as time duration
to clusteredSA so that clusteredSA can generate the effi-
cient broadcast trees for the predicted message sizes by
the time the parallel application invokes its next broad-
cast call. Thus given the history of broadcast calls in
the application, the broadcast advisor “tries its best”
to determine the best broadcast tree for the next broad-
cast invocation. The interactions between the appli-
cation, broadcast advisor, communication benchmark
and clusteredSA are shown in Figure 5.
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3 Experiments and Results

In this section, we describe our experiment setup
and comparisons of our methodologies with MICH-G’s
and Mateescu’s strategies. In order to validate our
collective communication optimization strategies, we
utilize the Microgrid [6,10] emulation framework from
University of California, San Diego. Microgrid helps
to emulate large-scale virtual Grid environments using
smaller number of machines. For all our experiments,
Microgrid was run on a cluster of 7 Intel Pentium 4
nodes connected by 100 Mbps Ethernet. Each node
has a 2.8 GHz processor with 512 MB RAM, 80 GB
hard disk and running Fedora Core 2.0 Linux 2.6.5 op-
erating system.

We utilized Microgrid to emulate a simple version
of TeraGrid [11] framework. Our simple Teragrid
framework consists of 4 sites, namely, San Diego Su-
per Computer Center (SDSC), Argonne National Lab.
(ANL), National Center for Supercomputer Applica-
tions (NCSA) and Pittsburgh Supercomputer Center
(PSC). The framework consists of 8 clusters named C1
to C8 distributed across the 4 sites and consisting of 64
nodes as shown in Figure 6. The links in the figure are
labeled by latencies and bandwidths of the links. The
clusters represented by circles also show the number
of nodes in the clusters. In our TeraGrid framework,
intra-cluster connections have 100 Mbps bandwidths
and the machine speeds are 1.5 GHz. Although our
simple version is different from the real TeraGrid net-
work in terms of number of clusters, sites, number of
nodes within each cluster and interconnection speeds
within clusters, the general framework of our version is
similar to the actual TeraGrid in terms of interconnec-
tion topology.
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Figure 6. TeraGrid framework

Our communication benchmark program runs con-
tinuously on 8 representative nodes of the 8 clusters
and measures latencies and bandwidths of links be-
tween the clusters. The broadcast advisor service is
run on cluster C2 in SDSC. In our experiments, a node
in C2 is chosen as the root of the broadcasts. A net-
work loading program was used to introduce synthetic
network loads on the links and to reduce the available
bandwidths of those links. The amount and duration
of the load can be specified to the loading program.
The loading program takes as input a source and des-
tination host. It then continuously sends packets of
fixed sizes from the source to the destination thereby
reducing the end-to-end bandwidth from the source to
the destination host.

In our experiments, parallel application with broad-
cast calls are executed with MPICH-G2 topology-aware
hierarchical broadcast tree, dynamic broadcast trees
generated by Mateescu and by our adaptive approach
using the same load dynamics and the performance
of broadcasts are compared between the three ap-
proaches. The MPICH-G2 broadcast tree for the Ter-
agrid framework is shown in Figure 7. The small dark
circles denote representative nodes of the clusters. Bi-
nomial trees for broadcast communication are used
within clusters in MPICH-G2 broadcasts. The open-
ended lines from the representative nodes in the fig-
ure denote the initiations of binomial broadcasts. For
generating Mateescu’s broadcast trees, the same archi-
tecture shown in Figure 5 is used where the broad-
cast advisor, instead of invoking clusteredSA, invoked
Mateescu’s algorithm. Both Mateescu’s and adaptive
approach utilized initiation costs of all 64 nodes, and
latencies and bandwidths of all the links (64x64-64)
between the nodes to derive broadcast trees containing
the 64 nodes.



Figure 7. MPICH-G2’s broadcast tree for the
TeraGrid framework

In the experiment, we used a synthetic MPI parallel
application that invokes about 60 MPI_Bcasts with dif-
ferent message sizes and time intervals between broad-
casts. The root initially broadcasts a message of 1
MBytes. The message size is then decreased linearly
for subsequent broadcast invocations. The time inter-
val between broadcasts is initially set to 90 seconds and
then decremented exponentially for subsequent invoca-
tions. This broadcast pattern is usually seen in numer-
ical linear algebra applications, for e.g. right-looking
Gaussian elimination, in which sizes of the panels to
be factored, the message sizes in broadcasts and the
amount of computations between broadcasts decrease
with iterations.

While the application was executing, artificial net-
work loads were introduced on different links to/from
C3 cluster at different points of application execution.
The links chosen for loading, the amount of the net-
work loads (50%-90% bandwidth reductions), the time
durations of the loads (6-8 minutes), time durations
between two successive loads (4-7 minutes) were ran-
domly varied with uniform distributions. When the ap-
plication was executed with Mateescu’s and our adap-
tive broadcasts, the broadcast advisor was run on the
same machine as the root of the broadcast. The ad-
visor monitored the broadcast message sizes and the
time durations between the broadcasts in the applica-
tion and invoked either Mateescu’s algorithm or clus-
teredSA to determine efficient broadcast trees. These
efficient broadcast trees were in turn used by the appli-
cation for the subsequent broadcasts. Figure 8 shows
the broadcast completion times for the different broad-
casts used in the application with MPICH-G2’s, Ma-
teescu’s and our adaptive broadcasts.

