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Abstract
Multicast services are demanded by a variety of appli-

cations. Many applications require anonymity during their 
communication. However, there has been very little work 
on anonymous multicasting and such services are not 
available yet. Since there are fundamental differences be-
tween multicast and unicast, the solutions proposed for 
anonymity in unicast communications cannot be directly 
applied to multicast applications. In this paper we define 
the anonymous multicast system, and propose a mutual 
anonymous multicast (MAM) protocol including the design 
of a unicast mutual anonymity protocol and construction 
and optimization of an anonymous multicast tree. MAM is 
self organizing and completely distributed. We define the 
attack model in an anonymous multicast system and ana-
lyze the anonymity degree. We also evaluate the perform-
ance of MAM by simulations. 

1. Introduction 

It is well known that multicast services are demanded by 
a variety of applications, e.g., Video conferencing, Internet 
based education, NASA TV, software updates etc. How-
ever the inability of the Internet to support multicast is 
patent. To alleviate this, multicast services on overlay 
networks have been proposed [3, 5, 6, 9, 10, 20, 22, 27, 29, 
31, 33] and implemented [8] by the research community. 
The salient features of overlays include ease of deployment 
and flexibility. We envisage that in the near future, a wide 
variety of applications will be able to enjoy multicast ser-
vices on overlay networks. Apart from commercial appli-
cations, we believe that government and military organiza-
tions will also use such services due to the several advan-
tages multicast has to offer.  

It follows to expect that, as multicast services continue 
to be deployed, existing and future multicast applications 
will also demand the security features that unicast com-
munications have. Security in multicast communication has 
been addressed in [4, 19, 21]. Most of the work here focuses 
on authentication of the senders and receivers and the effi-

cient distribution of the keys to all legal group members and 
exclusion of members leaving the group. Our focus here is 
providing anonymity in multicast communications. Ano-
nymity is an important component of security and is de-
manded by many applications. Some of them are: Critical 
multicast services like military, emergency applications, 
where strategic information and critical updates are trans-
mitted to multiple destinations needing anonymity from 
external observers. Multi-party video conferencing appli-
cations carrying classified information will need anonymity 
from external observers and other members in the group. 
Large business organizations may have to multicast data-
base updates to many sites for synchronization, and such 
applications will demand anonymity from rival organiza-
tions. 

Solutions proposed for anonymity in unicast communi-
cations can not be directly applied to multicast applications. 
The fundamental difference between multicast and unicast 
is the concept of a group in multicast. Due to the correlation 
among nodes, there are special challenges in achieving 
anonymity in multicast: (1) the anonymity semantics in 
multicast are different from those in unicast. For sender 
anonymity, the sender needs to hide not only from one 
receiver, but from a subset of, or all the receivers. In re-
ceiver anonymity, the receiver may need to hide not only 
from the sender, but also from other receiver(s). There is a 
special issue in anonymity in multicast called group ano-
nymity, where the presence of the group is not disclosed to 
outsiders. (2) Multicast services naturally need the exis-
tence of a tree. Exposing this tree itself will compromise the 
degree of anonymity. In contrast, in unicast, the path from a 
sender to a receiver is much easier to hide. (3) Membership 
management is a challenging issue in multicast. Member 
joining and leaving makes anonymity difficult. (4) There 
are other inherent challenges for secure multicast services 
such as group key management etc. 

In this paper, we use an overlay solution and propose the 
mutual anonymous multicast (MAM) protocol, including 
the design of a unicast mutual anonymity protocol and 
construction and optimization of an anonymous multicast 
tree. MAM is self organizing and completely distributed. 
The main contributions of this paper are as follows. 

1. We define different types of anonymity in an anony-
mous multicast system, and show the rational of our focus 
on multicast mutual anonymity. 
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2. We propose the MAM protocol, and address the 
critical issues in this protocol, which include an efficient 
and robust unicast initiator anonymity protocol, an efficient 
unicast mutual anonymity protocol, and an effective 
anonymous multicast construction approach. The 
self-organized and completely distributed design of MAM 
can efficiently realize mutual anonymity in overlay multi-
cast systems. 

3. We define the attack model to an anonymous multi-
cast system, and theoretically analyze the anonymity degree 
of the MAM protocol. 

4. By an extended simulation study, we show the effec-
tiveness of MAM in a dynamic environment. 

The rest of this paper is organized as follows. Section 2 
discusses related work. Section 3 presents the MAM pro-
tocol design. Section 4 analyzes anonymity degree. Section 
5 evaluates the performance of the MAM protocol. We 
conclude the work in Section 6. 

2. Related Work 

We introduce the related work to this research here. We 
will focus the work on (1) basic multicast (no security and 
anonymity), (2) anonymous unicast, and (3) multicast ano-
nymity. 

