
A Design of Overlay Anonymous Multicast Protocol

Li Xiao1, Xiaomei Liu1, Wenjun Gu2, Dong Xuan2, Yunhao Liu3

1Dept. of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
2Dept. of Computer Science and Engineering, Ohio State University, Columbus, OH 43210, USA

3Dept. of Computer Science, Hong Kong Univ. of Science and Technology, Kowloon, Hong Kong

Abstract
Multicast services are demanded by a variety of appli-

cations. Many applications require anonymity during their
communication. However, there has been very little work
on anonymous multicasting and such services are not
available yet. Since there are fundamental differences be-
tween multicast and unicast, the solutions proposed for
anonymity in unicast communications cannot be directly
applied to multicast applications. In this paper we define
the anonymous multicast system, and propose a mutual
anonymous multicast (MAM) protocol including the design
of a unicast mutual anonymity protocol and construction
and optimization of an anonymous multicast tree. MAM is
self organizing and completely distributed. We define the
attack model in an anonymous multicast system and ana-
lyze the anonymity degree. We also evaluate the perform-
ance of MAM by simulations.

1. Introduction

It is well known that multicast services are demanded by
a variety of applications, e.g., Video conferencing, Internet
based education, NASA TV, software updates etc. How-
ever the inability of the Internet to support multicast is
patent. To alleviate this, multicast services on overlay
networks have been proposed [3, 5, 6, 9, 10, 20, 22, 27, 29,
31, 33] and implemented [8] by the research community.
The salient features of overlays include ease of deployment
and flexibility. We envisage that in the near future, a wide
variety of applications will be able to enjoy multicast ser-
vices on overlay networks. Apart from commercial appli-
cations, we believe that government and military organiza-
tions will also use such services due to the several advan-
tages multicast has to offer.

It follows to expect that, as multicast services continue
to be deployed, existing and future multicast applications
will also demand the security features that unicast com-
munications have. Security in multicast communication has
been addressed in [4, 19, 21]. Most of the work here focuses
on authentication of the senders and receivers and the effi-

cient distribution of the keys to all legal group members and
exclusion of members leaving the group. Our focus here is
providing anonymity in multicast communications. Ano-
nymity is an important component of security and is de-
manded by many applications. Some of them are: Critical
multicast services like military, emergency applications,
where strategic information and critical updates are trans-
mitted to multiple destinations needing anonymity from
external observers. Multi-party video conferencing appli-
cations carrying classified information will need anonymity
from external observers and other members in the group.
Large business organizations may have to multicast data-
base updates to many sites for synchronization, and such
applications will demand anonymity from rival organiza-
tions.

Solutions proposed for anonymity in unicast communi-
cations can not be directly applied to multicast applications.
The fundamental difference between multicast and unicast
is the concept of a group in multicast. Due to the correlation
among nodes, there are special challenges in achieving
anonymity in multicast: (1) the anonymity semantics in
multicast are different from those in unicast. For sender
anonymity, the sender needs to hide not only from one
receiver, but from a subset of, or all the receivers. In re-
ceiver anonymity, the receiver may need to hide not only
from the sender, but also from other receiver(s). There is a
special issue in anonymity in multicast called group ano-
nymity, where the presence of the group is not disclosed to
outsiders. (2) Multicast services naturally need the exis-
tence of a tree. Exposing this tree itself will compromise the
degree of anonymity. In contrast, in unicast, the path from a
sender to a receiver is much easier to hide. (3) Membership
management is a challenging issue in multicast. Member
joining and leaving makes anonymity difficult. (4) There
are other inherent challenges for secure multicast services
such as group key management etc.

In this paper, we use an overlay solution and propose the
mutual anonymous multicast (MAM) protocol, including
the design of a unicast mutual anonymity protocol and
construction and optimization of an anonymous multicast
tree. MAM is self organizing and completely distributed.
The main contributions of this paper are as follows.

1. We define different types of anonymity in an anony-
mous multicast system, and show the rational of our focus
on multicast mutual anonymity.

This work is supported in part by the US National Science Foundation

under grants CCF-0325760, CCF 0514078, CNS 0549006, CCF 0329155
and CCF 0546668, and by Hong Kong RGC DAG04/05.EG01.

1-4244-0054-6/06/$20.00 ©2006 IEEE

2. We propose the MAM protocol, and address the
critical issues in this protocol, which include an efficient
and robust unicast initiator anonymity protocol, an efficient
unicast mutual anonymity protocol, and an effective
anonymous multicast construction approach. The
self-organized and completely distributed design of MAM
can efficiently realize mutual anonymity in overlay multi-
cast systems.

3. We define the attack model to an anonymous multi-
cast system, and theoretically analyze the anonymity degree
of the MAM protocol.

4. By an extended simulation study, we show the effec-
tiveness of MAM in a dynamic environment.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 presents the MAM pro-
tocol design. Section 4 analyzes anonymity degree. Section
5 evaluates the performance of the MAM protocol. We
conclude the work in Section 6.

2. Related Work

We introduce the related work to this research here. We
will focus the work on (1) basic multicast (no security and
anonymity), (2) anonymous unicast, and (3) multicast ano-
nymity.

2.1 Basic Multicast

Originally, multicast research was focused on net-
work-layer. However, no real multicast service has been
provided at the network layer. The main issues in net-
work-layer multicast are deployment and scalability issues.
Recently, the focus has been moved up to application-layer
multicast [3, 5, 6, 9, 10, 20, 22, 27, 29, 31, 33]. It is well
believed that application-layer solutions provide much
flexibility in design and implementation. Overlays are in-
creasingly being used to deploy network services for dif-
ferent applications since they have the advantages of being
easy to implement and flexible in adapting to dynamic
underlying networks[22]. A list of overlay applications is
given in [22], such as file sharing and network-embedded
storage, content distribution networks, routing and multi-
cast overlays, QoS overlays, scalable object location,
scalable event propagation, wireless and mobile systems,
and cluster-based overlays constructed among sensor
nodes [18].