The Figure shows that Mateescu’s tree consistently
performs worse than the other 2 trees. As mentioned
earlier, the theoretically near-optimal trees generated

Excecution of Sample Application using MPICH-G2, Mateescu and Adaptive trees
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Figure 9. Broadcast tree by Mateescu for the
6'" broadcast

by Mateescu’s approach lead to network contentions
due to simultaneous communications in practical net-
works and hence result in sub-optimal broadcast per-
formance. Figure 9 shows a part of a broadcast tree
derived by the Mateescu’s algorithm for the 6" broad-
cast call. The tree shows the nodes and communication
edges involving C2 cluster in SDSC and C8 cluster in
PSC. In this tree, a number of communication edges
exist between the node in C2 cluster and the nodes in
C8 cluster. Even though these communication edges
appear to be distinct, these edges involve large num-
ber of common network components including routers,
switches and links. The communication edges con-
necting a cluster in a site with another site involves
WAN resources which are typically scarce and shared.
This results in contention of resources and hence large
broadcast completion times.

As Figure 8 shows, our adaptive techniques per-
formed better than MPICH-G2 broadcasts under
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Figure 10. Broadcast tree generated by our
adaptive approach for 14" broadcast

loaded conditions (as represented by peaks) and per-
formed worse than MPICH-G2 broadcasts under un-
loaded conditions (as represented by valleys). Under
loaded conditions, the percentage improvement of our
adaptive approach over MPICH-G2’s approach ranges
between 1.47%-64.57% with average performance im-
provement of 19.58%. During conditions when links
to/from C38 are loaded, use of C3 as an intermedi-
ate node of the hierarchical MPICH-G2 tree shown in
Figure 7 presents a major bottleneck in the propaga-
tion of broadcast messages to other clusters at the last
level and hence significantly delays the completion of
the broadcast. Our adaptive techniques automatically
detect the load on the links to/from C3 and generates
efficient trees where C3 is “pushed” to the lowermost
level. This leads to performance improvements over the
static MPICH-G2 tree. Figure 10 shows the broadcast
tree generated by our adaptive approach for the 14"
broadcast. In this case, load was applied between a
host in C1 and one in C3. As can be seen from the fig-
ure, our adaptive method produces an efficient broad-
cast tree where neither C3 nor C1 is used to propagate
messages to other clusters.

In unloaded conditions, the trees generated by our
adaptive approach were equivalent to the MPICH-G2’s
broadcast tree. But the additional overheads in our
advisor architecture result in performance degradation
of our broadcast. One source of overhead is that in
addition to the propagation of the actual message dur-
ing broadcast, information regarding the dynamic tree
should also be propagated to the nodes in our adaptive
approach while this information is statically known in
MPICH-G2’s broadcast. Our current work is on im-
proving the advisor architecture to reduce extra over-
heads and improve the performance of our adaptive
broadcast for unloaded network conditions.

In Figure 8, for the 48" broadcast, we find that the
completion time of the adaptive broadcast increases

while the completion time of the MPICH-G2’s broad-
cast decreases to a small value. This is due to the
classical “stale information” problem where the change
in network loads from high to low values is not im-
mediately updated by network monitor for use by our
adaptive approach. Hence the tree that was generated
in our adaptive approach for high load conditions gives
poor performance for unloaded conditions.

4 Related Work

Various research efforts have focused on determining
efficient broadcast trees for Grid-scale systems. Mag-
Ple [3] uses parametrized-logP model to determine the
completion time of a given broadcast tree. Their model
utilizes different parameters that are dependent on net-
work characteristics and message sizes. Although they
derive broadcast trees during the run time of the ap-
plication using hill climbing techniques, the broadcast
tree for a particular message size and a particular net-
work remains the same irrespective of the load dynam-
ics.

The comparison of our work with the static MPICH-
G2’s broadcast strategy is adequately covered in the
paper. Heuristic techniques have been developed to
build broadcast trees based on dynamic network load
conditions on Grids. The work by Vorakosit and
Uthayopas [13] uses genetic algorithms to derive op-
timal broadcast trees. The work by Park et. al. [9] has
the same motivations as our work in that it takes into
account the dynamic network properties to determine
broadcast trees. They use Hierarchical Latency Op-
timal Tree (HLOT) algorithm that uses dynamic net-
work latency information from NWS to minimize the
sum of latencies in the longest path from the root. Re-
cently, the work by Mateescu [8] uses NWS network
information, simple communication models, general-
ized Dijikstra’s single-source shortest-path algorithm
and node labeling based on post-order traversals to de-
termine efficient broadcast trees. As discussed in the
previous sections, Mateescu’s algorithm can result in
large broadcast completion times in practice. Also, the
heuristic techniques are not tunable in terms of their
execution times and do not consider application charac-
teristics. Our method considers application’s behavior
and is suitable for long running parallel applications on
dynamic Grid environments.

5 Conclusions

In this paper, we proposed adaptive strategies where
the broadcast tree for a message size is varied depend-



ing on resource conditions. Our strategies use light-
weight simulated annealing based approach to generate
efficient broadcast trees based on the parallel applica-
tion’s usage of broadcasts. Our strategies are com-
pared with the popular MPICH-G2’s hierarchical tree
approach. Our adaptive strategies exhibited 20% av-
erage improvement in performance over MPICH-G2’s
hierarchical tree approach.

6 Future Work

Although the communication model based on laten-
cies, bandwidths and initiation costs, used in our sim-
ulated annealing algorithm can give reasonable predic-
tions, it cannot give accurate estimates due to various
factors including Grid topology, various MPI imple-
mentation complexities, buffering strategies etc. We
plan to include non-intrusive real broadcasts to aug-
ment the predictive models in order to improve the
efficiency of broadcast trees.
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