2.1 Basic Multicast 

Originally, multicast research was focused on net-
work-layer. However, no real multicast service has been 
provided at the network layer. The main issues in net-
work-layer multicast are deployment and scalability issues. 
Recently, the focus has been moved up to application-layer 
multicast [3, 5, 6, 9, 10, 20, 22, 27, 29, 31, 33]. It is well 
believed that application-layer solutions provide much 
flexibility in design and implementation. Overlays are in-
creasingly being used to deploy network services for dif-
ferent applications since they have the advantages of being 
easy to implement and flexible in adapting to dynamic 
underlying networks[22]. A list of overlay applications is 
given in [22], such as file sharing and network-embedded 
storage, content distribution networks, routing and multi-
cast overlays, QoS overlays, scalable object location, 
scalable event propagation, wireless and mobile systems, 
and  cluster-based overlays constructed among sensor 
nodes [18].  

2.2 Anonymous Unicast 

Some work has been reported on overlay anonymous 
unicast, such as Tarzan [12] and our work [32]. The essen-
tial techniques to achieve unicast anonymity can be classi-
fied into the following categories: routing, addressing, 
layered encryption, and traffic covering. In the routing 
approach, there can be either indirect forwarding, i.e. the 
use of intermediate nodes (forwarders) to hide correlation 

between the sender and the receiver [7, 28], or flooding [26]. 
In addressing, it can be implicit, i.e. the address contains no 
information either on the actual location of the addressee or 
on the physical reachability of the addressee [14, 15], or 
explicit, i.e. the address contains information that can be 
used in a straightforward manner to route a message to the 
addressee [30]. Layered encryption is often used in ano-
nymity protocols [7, 28]. Traffic covering can prevent 
traffic timing analysis [13, 17]. These techniques often 
work together to achieve anonymity. For example, indirect 
forwarding needs layered encryption to encrypt the identi-
ties of forwarders. Flooding needs implicit address. 

There are two ways to choose forwarders in the indirect 
forwarding approaches. It can be in a centralized fashion, 
such as Onion [28], or a distributed fashion, such as Crowds 
[23] and Tor [11].  In the centralized fashion, some centers 
(maybe the sender or receiver) choose the whole list of 
forwarders and use layered encryption techniques to en-
crypt them. The list of forwarders will be piggybacked in 
the message. The problem is the center needs to know the 
global network information, which is not scalable in a large 
scale network.  In the distributed fashion, during the mes-
sage forwarding, the next-hop forwarder is decided by the 
current forwarder (there are certainly some variations). The 
mechanism is scalable and can be applied in sender ano-
nymity. However, it is hard, if not impossible for the latter 
to be used in receiver anonymity. 

2.3 Anonymous Multicast 

Little work [16, 30] has been reported on anonymous 
multicasting. Anonymous multicast communication service 
is not available yet. Authors in [30] proposed the use of a 
proxy, called SAM server, to hide some receivers. The main 
idea is first to add a SAM server as a normal node into a 
multicast tree, then attach receivers to the SAM server so 
that they are hidden by the server from other members. The 
concept of SAM server is a kind of extension to proxy or 
mixer in unicast. There are some drawbacks of this system. 
If there are multiple receivers attached to a SAM server, 
there exists another multicast anonymity problem among 
these receivers. The SAM server can be a target of attack. It  
however should also be trusted. Some types of multicast 
anonymity have not been addressed, such as multicast 
mutual anonymity and multicast group anonymity. 

3. MAM Protocol  

In this section, we define multicast anonymity and pre-
sent the design of MAM protocol. 

3.1 Definition of Multicast Mutual Anonymity 

We assume every node could be a sender and a receiver 
in the service. Nodes that are neither senders nor receivers 
are called outsiders to the group. 



Definition 1: Multicast mutual anonymity. Here a set 
of members desire to be hidden from others. Members in 
such a set need to achieve mutual anonymity from each 
other. Such a set can be a pair, such as the sender and a 
receiver; or one receiver and another receiver. The set also 
can be multiple members and may even include all mem-
bers (i.e. complete anonymity). 

Multicast mutual anonymity can cover multicast sender 
anonymity (hide the sender’s identity) and receiver ano-
nymity (hide one or more receivers’ identities). Of course 
multicast sender anonymity and receiver anonymity can be 
achieved by simpler protocols than that for multicast mu-
tual anonymity. Multicast mutual anonymity is the focus of 
this paper. Another type of multicast anonymity is group 
anonymity, which hides the existence of a multicast group 
session from all outsiders. Traffic covering approaches can 
be used to achieve multicast group anonymity, which is out 
of the scope of this paper.  

We define three types of nodes in a mutual anonymous 
multicast system. 