2.2 Anonymous Unicast

Some work has been reported on overlay anonymous
unicast, such as Tarzan [12] and our work [32]. The essen-
tial techniques to achieve unicast anonymity can be classi-
fied into the following categories: routing, addressing,
layered encryption, and traffic covering. In the routing
approach, there can be either indirect forwarding, i.e. the
use of intermediate nodes (forwarders) to hide correlation

between the sender and the receiver [7, 28], or flooding [26].
In addressing, it can be implicit, i.e. the address contains no
information either on the actual location of the addressee or
on the physical reachability of the addressee [14, 15], or
explicit, i.e. the address contains information that can be
used in a straightforward manner to route a message to the
addressee [30]. Layered encryption is often used in ano-
nymity protocols [7, 28]. Traffic covering can prevent
traffic timing analysis [13, 17]. These techniques often
work together to achieve anonymity. For example, indirect
forwarding needs layered encryption to encrypt the identi-
ties of forwarders. Flooding needs implicit address.

There are two ways to choose forwarders in the indirect
forwarding approaches. It can be in a centralized fashion,
such as Onion [28], or a distributed fashion, such as Crowds
[23] and Tor [11]. In the centralized fashion, some centers
(maybe the sender or receiver) choose the whole list of
forwarders and use layered encryption techniques to en-
crypt them. The list of forwarders will be piggybacked in
the message. The problem is the center needs to know the
global network information, which is not scalable in a large
scale network. In the distributed fashion, during the mes-
sage forwarding, the next-hop forwarder is decided by the
current forwarder (there are certainly some variations). The
mechanism is scalable and can be applied in sender ano-
nymity. However, it is hard, if not impossible for the latter
to be used in receiver anonymity.

2.3 Anonymous Multicast

Little work [16, 30] has been reported on anonymous
multicasting. Anonymous multicast communication service
is not available yet. Authors in [30] proposed the use of a
proxy, called SAM server, to hide some receivers. The main
idea is first to add a SAM server as a normal node into a
multicast tree, then attach receivers to the SAM server so
that they are hidden by the server from other members. The
concept of SAM server is a kind of extension to proxy or
mixer in unicast. There are some drawbacks of this system.
If there are multiple receivers attached to a SAM server,
there exists another multicast anonymity problem among
these receivers. The SAM server can be a target of attack. It
however should also be trusted. Some types of multicast
anonymity have not been addressed, such as multicast
mutual anonymity and multicast group anonymity.

3. MAM Protocol

In this section, we define multicast anonymity and pre-
sent the design of MAM protocol.

3.1 Definition of Multicast Mutual Anonymity

We assume every node could be a sender and a receiver
in the service. Nodes that are neither senders nor receivers
are called outsiders to the group.

Definition 1: Multicast mutual anonymity. Here a set
of members desire to be hidden from others. Members in
such a set need to achieve mutual anonymity from each
other. Such a set can be a pair, such as the sender and a
receiver; or one receiver and another receiver. The set also
can be multiple members and may even include all mem-
bers (i.e. complete anonymity).

Multicast mutual anonymity can cover multicast sender
anonymity (hide the sender’s identity) and receiver ano-
nymity (hide one or more receivers’ identities). Of course
multicast sender anonymity and receiver anonymity can be
achieved by simpler protocols than that for multicast mu-
tual anonymity. Multicast mutual anonymity is the focus of
this paper. Another type of multicast anonymity is group
anonymity, which hides the existence of a multicast group
session from all outsiders. Traffic covering approaches can
be used to achieve multicast group anonymity, which is out
of the scope of this paper.

We define three types of nodes in a mutual anonymous
multicast system.

(1) Anonymous member nodes, AM nodes in short, are
the member nodes whose identities need to be hidden from
all member/non-member nodes.

(2) Non-anonymous member nodes, NM nodes in short,
are the member nodes that need not to be hidden from oth-
ers.

(3) Middle Outsider, MO nodes in short, are the nodes
that do not need to receive any packets from the source for
their own purpose, but providing packet forwarding service
for the multicast system. If needed MO nodes are invited by
the system for improving the overall efficiency. They do
not hide their identity.

One naïve approach to achieve anonymous multicast
services is to treat multicast as a set of unicast communi-
cations from the sender to the individual receivers and then
directly apply one of the unicast anonymity schemes dis-
cussed in Section 2. While the approach is simple, it is
inefficient. To achieve high efficiency and reduce the re-
dundancy of multicast message transmissions among mul-
tiple receivers, multicast always relies on some structure
present to deliver a message. The structure is usually a tree,
and the tree can be source-based or core-based. Unicast is a
special case of multicast, where the structure is a path. The
potential solution to anonymous multicast must center on
the concept of the tree. We believe it is the main difference
and also the source of challenges in achieving anonymity in
multicast compared with anonymity in unicast.

3.2 Design Consideration of Anonymous Multicast
Systems

We need to consider both multicast tree efficiency and
anonymity degree in the design of a multicast mutual ano-
nymity protocol. An example is shown in Figure 1, in which
we can see that an optimal multicast tree without (Figure

1(a)) and with (Figure 1(c)) anonymity concern are very
different, where the cost of an AM-NM connection is 6
times that of an NM-NM connection and the cost of an
AM-AM connection is 15 times that of an NM-NM con-
nection. We have the following objectives in designing
MAM protocol.

(1) High mutual anonymity degree: the identity of each
anonymous node (AM), whether a sender or a receiver, in a
multicast group should be hidden from all group members
and outsiders.

(2) Delivery efficiency: a smart tree with consideration
of anonymity is built with low average delay and low re-
source usage.

(3) Distributed fashion: the construction of the anony-
mous multicast system must be completely self-organizing
and in a distributed manner. No trusted central server is
involved. Further, MAM must be robust in a dynamic
overlay environment.

(4) Self-optimization: MAM will allow all the nodes to
incrementally optimize the system, by reconstructing the
tree and inviting more middle outsiders (MO nodes) to
improve the overall performance.

Figure 1: An example of multicast tree with and
without anonymity concern

Here is the basic idea of MAM. A set of NM nodes form
an efficient multicast tree in terms of bandwidth and/or
delay. Nodes of the tree are degree-bounded. Early AM
nodes connect unsaturated NM nodes, or MO nodes (if MO
nodes have been invited) on the tree using a unicast initiator
anonymity protocol. When there is no unsaturated NM node
in the tree, a joining AM node will connect to another un-
saturated AM node in the tree using a unicast mutual ano-
nymity protocol. If there are too many AM nodes in the
system, MO nodes will be invited to join the multicast tree
so that the new AM node can connect with the MO node
using a unicast anonymity protocol. When to invite MO
nodes depends on the cost ratio of unicast initiator ano-
nymity protocol and unicast mutual anonymity protocol,
and the ratio of AM nodes in a system. The pseudo code for
a joining node P is:

P contacts a bootstrapping server and gets a list of members;
P contacts one active member and gets a full list of members;
If (P is an NM node)
 make a direct connection to an unsaturated NM node;
If (P is an AM node) {
 If (P can find unsaturated NM members)
 make AM-NM connections with few unsaturated NMs;
 else
 If (P can find unsaturated AM members)
 make AM-AM connections with several AMs;
If (# of AMs/# of NMs > IT)
 Invite MO nodes;
If (timeout)
 tree optimization;

Therefore, there are mainly the following three key is-
sues to be addressed in MAM: a unicast initiator anonymity
protocol for AM-NM connections, a unicast mutual ano-
nymity protocol for AM-AM connections, and anonymous
multicast tree construction and optimization, which are
discussed in detail in following subsections.

3.3 Unicast Initiator Anonymity Protocol Design

The idea of Onion and a reverse Onion can be used to
achieve initiator anonymity for bi-directional communica-
tion. Since an AM node has more than one choice for NM
nodes to make AM-NM connections with, we optimize the
Onion protocol as follows to keep both strong anonymity
and robustness.

In the improved protocol for AM-NM connection, a
Remailer (a reverse Onion) is generated by the AM node for
the NM node to anonymously send messages to the AM
node. In the AM NM communication direction, the AM
node uses an approach similar to Crowds and Tor, in which
each middle nodes in the path can make a decision to for-
ward the message to another middle node or the NM node.
This approach is more robust than Onion in the case of
middle node failure. In order to simplify the protocol de-
scription, we use S to denote the AM node, and use R to
denote the NM node, as below. Note that S knows R’s
identity, but R does not know anything about S. Since this

connection is initiated by S, we also label S as the initiator.
In the rest of the paper, we use where {M}K indicates that M
is encrypted with the key K. Kp+ denotes p’s public key and
Kp- denotes p’s private key.

Step 1: The node S first generates m, the number of
middle nodes in the Remailer. S then randomly selects a list
of m nodes, p0, p1, p2,…, pm-1 to form a Remailer. The life-
time of this one-time Remailer in seconds is also generated.
The Remailer is built with S as the last member of the path
and with pi in the middle. It is of the form:

{pm-1,{p(m-2),…{p0,{S}Kp0+…}Kp(m-2)+}Kp(m-1)+}KR+.
Step 2: S randomly selects a node, q0, sends it the mes-

sage: S q0: {R, {Remailer, lifetime}KR+}.
Step 3: A peer qi can elect itself to act as a deliver with a

predefined forwarding probability h. If qi is self-elected, the
message {Remailer, lifetime}KR+ will be delivered to the
non-anonymous member node R directly. Otherwise, qi will
randomly select another node, qi+1 and forward the message
{R, {Remailer, lifetime}KR+} to it.

Step 4: On receiving the message {Remailer, life-
time}KR+, R uses its private key to decrypt the encrypted
message.

Step 5: R generates a symmetric key K, and encrypts the
multicast packet f with K. R then encrypts K with its private
key. It keeps sending multicast packets with the format as
below through the Remailer to S:

R S: {f}K, {K}KR-

Step 6: S uses R’s public key to decrypt the symmetric
key K, and uses K to decrypt the content encrypted by K.

At any time, a node R may have one or more Remailers.
It will check the age and the expected lifetime for each
Remailer periodically and delete obsolete Remailers. Each
live Remailer corresponds to one AM node. Each AM node
may connect with different NM nodes with the same or
different Remailers for two reasons: increasing the diffi-
culty for a NM node to guess the identity of the AM node,
and providing multiple paths to the AM node in case of
failure of any middle nodes in a Remailer. Two many Re-
mailers for the same AM node will increase overhead,
which can be adjusted by setting shorter lifetimes for the
Remailers.

3.4 A Unicast Mutual Anonymity Protocol Design

When a joining AM node cannot find an unsaturated NM
node in the tree, one option for him is to connect to another
unsaturated AM node in the tree using a unicast mutual
anonymity protocol. Most unicast mutual anonymity pro-
tocols [12, 23, 26, 28, 32] were proposed for file sharing
systems and may not be applicable here directly because of
their low efficiency. Therefore, we need to design a new
unicast mutual anonymity protocol. Designing an efficient
mutual anonymity protocol is difficult, but is possible here
by utilizing the mechanism of MO node invitation.

We can use IP addresses to identify NM/MO nodes be-
cause they do not need to be anonymous. Instead, each AM
node randomly selects an 18 byte value using a certain
algorithm to ensure its uniqueness when it joins the system.
Note that AM nodes may change their IDAM at any time for
anonymity consideration. At the time of its joining, each
AM node is bounded with one or multiple MO nodes,
which means an AM node sends Remailers to its bounded
MO nodes, and its IDAM and bounded MO nodes’ IP ad-
dresses, e.g. IDAM-IPMO1, …, IDAM-IPMOi, …, will be kept in
other NM nodes.

When an AM node (AM1) decides to make a connection
to another AM node (AM2), it will select one of its bounded
MO nodes (MOi) to establish a connection with and one of
AM2’s bounded nodes (MOj). The connection between
AM1 and MOi, and the connection between AM2 and MOj
are established by the unicast initiator anonymous protocol
introduced in the previous section. A connection of
IDAM1-IPMOi-IPMOj-IDAM2 is therefore established to achieve
mutual anonymity between AM1 and AM2.