(1) Anonymous member nodes, AM nodes in short, are 
the member nodes whose identities need to be hidden from 
all member/non-member nodes. 

(2) Non-anonymous member nodes, NM nodes in short, 
are the member nodes that need not to be hidden from oth-
ers. 

(3) Middle Outsider, MO nodes in short, are the nodes 
that do not need to receive any packets from the source for 
their own purpose, but providing packet forwarding service 
for the multicast system. If needed MO nodes are invited by 
the system for improving the overall efficiency. They do 
not hide their identity. 

One naïve approach to achieve anonymous multicast 
services is to treat multicast as a set of unicast communi-
cations from the sender to the individual receivers and then 
directly apply one of the unicast anonymity schemes dis-
cussed in Section 2. While the approach is simple, it is 
inefficient. To achieve high efficiency and reduce the re-
dundancy of multicast message transmissions among mul-
tiple receivers, multicast always relies on some structure 
present to deliver a message. The structure is usually a tree, 
and the tree can be source-based or core-based. Unicast is a 
special case of multicast, where the structure is a path. The 
potential solution to anonymous multicast must center on 
the concept of the tree. We believe it is the main difference 
and also the source of challenges in achieving anonymity in 
multicast compared with anonymity in unicast. 

3.2 Design Consideration of Anonymous Multicast 
Systems 

We need to consider both multicast tree efficiency and 
anonymity degree in the design of a multicast mutual ano-
nymity protocol. An example is shown in Figure 1, in which 
we can see that an optimal multicast tree without (Figure 

1(a)) and with (Figure 1(c)) anonymity concern are very 
different, where the cost of an AM-NM connection is 6 
times that of an NM-NM connection and the cost of an 
AM-AM connection is 15 times that of an NM-NM con-
nection. We have the following objectives in designing 
MAM protocol.  

(1) High mutual anonymity degree: the identity of each 
anonymous node (AM), whether a sender or a receiver, in a 
multicast group should be hidden from all group members 
and outsiders. 

(2) Delivery efficiency: a smart tree with consideration 
of anonymity is built with low average delay and low re-
source usage.  

(3) Distributed fashion: the construction of the anony-
mous multicast system must be completely self-organizing 
and in a distributed manner. No trusted central server is 
involved. Further, MAM must be robust in a dynamic 
overlay environment.  

(4) Self-optimization: MAM will allow all the nodes to 
incrementally optimize the system, by reconstructing the 
tree and inviting more middle outsiders (MO nodes) to 
improve the overall performance. 

Figure 1: An example of multicast tree with and 
without anonymity concern 



Here is the basic idea of MAM. A set of NM nodes form 
an efficient multicast tree in terms of bandwidth and/or 
delay. Nodes of the tree are degree-bounded. Early AM 
nodes connect unsaturated NM nodes, or MO nodes (if MO 
nodes have been invited) on the tree using a unicast initiator 
anonymity protocol. When there is no unsaturated NM node 
in the tree, a joining AM node will connect to another un-
saturated AM node in the tree using a unicast mutual ano-
nymity protocol. If there are too many AM nodes in the 
system, MO nodes will be invited to join the multicast tree 
so that the new AM node can connect with the MO node 
using a unicast anonymity protocol. When to invite MO 
nodes depends on the cost ratio of unicast initiator ano-
nymity protocol and unicast mutual anonymity protocol, 
and the ratio of AM nodes in a system. The pseudo code for 
a joining node P is: 

P contacts a bootstrapping server and gets a list of members; 
P contacts one active member and gets a full list of members; 
If (P is an NM node) 
   make a direct connection to an unsaturated NM node; 
If (P is an AM node) { 
   If (P can find unsaturated NM members) 
      make AM-NM connections with few unsaturated NMs; 
   else 
      If (P can find unsaturated AM members) 
         make AM-AM connections with several AMs; 
If (# of AMs/# of NMs > IT) 
   Invite MO nodes; 
If (timeout) 
   tree optimization; 

Therefore, there are mainly the following three key is-
sues to be addressed in MAM: a unicast initiator anonymity 
protocol for AM-NM connections, a unicast mutual ano-
nymity protocol for AM-AM connections, and anonymous 
multicast tree construction and optimization, which are 
discussed in detail in following subsections. 

3.3 Unicast Initiator Anonymity Protocol Design 

The idea of Onion and a reverse Onion can be used to 
achieve initiator anonymity for bi-directional communica-
tion. Since an AM node has more than one choice for NM 
nodes to make AM-NM connections with, we optimize the 
Onion protocol as follows to keep both strong anonymity 
and robustness.  