3.5 Anonymous Multicast Tree Construction

Many previous studies have intensively studied how to
build an efficient overlay and optimize a random overlay,
so we will not focus on this issue in this paper. We use an
idea similar to the Narada protocol [10] to build our mul-
ticast overlay among NM/MO nodes. The basic idea of
Narada is to construct an efficient connected mesh first.
Narada then constructs shortest path spanning trees of the
mesh, each tree rooted at the corresponding source using
well known routing algorithms.

As in Narada, every NM node and invited MO node has
a full list of all the members. A joining node is able to get a
list of group members (not necessary complete or accurate)
by an out-of-band bootstrap mechanism, and randomly
selects several unsaturated members to connect with. If the
new joining node is an AM node that needs to hide its
identity, it will randomly select one or multiple unsaturated
NM/MO nodes forming anonymous connections with them,
which is described in Section 3.3.

The multicast tree needs to be maintained. All the NM
nodes probe their distances with all the other NM nodes and
share the information among the overlay, so that every
single node has an identical distance table including each
pair of the NM nodes. As our design is for small sized
systems, maintaining such a list is not difficult. With such a
table, a good multicast tree including all NM nodes can be
easily computed and maintained [10]. The distance between
a NM node and an AM node is not available because the
AM node is anonymous to NM nodes, but it is also not
necessary since the AM node is connected with a NM node
via a number of middle nodes making the direct distance
between the AM node and the NM node meaningless in
optimizing the tree. However, the IDAMs of the AM nodes

can be kept in the NM nodes, and a NM node knows the
number of AM nodes that connect with it via anonymous
passage but does not know their identities. In optimizing the
tree, this NM node will subtract the number of its connected
AM nodes from its bounded degree.

When a joining AM node cannot find an unsaturated NM
node in the tree, one option for him is to connect to another
unsaturated AM node in the tree using a unicast mutual
anonymity protocol described in Section 3.4. However, we
do not wish to see too many AM-AM mutually anonymous
connections for performance reasons. Therefore, in some
situations, MAM considers inviting some MO nodes to help
by joining the system. We define an Invitation Threshold,
IT. When the ratio of AM nodes to NM/MO is greater than
the value of IT, the system will try to invite some MO nodes
to join. When MO nodes are invited into the systems,
joining AM nodes will have chances to join the tree by
making AM-NM connections instead of more expensive
AM-AM connections.

3.6 Cost and Latency of Anonymous Connections

There is additional cost and latency for multicast sys-
tems when we try to provide anonymity to a set of member
nodes, and hence it is of great importance to discuss this
cost and latency. We have the following observations on the
cost and latency of the above proposed unicast mutual
anonymity protocols of MAM.

First, the selection of the number of middle nodes, m, has
great impact on the anonymity degree and the cost of the
connections. Obviously there is a tradeoff between the
anonymity degree and the cost. Specifically, a larger m will
provide a higher anonymity degree while incurring larger
cost and latency.

Second, the predefined forwarding probability h also
partially influences the cost and latency of data delivery in
the system. In MAM, for simplicity, we uniformly select
the value of h for the peering nodes. In real systems, nodes
may select h independently, and the variety of h will im-
prove the anonymity degree provided to the clients.

Third, the average cost of an AM-AM connection is at
least two times greater than an AM-NM/MO connection. If
we take (1) the dynamic nature of the member nodes, and (2)
each AM node may use a set of NM/MO and switch some
of them, into consideration, the average cost of an AM-AM
connection is more than twice of that of an AM-NM/MO
connection.

4. Anonymity Degree Analysis

4.1 Attack Model

We assume the attacker will break into some overlay
nodes chosen randomly in one round and try to figure out
who the AM node is using the information he gets from
some broken nodes. We assume the attacker can find the

single parent and k children of all the nodes that have been
broken. We also assume that the broken node keeps for-
warding the packets in the same way as before it is broken.
We call the parents of all those broken nodes the potential
root of a subtree with AM nodes, which is called an implicit
tree. The attacker will give each potential root a coefficient
that is related with the probability regarded by the attacker
as the root of the implicit tree by utilizing the information
he gets from all the broken nodes. A node that is more likely
to be the root of the implicit tree has a higher coefficient,
which means it is more important than other broken nodes
and more prone to further attack.

The objective of the attacker is to use the above coeffi-
cients for future attacks, e.g., the attacker can launch con-
gestion attack to the potential root(s) to deny the service of
as many receivers as possible, or the attacker can launch
another break in attack to the potential root(s) to find the
identity of the root of the implicit tree. No matter what the
next attack is, the attacker will try to attack the node(s) that
are more likely to be closer to the root of the implicit tree
since he can potentially deny service to more receivers if he
launches a congestion attack or has a higher probability to
get the identities of all the receivers in the implicit tree if he
launches a break in attack.

One thing to be reminded of here is that two broken
nodes that are two layers apart can generate a broken tree
with length of three by sharing information with each other.
An example is that node A is in the ith layer, while node B is
in the (i+2)th layer. After sharing the parent and children
information with each other, node A finds that the parent of
node B is actually one of its children, so a three layer bro-
ken tree is generated by nodes A and B. In this case, an
unbroken node can also be on a broken tree as long as both
its parent and at least one of its children are broken. We call
node A the head of the broken tree if and only if node A is
broken while its parent and grandparent are not broken.
Similarly, we call node B the tail of the broken tree if and
only if node B is broken while none of its children and
grandchildren are broken. If node A is in the ith layer and
node B is in the jth layer, we call this broken tree a broken
tree with the length j-i+1, which is basically the number of
nodes in this broken path. Generally, all the broken nodes
can form a broken forest comprised of several broken trees
that are subtrees of the implicit tree. We denote the length
of a broken tree as the length of the longest broken path in
the broken tree.