In the improved protocol for AM-NM connection, a 
Remailer (a reverse Onion) is generated by the AM node for 
the NM node to anonymously send messages to the AM 
node. In the AM NM communication direction, the AM 
node uses an approach similar to Crowds and Tor, in which 
each middle nodes in the path can make a decision to for-
ward the message to another middle node or the NM node. 
This approach is more robust than Onion in the case of 
middle node failure. In order to simplify the protocol de-
scription, we use S to denote the AM node, and use R to 
denote the NM node, as below. Note that S knows R’s 
identity, but R does not know anything about S. Since this 

connection is initiated by S, we also label S as the initiator. 
In the rest of the paper, we use where {M}K indicates that M
is encrypted with the key K. Kp+ denotes p’s public key and 
Kp- denotes p’s private key. 

Step 1: The node S first generates m, the number of 
middle nodes in the Remailer. S then randomly selects a list 
of m nodes, p0, p1, p2,…, pm-1 to form a Remailer. The life-
time of this one-time Remailer in seconds is also generated. 
The Remailer is built with S as the last member of the path 
and with pi in the middle. It is of the form: 

{pm-1,{p(m-2),…{p0,{S}Kp0+…}Kp(m-2)+}Kp(m-1)+}KR+.
Step 2: S randomly selects a node, q0, sends it the mes-

sage: S q0: {R, {Remailer, lifetime}KR+}. 
Step 3: A peer qi can elect itself to act as a deliver with a 

predefined forwarding probability h. If qi is self-elected, the 
message {Remailer, lifetime}KR+ will be delivered to the 
non-anonymous member node R directly. Otherwise, qi will 
randomly select another node, qi+1 and forward the message 
{R, {Remailer, lifetime}KR+} to it.  

Step 4: On receiving the message {Remailer, life-
time}KR+, R uses its private key to decrypt the encrypted 
message.  

Step 5: R generates a symmetric key K, and encrypts the 
multicast packet f with K. R then encrypts K with its private 
key. It keeps sending multicast packets with the format as 
below through the Remailer to S:  

R S: {f}K, {K}KR- 

Step 6: S uses R’s public key to decrypt the symmetric 
key K, and uses K to decrypt the content encrypted by K. 

At any time, a node R may have one or more Remailers.
It will check the age and the expected lifetime for each 
Remailer periodically and delete obsolete Remailers. Each 
live Remailer corresponds to one AM node. Each AM node 
may connect with different NM nodes with the same or 
different Remailers for two reasons: increasing the diffi-
culty for a NM node to guess the identity of the AM node, 
and providing multiple paths to the AM node in case of 
failure of any middle nodes in a Remailer. Two many Re-
mailers for the same AM node will increase overhead, 
which can be adjusted by setting shorter lifetimes for the 
Remailers.

3.4 A Unicast Mutual Anonymity Protocol Design 

When a joining AM node cannot find an unsaturated NM 
node in the tree, one option for him is to connect to another 
unsaturated AM node in the tree using a unicast mutual 
anonymity protocol. Most unicast mutual anonymity pro-
tocols [12, 23, 26, 28, 32] were proposed for file sharing 
systems and may not be applicable here directly because of 
their low efficiency. Therefore, we need to design a new 
unicast mutual anonymity protocol. Designing an efficient 
mutual anonymity protocol is difficult, but is possible here 
by utilizing the mechanism of MO node invitation. 



We can use IP addresses to identify NM/MO nodes be-
cause they do not need to be anonymous. Instead, each AM 
node randomly selects an 18 byte value using a certain 
algorithm to ensure its uniqueness when it joins the system. 
Note that AM nodes may change their IDAM at any time for 
anonymity consideration. At the time of its joining, each 
AM node is bounded with one or multiple MO nodes, 
which means an AM node sends Remailers to its bounded 
MO nodes, and its IDAM and bounded MO nodes’ IP ad-
dresses, e.g. IDAM-IPMO1, …, IDAM-IPMOi, …, will be kept in 
other NM nodes. 

When an AM node (AM1) decides to make a connection 
to another AM node (AM2), it will select one of its bounded 
MO nodes (MOi) to establish a connection with and one of 
AM2’s bounded nodes (MOj). The connection between 
AM1 and MOi, and the connection between AM2 and MOj 
are established by the unicast initiator anonymous protocol 
introduced in the previous section. A connection of 
IDAM1-IPMOi-IPMOj-IDAM2 is therefore established to achieve 
mutual anonymity between AM1 and AM2. 

3.5 Anonymous Multicast Tree Construction  

Many previous studies have intensively studied how to 
build an efficient overlay and optimize a random overlay, 
so we will not focus on this issue in this paper. We use an 
idea similar to the Narada protocol [10] to build our mul-
ticast overlay among NM/MO nodes. The basic idea of 
Narada is to construct an efficient connected mesh first. 
Narada then constructs shortest path spanning trees of the 
mesh, each tree rooted at the corresponding source using 
well known routing algorithms. 