4.2 Anonymity Degree Analysis

The metric we use to analyze anonymity degree is Preveal,
which is the probability that the identity of an AM node is
revealed. If the AM node itself is broken, this probability is
1; otherwise, we calculate this probability according to a
weight. Each node has a weight that stands for how sure the
attacker thinks that this node’s parent or one of its children

is an AM node. Each node could be the root of a broken tree
or the tail of a broken path, which we will define later. We
believe the longer the broken tree or the broken path is, the
more weight the attacker will give to this node.

We assume here the multicast tree structure is a k-nary
incomplete tree with L+1 layers and the root node is at
Layer 0. Here an incomplete tree means that some receivers
are not in the Lth layer. The receivers can be located from
the first layer to the Lth layer. We assume in the incomplete
tree scenario, each node has either 0 or k children. We
introduce the incomplete tree in the hope of achieving better
bandwidth efficiency since there is no redundant link in an
incomplete tree. Here, we introduce a set of parameters

{ ,i jq }, which is a value given to each node ,i jp in the

tree. We let ,i jq be 1 if node ,i jp is a real node in the

tree. We let ,i jq be 0 if it does not exist in the tree. We

also assume that the attacker has successfully broken into N
nodes in this tree. Since the attacker chooses the nodes
randomly for break in attack, the probability of each node in
the tree being broken is equal, which is shown below.

,

0 1

/

i

L k

broken i j

i j

P N q
= =

= ∑∑ (1)

If the root of the tree is one of the broken nodes, the at-
tacker has already obtained all the information he needs.

Otherwise, there is a probability s
attackp that the real root

will be regarded as the root and may be subject to the next
attack. The overall probability that the identity of the root is
revealed is,

(1) *
s s

reveal broken broken attack
P P P P= + − (2)

1, ,

1 1 1

(/)
i

k L k

s s s

attack j i j

j i j

p w w
= = =

= ∑ ∑∑ (3)

,

, ,

1

,

, ,

1

2

, ,

1

0 (0)

* (() * ()) (1, 1)

* (1) * (() * ()) (1, 2)

* (1) * (() * ()) (1, 2)

i j

L

s

broken i j i j

l
s L

s
i j

broken broken i j i j

l

L

s

broken broken i j i j

l

q

P p l f l q i

w
P P p l f l q i

P P p l f l q i

=

=

=

=

= =

=
− = =

− = >

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

∑

∑

∑

(4)

,i j

sw is the weight given to node
,i j

n (i.e. jth node in ith

layer), which is the head of a broken tree.
,

()s

i j
p l is the prob-

ability that the length of the broken tree with node ,i jn as

the head is l . f(l) is a function that increases when l in-

creases. The exact form of f(l) depends on the attacker’s
policy. We choose f(1)=1 in this paper.

In an incomplete tree, different nodes at the same layer
have different probabilities of being the head of a broken
tree of a specific length. A node that has more “deeper”

descendant has higher probability of being a head of a long
broken tree and vice versa.

2

2 2

2 , *

1

2

2 2
2 , *

1

,

1,

1,

1,
,

2,

1

1,

1

0 (0)

0 (0)

1 (0, 1)

(1) (1, 1)

0 (0, 1)()

(()* (2 |))
(

* (0) (()* (1|))

k

i k j k n

n

k

i k j k n

n

i j

i kj

k q

broken i kj

s

i kj
i j

q

s

bg i j

j

k

s

bc bc i j

j

q

l orl L

q l

p q l

q lp l

p j p l bn j
o

p p j p l bn j

+ − +
=

+ − +
=

+

+

+

+

+

=

+

=

=
≤ >

= =

∑
− = =

= >=

∑

− =

+ − =

∑

∑
)therwise

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

 (5)

Here,)(ipbc is the probability that i children have been

broken. Similarly,)(ipbj is the probability that i grand-

children have been broken.)1|(=bnlpi is the probability

that the longest broken tree among j trees is of length l,

given that j children of a parent, which is in the (i-1)th layer,

have been broken in the ith layer.)(ipbc ,)(ipbj and

)1|(=bnlpi can be calculated as:

()() * * (1)
i k i

bc broken broken

k
p i p p

i

−= − (6)

2
2

2 2
2 , *

1
2 2

2 , *

1

() * * (1)

k

i k j k n

n

k
q i

i

i k j k n
bg broken broken

n

qp i p p

i

+ − +
=

−

+ − +
=

∑
= −

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠
∑ (7)

() ,

1,

1

,

1

0 (0)

(* ()
(|)

(0)

*(()))

j m

s

s i j

mi j

l

s j m

i j

n

l

j
p l

mp l bn j
l

p n

=
−

−

=

=

= = >

⎧
⎪⎪
⎨
⎪
⎪⎩

∑

∑
 (8)

Here,
, ()s

i jp l can be calculated as below,

*

, ,

* 1

() (()) /

k i

s s

i j i j

j k i k

p l p l k
= − +

= ∑ (9)

So far, we have finished analyzing how to get revealp .

For anonymity degree of AM as a receiver, we denote

the AM node we consider as
,u t

p . Its parent is
1,[/]u t kp −

and grandparent is
2,[[/]/]u t k kp −

. Here, we denote [i] as the

largest integer that is no more than i. We give the formulae
to calculate the probability that the identity of the AM as a
receiver is revealed as below.

2 2

(1 (1)) (1) *
r r

reveal broken broken attack
P P P P= − − + − (10)

2

2

,

, 1, *

1 , 1, * 2 , *

,

1

1

, 1, *, 2, *

1

,

0 (0)

0 (1, 0)

* (1)
(1,

*(() * ()) 0,{ , } { 1,[/]})

(1,(() * ())

0,{ , } { 1, [/]}
*

i j

i j i k j

broken broken

L i j i k j i k j
r

i j

l

L

r

i j i k ji j i k j
r

l

i j

broken

q

q q

P P
q q q

p l f l i j u t k

q q qp l f l

w i j u t k
P

+

− + +

=
−

+ +
=

=
= =

−
= =

= ≠ −

= =
= = = −

∑

∑

2

2

2

, 1, *1 2, *

,

1

1 , 1, * 2 , *

,

1

)

* (1)
(1,

*(() * ()) { , } { 2, [[/] /]})

* (1)
(1,

*(() * ()) { , } { 2, [[/] /]})

broken broken

i j i k jL i k j
r

i j

l

broken broken

L i j i k j i k j
r

i j

l

P P
q q q

p l f l i j u t k k

P P
q q q

p l f l i j u t k k

+− +

=

− + +

=

− = = =
≠ −

−
= = =

= −

⎧
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

∑

∑⎪

 (11)

1,[/]

,

1 1

0
1

/
1

i

r

u t kr

attack L k

r

i j

i j

u
w

kp
u

w

−

= =

=

=
>

⎧
⎪
⎨
⎪
⎩∑∑

 (12)

Here, the definition of
, ()r

i jp l is similar to
, ()s

i j
p l , which

is defined before.

, 2

1,[/]

2,[[/] /]

0 (1)

0 (1 1)

1 (1, 1)

1 (1, 2)
()

(1) (1, 2)

* (1) (1)
()

* * (2)

r
broken

i j

broken

r

broken i j k broken

r

broken i j k k

l u

l ori

l i

p l i
p l

p l i

p p l p
otherwise

p p l

−

−

> −
< <
= =

− = ==
− = >

− + −
−

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

 (13)

4.3 Numerical Results and Discussions

In the following discussion, we will consider the nu-
merical results based on the above formulae for anonymity
degree in the incomplete tree. The incomplete tree that we
use is a binary tree. The root node has four grandchildren:
one is the root of a complete subtree with 2 leaves in the
third layer, one is the root of a complete subtree with 4
leaves in the fourth layer, one is the root of a complete
subtree with 8 leaves in the fifth layer, and the other is the
root of a complete subtree with 16 leaves in the sixth layer.
The data are obtained in MATLAB.

Figure 2 and 3 show the sensitivity of anonymity degree
to broken ratio. Different curves represent different com-
binations of k and L. Anonymity degree is represented by
Preveal. Smaller Preveal results in better anonymity degree. It
is obvious that anonymity degree improves as broken ratio
decreases.

When the percentage of broken nodes and L are fixed,
anonymity degree improves when k increases. This is be-
cause when the tree grows wider, the broken nodes tend to
be in different branches. The length of the broken tree

Incomplete Tree Sender Anonymity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Broken Ratio

P
_

re
v

e
a

l

Complete tree: k = 2, L = 3 Incomplete tree: k = 2, L = 3 to 6 Complete tree: k = 2, L = 6

Figure 2: Ananymity degree of AM as
a sender

Incomplete Tree Receiver Anonymity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Broken Ratio

P
_

re
v

e
a

l

Com plete tree: k = 2, L = 6 Incomplete tree: k = 2, L = 3 Incomplete tree: k = 2, L = 4

Incomplete tree: k = 2, L = 5 Incomplete tree: k = 2, L = 6

Figure 3: Ananymity Degree of AM as
a receiver

0 50 100 150 200
1

1.5

2

2.5

Amounts of anonymous nodes

R
R

U

MAM-MO
MAM
RAND

Figure 4: RRU vs the number of AM
nodes

tends to decrease. When the percentage of broken nodes
and k are fixed, anonymity degree improves when L in-
crease. This is because when the tree grows deeper, the
length of the broken tree tends to decrease.

The AM sender anonymity of the incomplete tree in our
example in Figure 2 is between those of the complete binary
tree with all receivers in the third or sixth layer. This is
obvious because the AM sender's anonymity improves
when the tree grows. We observe that the difference be-
tween the incomplete tree curve and the complete tree curve
with six layers is very slight. This is because the children of
the sender who has fewer descendants will have compara-
tively small weight, which helps to improve the AM
sender's anonymity. Actually we can achieve significant
bandwidth efficiency with little sacrifice on AM sender's
anonymity.

The AM receiver anonymity of the incomplete tree in
our example in Figure 3 is worse than that of the complete
tree with sixth layers. This is because fewer nodes will be
considered as the parent of the receiver, the comparative
weight of the AM receiver's parent tends to increase. We
observe that among all the AM receivers in the incomplete
tree, the higher AM receivers have better anonymity than
the lower ones. This is because their parents tend to be the
tail of a shorter broken tree, which helps to decrease their
weight. This fact holds under the assumption that the at-
tacker does not know the layer of the AM receiver. We
observe that the differences among different AM receivers
in the incomplete tree case and between the incomplete tree
case and the complete tree case are very slight because the
AM receiver's anonymity is dominated by the probability
that the sender or the receiver is broken, which is deter-
mined by the percentage of broken nodes. This means that
significant bandwidth efficiency can be achieved with little
sacrifice of AM receiver's anonymity.

5. Performance Evaluation

5.1 Simulation Methodology

Two types of topologies, physical and logical topologies,
are generated in our simulation. The physical topology
should represent the real topology with Internet character-

istics. The logical topology represents the overlay system
built on top of the physical topology. To simulate the MAM
protocol in a more realistic environment, both topologies
must accurately reflect the topological properties of real
networks in each layer. BRITE [1] is a topology generation
tool that provides the option to generate topologies based
on the AS Model. Using BRITE, we generate physical
topologies with 3,000 to 7,000 nodes. The average number
of neighbors of each node ranges from 4 to 10. The 100 to
300 overlay nodes are randomly selected from the nodes in
the physical topologies.

To reflect the real overlay systems, in the experiments
we report here, member nodes are coming and leaving
according to the distribution observed in [25]. The mean of
the distribution is chosen to be 1800 seconds. The value of
the variance is chosen to be half of the value of the mean. In
each experiment, a number of nodes join the system at the
first 120 seconds of the simulation in random sequence. The
lifetime of each node will be decreased by one after passing
each second. A member will leave in the next second when
its lifetime reaches zero. During each second, there are a
number of members leaving the system, and we then ran-
domly pick up (turn on) a similar number of members from
the physical network to join the system.