As in Narada, every NM node and invited MO node has 
a full list of all the members. A joining node is able to get a 
list of group members (not necessary complete or accurate) 
by an out-of-band bootstrap mechanism, and randomly 
selects several unsaturated members to connect with. If the 
new joining node is an AM node that needs to hide its 
identity, it will randomly select one or multiple unsaturated 
NM/MO nodes forming anonymous connections with them, 
which is described in Section 3.3. 

The multicast tree needs to be maintained. All the NM 
nodes probe their distances with all the other NM nodes and 
share the information among the overlay, so that every 
single node has an identical distance table including each 
pair of the NM nodes. As our design is for small sized 
systems, maintaining such a list is not difficult. With such a 
table, a good multicast tree including all NM nodes can be 
easily computed and maintained [10]. The distance between 
a NM node and an AM node is not available because the 
AM node is anonymous to NM nodes, but it is also not 
necessary since the AM node is connected with a NM node 
via a number of middle nodes making the direct distance 
between the AM node and the NM node meaningless in 
optimizing the tree. However, the IDAMs of the AM nodes 

can be kept in the NM nodes, and a NM node knows the 
number of AM nodes that connect with it via anonymous 
passage but does not know their identities. In optimizing the 
tree, this NM node will subtract the number of its connected 
AM nodes from its bounded degree. 

When a joining AM node cannot find an unsaturated NM 
node in the tree, one option for him is to connect to another 
unsaturated AM node in the tree using a unicast mutual 
anonymity protocol described in Section 3.4. However, we 
do not wish to see too many AM-AM mutually anonymous 
connections for performance reasons. Therefore, in some 
situations, MAM considers inviting some MO nodes to help 
by joining the system. We define an Invitation Threshold, 
IT. When the ratio of AM nodes to NM/MO is greater than 
the value of IT, the system will try to invite some MO nodes 
to join. When MO nodes are invited into the systems, 
joining AM nodes will have chances to join the tree by 
making AM-NM connections instead of more expensive 
AM-AM connections. 

3.6 Cost and Latency of Anonymous Connections 

There is additional cost and latency for multicast sys-
tems when we try to provide anonymity to a set of member 
nodes, and hence it is of great importance to discuss this 
cost and latency. We have the following observations on the 
cost and latency of the above proposed unicast mutual 
anonymity protocols of MAM. 

First, the selection of the number of middle nodes, m, has 
great impact on the anonymity degree and the cost of the 
connections. Obviously there is a tradeoff between the 
anonymity degree and the cost. Specifically, a larger m will 
provide a higher anonymity degree while incurring larger 
cost and latency. 

Second, the predefined forwarding probability h also 
partially influences the cost and latency of data delivery in 
the system. In MAM, for simplicity, we uniformly select 
the value of h for the peering nodes. In real systems, nodes 
may select h independently, and the variety of h will im-
prove the anonymity degree provided to the clients. 

Third, the average cost of an AM-AM connection is at 
least two times greater than an AM-NM/MO connection. If 
we take (1) the dynamic nature of the member nodes, and (2) 
each AM node may use a set of NM/MO and switch some 
of them, into consideration, the average cost of an AM-AM 
connection is more than twice of that of an AM-NM/MO 
connection. 

4. Anonymity Degree Analysis 

4.1 Attack Model 

We assume the attacker will break into some overlay 
nodes chosen randomly in one round and try to figure out 
who the AM node is using the information he gets from 
some broken nodes. We assume the attacker can find the 



single parent and k children of all the nodes that have been 
broken. We also assume that the broken node keeps for-
warding the packets in the same way as before it is broken. 
We call the parents of all those broken nodes the potential 
root of a subtree with AM nodes, which is called an implicit 
tree. The attacker will give each potential root a coefficient 
that is related with the probability regarded by the attacker 
as the root of the implicit tree by utilizing the information 
he gets from all the broken nodes. A node that is more likely 
to be the root of the implicit tree has a higher coefficient, 
which means it is more important than other broken nodes 
and more prone to further attack. 

The objective of the attacker is to use the above coeffi-
cients for future attacks, e.g., the attacker can launch con-
gestion attack to the potential root(s) to deny the service of 
as many receivers as possible, or the attacker can launch 
another break in attack to the potential root(s) to find the 
identity of the root of the implicit tree. No matter what the 
next attack is, the attacker will try to attack the node(s) that 
are more likely to be closer to the root of the implicit tree 
since he can potentially deny service to more receivers if he 
launches a congestion attack or has a higher probability to 
get the identities of all the receivers in the implicit tree if he 
launches a break in attack. 

One thing to be reminded of here is that two broken 
nodes that are two layers apart can generate a broken tree 
with length of three by sharing information with each other. 
An example is that node A is in the ith layer, while node B is 
in the (i+2)th layer. After sharing the parent and children 
information with each other, node A finds that the parent of 
node B is actually one of its children, so a three layer bro-
ken tree is generated by nodes A and B. In this case, an 
unbroken node can also be on a broken tree as long as both 
its parent and at least one of its children are broken. We call 
node A the head of the broken tree if and only if node A is 
broken while its parent and grandparent are not broken. 
Similarly, we call node B the tail of the broken tree if and 
only if node B is broken while none of its children and 
grandchildren are broken. If node A is in the ith layer and 
node B is in the jth layer, we call this broken tree a broken 
tree with the length j-i+1, which is basically the number of 
nodes in this broken path. Generally, all the broken nodes 
can form a broken forest comprised of several broken trees 
that are subtrees of the implicit tree. We denote the length 
of a broken tree as the length of the longest broken path in 
the broken tree. 

4.2 Anonymity Degree Analysis 

The metric we use to analyze anonymity degree is Preveal,
which is the probability that the identity of an AM node is 
revealed. If the AM node itself is broken, this probability is 
1; otherwise, we calculate this probability according to a 
weight. Each node has a weight that stands for how sure the 
attacker thinks that this node’s parent or one of its children 

is an AM node. Each node could be the root of a broken tree 
or the tail of a broken path, which we will define later. We 
believe the longer the broken tree or the broken path is, the 
more weight the attacker will give to this node. 

We assume here the multicast tree structure is a k-nary 
incomplete tree with L+1 layers and the root node is at 
Layer 0. Here an incomplete tree means that some receivers 
are not in the Lth layer. The receivers can be located from 
the first layer to the Lth layer. We assume in the incomplete 
tree scenario, each node has either 0 or k children. We 
introduce the incomplete tree in the hope of achieving better 
bandwidth efficiency since there is no redundant link in an 
incomplete tree. Here, we introduce a set of parameters 

{ ,i jq }, which is a value given to each node ,i jp  in the 

tree. We let ,i jq  be 1 if node ,i jp  is a real node in the 

tree. We let ,i jq  be 0 if it does not exist in the tree. We 

also assume that the attacker has successfully broken into N 
nodes in this tree. Since the attacker chooses the nodes 
randomly for break in attack, the probability of each node in 
the tree being broken is equal, which is shown below. 
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sw is the weight given to node 
,i j

n  (i.e. jth node in ith

layer), which is the head of a broken tree. 
,

( )s

i j
p l is the prob-

ability that the length of the broken tree with node ,i jn as 

the head is l . f(l) is a function that increases when l  in-

creases. The exact form of f(l) depends on the attacker’s 
policy. We choose f(1)=1  in this paper. 

In an incomplete tree, different nodes at the same layer 
have different probabilities of being the head of a broken 
tree of a specific length. A node that has more “deeper” 



descendant has higher probability of being a head of a long 
broken tree and vice versa.  

2

2 2

2 , *

1

2

2 2
2 , *

1

,

1,

1,

1,
,

2,

1

1,

1

0 ( 0)

0 ( 0 )

1 ( 0, 1)

(1 ) ( 1, 1)

0 ( 0, 1)( )

( ( )* ( 2 | ))
(

* (0) ( ( )* ( 1| ))

k

i k j k n

n

k

i k j k n

n

i j

i kj

k q

broken i kj

s

i kj
i j

q

s

bg i j

j

k

s

bc bc i j

j

q

l orl L

q l

p q l

q lp l

p j p l bn j
o

p p j p l bn j

+ − +
=

+ − +
=

+

+

+

+

+

=

+

=

=
≤ >

= =

∑
− = =

= >=

∑

− =

+ − =

∑

∑
)therwise

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

  (5) 

Here, )(ipbc  is the probability that i children have been 

broken. Similarly, )(ipbj is the probability that i grand-

children have been broken. )1|( =bnlpi  is the probability 

that the longest broken tree among j trees is of length l, 

given that j children of a parent, which is in the (i-1)th layer, 

have been broken in the ith layer. )(ipbc , )(ipbj and 

)1|( =bnlpi can be calculated as:  
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Here, 
, ( )s

i jp l can be calculated as below, 
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So far, we have finished analyzing how to get revealp .