In all the experiments, every 50 seconds, random nodes
are selected as senders to multicast data at a constant rate,
and the simulations run for 60 minutes. In the MAM pro-
tocol, the lifetime of Remailers is randomly selected from
50 to 200 seconds.

5.2 Performance Metrics

We compare the performance of three different ap-
proaches: Optimal, MAM, and RAND. In Optimal, the
anonymous multicast tree is optimized using an offline
algorithm. In a naïve approach, indicated as “RAND”, each
joining node randomly selects a member to connect to the
multicast tree.

We use two performance metrics: relative resource us-
age (RRU) and average worst-case delay (AWD).

The stress of a physical link is defined in [10] as the
number of identical copies of a packet carried by a physical

link. We define resource usage as ∑
=

×
N

j

jj sd

1

, where dj is the

delay of link j and sj is the stress of link j. Resource usage is
one of the parameters of seriously concerned to network
administrators. Heavy network traffic limits the scalability
of overlay networks [24]. RRU is defined as the ratio of the
resource usage of MAM or other approaches to the optimal
anonymous multicast tree. AWD is the average delay from
the source to the farthest node that gets the multicast pack-
ets, when nodes are selected at random as the source nodes
in multiple runs.

5.3 Simulation Results

When there is no member needing to hide its identity,
then the system will be the same as normal end system
multicast. Intuitively, when more nodes need to be hidden,
the total cost of the system will increase. We first show
MAM’s performance by increasing the number of nodes
that need to achieve anonymity (AM nodes) in the system.

With 3000 physical nodes and 200 overlay multicast
members, Figures 4 and 5 plot the RRU and AWD of dif-
ferent approaches versus the number of AM nodes in the
system. When the ratio of AM nodes in the system is small,
MAM’s RRU is very close to the optimal solution. MAM’s
AWD is very close to the optimal solution when less than
half of the nodes are AM nodes. We vary the system size
from 100 to 400, and the physical network size from 2,000
to 8,000. The results are consistent, indicating that MAM
maintains effectiveness, and the RRU and AWD of MAM
are not sensitive to the system size or the physical networks
size. If all of the members in a system are AM nodes, even
the optimal solution is as bad as the naïve RAND approach,
and a system of smaller size could incur greater traffic
overhead than a system with larger size. Hence, in MAM,
we propose to avoid having all the members as AM nodes
by inviting MO nodes into the system. Frankly, it is always
helpful if more MO nodes can join the system. However,
the overhead of inviting MO nodes is hard to predict: they
merely provide service to the system but do not consume
the multicast content.

In the “MAM” protocol, MO nodes are not invited. We
can see that when the percentage of AM nodes is large, both

RRU and AWD degrade significantly. We investigate the
effectiveness of inviting MO nodes to join in Figures 4 and
5 using the “MAM-MO” protocol, in which MO nodes are
invited when the ratio of AM nodes in the system reaches
90%. The improvement is substantial for a system with
more than 270 AM nodes (90% of the system).

The next question is when is the best time for the system
to invite MO nodes, i.e. what is the best Invitation Thresh-
old IT.

Figures 6 and 7 show the RRU improvement and AWD
improvement versus the number of invited MO nodes for a
different given number of AM nodes in a system with 200
overlay multicast members. RRU/AWD improvement is
defined as the percentage of the RRU/AWD improvement
with the MAM-MO protocol over the MAM protocol
without MO node invitation. “RRU-n”/ “AWD-n” means
the RRU/AWD improvement for a given number of n AM
nodes. In general, inviting more MO nodes means better
performance with the assumption that we have an infinite
number of available MO nodes to be invited.

However, when a certain number of MO nodes have
been invited, inviting more MO nodes is not as effective as
before. For example, there is a clear jump in Figure 6 for
RRU-120, which shows that when 30 MO nodes have been
invited, inviting more MO nodes gives little additional
RRU improvement, where the corresponding IT is
120/(200+30)=52%. Similarly, the ITs for RRU-150 and
RRU-180 are 47% and 47%. If we calculate the ITs from
Figure 7, we have 46%, 52% and 47% for AWD-120,
AWD-150, and AWD-180 respectively.

Therefore, our interpretation of the experimental results
is that when less than around 50% of the nodes wish to be
anonymous, MAM may be directly used with no need to
invite MO nodes; otherwise, MO nodes should be invited to
keep the ratio of AM nodes in the system at about 50%.
Beyond this, inviting more MO nodes is not necessary.

6. Conclusion and Future Work

In this paper, we propose the MAM protocol to provide
anonymous multicast service. Our analysis shows that the

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

Amounts of anonymous nodes

A
W

D

Optimal
MAM-MO
MAM
RAND

Figure 5: AWD vs the number of AM
nodes

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Amounts of invited middle nodes

R
R

U
 im

pr
ov

e
m

e
n

t (
%

)

RRU-120
RRU-150
RRU-180

Figure 6: RRU improvement vs. # of
invited MO nodes

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

Amounts of invited middle nodes

A
W

D
 im

p
ro

ve
m

e
nt

 (%
)

AWD-120
AWD-150
AWD-180

Figure 7: AWD improvement vs. # of
invited MO nodes

anonymity degree of AM nodes is correlated with the bro-
ken ratio, tree degree, and tree depth. We also show that the
incomplete multicast tree can achieve a similar anonymity
degree with much higher bandwidth efficiency, compared
to the complete multicast tree.

Our performance evaluation shows that MAM is an ef-
fective approach to constructing an efficient anonymous
multicast tree. When the percentage of AM nodes in a
system is below a certain level, without inviting MO nodes,
MAM works as well as the optimal solution. We have also
show that inviting a certain ratio of MO nodes can be very
effective for a system with a large number of AM nodes.

REFERENCES

[1] BRITE, http://www.cs.bu.edu/brite/

[2] "RSAREF20,
http://tirnanog.ls.fi.upm.es/Servicios/Software/ap_crypt/disk3
/rsaref20.zip," 1994.