For anonymity degree of AM as a receiver, we denote 

the AM node we consider as 
,u t

p . Its parent is 
1,[ / ]u t kp −

and grandparent is 
2,[[ / ]/ ]u t k kp −

. Here, we denote [i] as the 

largest integer that is no more than i. We give the formulae 
to calculate the probability that the identity of the AM as a 
receiver is revealed as below. 
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Here, the definition of 
, ( )r

i jp l is similar to
, ( )s

i j
p l , which 

is defined before. 
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4.3 Numerical Results and Discussions 

In the following discussion, we will consider the nu-
merical results based on the above formulae for anonymity 
degree in the incomplete tree. The incomplete tree that we 
use is a binary tree. The root node has four grandchildren: 
one is the root of a complete subtree with 2 leaves in the 
third layer, one is the root of a complete subtree with 4 
leaves in the fourth layer, one is the root of a complete 
subtree with 8 leaves in the fifth layer, and the other is the 
root of a complete subtree with 16 leaves in the sixth layer. 
The data are obtained in MATLAB. 

Figure 2 and 3 show the sensitivity of anonymity degree 
to broken ratio. Different curves represent different com-
binations of k and L. Anonymity degree is represented by 
Preveal. Smaller Preveal results in better anonymity degree. It 
is obvious that anonymity degree improves as broken ratio 
decreases. 

When the percentage of broken nodes and L are fixed, 
anonymity degree improves when k increases. This is be-
cause when the tree grows wider, the broken nodes tend to 
be in different branches. The length of the broken tree 
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Figure 4: RRU vs the number of AM 
nodes

tends to decrease. When the percentage of broken nodes 
and k are fixed, anonymity degree improves when L in-
crease. This is because when the tree grows deeper, the 
length of the broken tree tends to decrease.  

The AM sender anonymity of the incomplete tree in our 
example in Figure 2 is between those of the complete binary 
tree with all receivers in the third or sixth layer. This is 
obvious because the AM sender's anonymity improves 
when the tree grows. We observe that the difference be-
tween the incomplete tree curve and the complete tree curve 
with six layers is very slight. This is because the children of 
the sender who has fewer descendants will have compara-
tively small weight, which helps to improve the AM 
sender's anonymity. Actually we can achieve significant 
bandwidth efficiency with little sacrifice on AM sender's 
anonymity.  

The AM receiver anonymity of the incomplete tree in 
our example in Figure 3 is worse than that of the complete 
tree with sixth layers. This is because fewer nodes will be 
considered as the parent of the receiver, the comparative 
weight of the AM receiver's parent tends to increase. We 
observe that among all the AM receivers in the incomplete 
tree, the higher AM receivers have better anonymity than 
the lower ones. This is because their parents tend to be the 
tail of a shorter broken tree, which helps to decrease their 
weight. This fact holds under the assumption that the at-
tacker does not know the layer of the AM receiver. We 
observe that the differences among different AM receivers 
in the incomplete tree case and between the incomplete tree 
case and the complete tree case are very slight because the 
AM receiver's anonymity is dominated by the probability 
that the sender or the receiver is broken, which is deter-
mined by the percentage of broken nodes. This means that 
significant bandwidth efficiency can be achieved with little 
sacrifice of AM receiver's anonymity. 

5. Performance Evaluation 

5.1 Simulation Methodology 

Two types of topologies, physical and logical topologies, 
are generated in our simulation. The physical topology 
should represent the real topology with Internet character-

istics. The logical topology represents the overlay system 
built on top of the physical topology. To simulate the MAM 
protocol in a more realistic environment, both topologies 
must accurately reflect the topological properties of real 
networks in each layer. BRITE [1] is a topology generation 
tool that provides the option to generate topologies based 
on the AS Model. Using BRITE, we generate physical 
topologies with 3,000 to 7,000 nodes. The average number 
of neighbors of each node ranges from 4 to 10. The 100 to 
300 overlay nodes are randomly selected from the nodes in 
the physical topologies. 

To reflect the real overlay systems, in the experiments 
we report here, member nodes are coming and leaving 
according to the distribution observed in [25]. The mean of 
the distribution is chosen to be 1800 seconds. The value of 
the variance is chosen to be half of the value of the mean. In 
each experiment, a number of nodes join the system at the 
first 120 seconds of the simulation in random sequence. The 
lifetime of each node will be decreased by one after passing 
each second. A member will leave in the next second when 
its lifetime reaches zero. During each second, there are a 
number of members leaving the system, and we then ran-
domly pick up (turn on) a similar number of members from 
the physical network to join the system. 

In all the experiments, every 50 seconds, random nodes 
are selected as senders to multicast data at a constant rate, 
and the simulations run for 60 minutes. In the MAM pro-
tocol, the lifetime of Remailers is randomly selected from 
50 to 200 seconds. 

5.2 Performance Metrics 

We compare the performance of three different ap-
proaches: Optimal, MAM, and RAND. In Optimal, the 
anonymous multicast tree is optimized using an offline 
algorithm. In a naïve approach, indicated as “RAND”, each 
joining node randomly selects a member to connect to the 
multicast tree.  

We use two performance metrics: relative resource us-
age (RRU) and average worst-case delay (AWD). 