[3] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, "Scalable
Application Layer Multicast," Proceedings of ACM SIG-
COMM, 2002.

[4] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M.Naor, and B.
Pinkas, "Multicast security: a taxonomy and some efficient
constructions," Proceedings of INFOCOM, 1999.

[5] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron,
"Scribe: A large-scale and decentralized application-level
multicast infrastructure," IEEE JSAC, 2002.

[6] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron, M.
Theimer, H. Wang, and A. Wolman, "An Evaluation of Scal-
able Application-level Multicast Built Using Peer-to-peer
Overlays," Proceedings of IEEE INFOCOM, 2003.

[7] D. Chaum, "Untraceable Electronic Mail Return Addresses,
and Digital Pseudonyms," Communications of the ACM,
pp.84-88, 1981.

[8] Y. Chu, A. Ganjam, T. Ng, S. Rao, K. Sripanidkulchai, J. Zhan,
and H. Zhang, "Early Experience with an Internet Broadcast
System Based on Overlay Multicast," Proceedings of USENIX
Annual Technical Conference, 2004.

[9] Y. Chu, S. Rao, S. Seshan, and H. Zhang, "Enabling Confer-
encing Applications on the Internet Using an Overlay Multi-
cast Architecture," Proceedings of ACM SIGCOMM, 2001.

[10]Y. Chu, S. G. Rao, and H. Zhang, "A Case for End System
Multicast," Proceedings of ACM SIGMETRICS, 2000.

[11]R. Dingledine, N. Mathewson, and P. Syverson, "Tor: The
Second-Generation Onion Router," Proceedings of 13th
USENIX Security Symposium, 2004.

[12]M. Freedman and R. Morris, "Tarzan: A Peer-to-Peer Ano-
nymizing Network Layer," Proceedings of CCS, 2002.

[13]X. Fu, B. Graham, D. Xuan, R. Bettati, and W. Zhao, "Ana-
lytical and Empirical Analysis of Countermeasures to Traffic
Analysis Attacks," Proceedings of IEEE International Con-
ference on Parallel Processing (ICPP), 2003.

[14]E. Gabber, P. Gibbons, D. Kristol, Y. Matias, and A. Mayer,
"Consistent, Yet Anonymous,Web Access with LPWA,"
Communications of the ACM, 42 2. pp.42-47, February,
1999.

[15]E. Gabber, P. Gibbons, Y. Matias, and A. Mayer, "How to
Make Personalized Web Browsing Simple, Secure, and
Anonymous," Proceedings of Conference on Financial Cryp-
tography, 1997.

[16]C. Grosch, "Framework for Anonymity in IP-Multicast En-
vironment," Proceedings of IEEE GLOBECOM, 2000.

[17]Y. Guan, X. Fu, D. Xuan, P. Shenoy, R. Bettati, and W. Zhao,
"NetCamo: Camouflaging Network Traffic for
QoS-Guaranteed Mission Critical Applications," IEEE
Transactions on Systems, Man, and Cybernetics, 2001.

[18]I. Gupta and K. Bitman, "Holistic Operations in Large-scale
Sensor Network Systems: a probabilistic peer-to-peer ap-
proach," Proceedings of International Workshop on Future

Directions in Distributed Computing (FuDiCo), 2002.

[19]P. Kruus and J. Macker, "Techniques and issues in multicast
security," Proceedings of MILCOM, 1998.

[20]Y. Liu, Z. Zhuang, L. Xiao, and L. M. Ni, "A Distributed
Approach to Solving Overlay Mismatch Problem," Proceed-
ings of the 24th International Conference on Distributed
Computing Systems (ICDCS), 2004.

[21]M. Moyer, J. Rao, and P. Rohatgi, "A survey of security issues
in multicast communications," IEEE Network, 1999.

[22]A. Nakao, L. Peterson, and A. Bavier, "A Routing Underlay
for Overlay Networks," Proceedings of ACM SIGCOMM,
2003.

[23]M. K. Reiter and A. D. Rubin, "Crowds: Anonymity for Web
Transactions," ACM Transactions on Information and System
Security, pp. 66-92, November, 1998.

[24]Ritter, Why Gnutella Can't Scale. No, Really,
http://www.tch.org/gnutella.html

[25]S. Saroiu, P. Gummadi, and S. Gribble, "A Measurement
Study of Peer-to-Peer File Sharing Systems," Proceedings of
Multimedia Computing and Networking (MMCN), 2002.

[26]R. Sherwood, B. Bhattacharjee, and A. Srinivasan, "P5: A
Protocol for Scalable Anonymous Communication," Pro-
ceedings of IEEE Symposium on Security and Privacy, 2002.

[27]S. Shi and J. S. Turner, "Routing in Overlay Multicast Net-
works," Proceedings of IEEE INFOCOM, 2002.

[28]P. F. Syverson, D. M. Goldschlag, and M. G. Reed,
"Anonymous Connections and Onion Routing," IEEE Sym-
posium on Security and Privacy (S&P'97), pp.44-53, 1997.

[29]M. Waldvogel and R. Rinaldi, "Efficient Topology-aware
Overlay Network," Proceedings of ACM HotNets, 2002.

[30]N. Weiler, "Secure Anonymous Group Infrastructure for
Common and Future Internet Application," Proceedings of In
Proceedings of 17th Annual Computer Security Applications

Conference (ACSAC'01), 2001.

[31]L. Xiao, A. Patil, Y. Liu, L. M. Ni, and A.-H. Esfahanian,
"Prioritized Overlay Multicast in Ad-hoc Environments,"
IEEE Computer Magazine, Page 67-74, February, 2004.

[32]L. Xiao, Z. Xu, and X. Zhang, "Low-cost and Reliable Mutual
Anonymity Protocols in Peer-to-Peer Networks," IEEE
Transactions on Parallel and Distributed Systems, 2003.

[33]Z. Xu, C. Tang, and Z. Zhang, "Building Topology-aware
Overlays Using Global Soft-state," Proceedings of the 23rd
International Conference on Distributed Computing Systems
(ICDCS), 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