The stress of a physical link is defined in [10] as the 
number of identical copies of a packet carried by a physical 



link. We define resource usage as ∑
=

×
N

j

jj sd

1

, where dj is the 

delay of link j and sj is the stress of link j. Resource usage is 
one of the parameters of seriously concerned to network 
administrators. Heavy network traffic limits the scalability 
of overlay networks [24]. RRU is defined as the ratio of the 
resource usage of MAM or other approaches to the optimal 
anonymous multicast tree. AWD is the average delay from 
the source to the farthest node that gets the multicast pack-
ets, when nodes are selected at random as the source nodes 
in multiple runs. 

5.3 Simulation Results 

When there is no member needing to hide its identity, 
then the system will be the same as normal end system 
multicast. Intuitively, when more nodes need to be hidden, 
the total cost of the system will increase. We first show 
MAM’s performance by increasing the number of nodes 
that need to achieve anonymity (AM nodes) in the system.  

With 3000 physical nodes and 200 overlay multicast 
members, Figures 4 and 5 plot the RRU and AWD of dif-
ferent approaches versus the number of AM nodes in the 
system. When the ratio of AM nodes in the system is small, 
MAM’s RRU is very close to the optimal solution. MAM’s 
AWD is very close to the optimal solution when less than 
half of the nodes are AM nodes. We vary the system size 
from 100 to 400, and the physical network size from 2,000 
to 8,000. The results are consistent, indicating that MAM 
maintains effectiveness, and the RRU and AWD of MAM 
are not sensitive to the system size or the physical networks 
size. If all of the members in a system are AM nodes, even 
the optimal solution is as bad as the naïve RAND approach, 
and a system of smaller size could incur greater traffic 
overhead than a system with larger size. Hence, in MAM, 
we propose to avoid having all the members as AM nodes 
by inviting MO nodes into the system. Frankly, it is always 
helpful if more MO nodes can join the system. However, 
the overhead of inviting MO nodes is hard to predict: they 
merely provide service to the system but do not consume 
the multicast content.

In the “MAM” protocol, MO nodes are not invited. We 
can see that when the percentage of AM nodes is large, both 

RRU and AWD degrade significantly. We investigate the 
effectiveness of inviting MO nodes to join in Figures 4 and 
5 using the “MAM-MO” protocol, in which MO nodes are 
invited when the ratio of AM nodes in the system reaches 
90%. The improvement is substantial for a system with 
more than 270 AM nodes (90% of the system).  

The next question is when is the best time for the system 
to invite MO nodes, i.e. what is the best Invitation Thresh-
old IT. 

Figures 6 and 7 show the RRU improvement and AWD 
improvement versus the number of invited MO nodes for a 
different given number of AM nodes in a system with 200 
overlay multicast members. RRU/AWD improvement is 
defined as the percentage of the RRU/AWD improvement 
with the MAM-MO protocol over the MAM protocol 
without MO node invitation. “RRU-n”/ “AWD-n” means 
the RRU/AWD improvement for a given number of n AM 
nodes. In general, inviting more MO nodes means better 
performance with the assumption that we have an infinite 
number of available MO nodes to be invited.  

However, when a certain number of MO nodes have 
been invited, inviting more MO nodes is not as effective as 
before. For example, there is a clear jump in Figure 6 for 
RRU-120, which shows that when 30 MO nodes have been 
invited, inviting more MO nodes gives little additional 
RRU improvement, where the corresponding IT is 
120/(200+30)=52%. Similarly, the ITs for RRU-150 and 
RRU-180 are 47% and 47%. If we calculate the ITs from 
Figure 7, we have 46%, 52% and 47% for AWD-120, 
AWD-150, and AWD-180 respectively. 

Therefore, our interpretation of the experimental results 
is that when less than around 50% of the nodes wish to be 
anonymous, MAM may be directly used with no need to 
invite MO nodes; otherwise, MO nodes should be invited to 
keep the ratio of AM nodes in the system at about 50%. 
Beyond this, inviting more MO nodes is not necessary. 

6. Conclusion and Future Work 

In this paper, we propose the MAM protocol to provide 
anonymous multicast service. Our analysis shows that the 
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anonymity degree of AM nodes is correlated with the bro-
ken ratio, tree degree, and tree depth. We also show that the 
incomplete multicast tree can achieve a similar anonymity 
degree with much higher bandwidth efficiency, compared 
to the complete multicast tree. 

Our performance evaluation shows that MAM is an ef-
fective approach to constructing an efficient anonymous 
multicast tree. When the percentage of AM nodes in a 
system is below a certain level, without inviting MO nodes, 
MAM works as well as the optimal solution. We have also 
show that inviting a certain ratio of MO nodes can be very 
effective for a system with a large number of AM nodes. 
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